organic compounds
5-O-Acetyl-D-ribono-1,4-lactone
aDepto. de Química - UFSC, 88040-900 - Florianópolis, SC, Brazil
*Correspondence e-mail: adajb@qmc.ufsc.br
The title compound, C7H10O6, was obtained from a regioselective enzyme-catalysed acylation of D-ribono-1,4-lactone. The five-membered ring of the acylated sugar shows an In the crystal, the molecules are linked by intermolecular O—H⋯O hydrogen-bonds, forming a one-dimensional polymeric structure parallel to [010]. In addition, packing analysis shows stacking along the b axis.
Related literature
For general background to et al. (2007); Han et al. (1993); Simone et al. (2005). For biocatalysed acylation reactions, see: Díaz-Rodríguez et al. (2005); Wu et al. (2008). For related structures, see: Shalaby et al. (1994); Bye (1979); Amador et al. (2004); Sá et al. (2008); Gress & Jeffrey (1976).
see: CormaExperimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536811038670/lr2026sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811038670/lr2026Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811038670/lr2026Isup3.mol
The reaction was initiated by dissolving D-ribono-1,4-lactone (74.0 mg, 0.5 mmol) and vinyl acetate (0.14 ml, 1.5 mmol) in anhydrous acetonitrile (10.0 ml) followed by the addition of CAL-B (10.0 mg, Novozym 435, 10,000 PLU/g). The mixture was shaken at 308 K and 150 rpm for 24 h. The reaction was stopped by filtering off the lipase. Finally, solvent was evaporated and the product 5-O-acetyl-D-ribono-1,4-lactone was obtained as a white solid (94% yield). Careful recrystallization from acetone provided the crystals (413–414 K) suitable for X-ray diffraction analysis.
H atoms attached to carbon atoms were placed at their idealized positions with distances of 0.98, 0.97 and 0.96 Å and Ueq fixed at 1.2 and 1.5 times Uiso of the preceding atom for CH, CH2 and CH3, respectively. H atoms of the hydroxyl groups were found from difference map and treated as free atoms. The final
of the structure was done averaging all equivalents.Carbohydrates are valuable sources for the production of synthetic compounds of general relevance (Corma et al., 2007). D-Ribono-1,4-lactone (1) is an inexpensive and abundant sugar derivative that is commercially available from renewable resources (Han et al., 1993, Simone et al., 2005). Many synthetic transformations involving 1 lead to unexpected processes ranging from rearrangements to
migrations. In such cases, single-crystal X-ray analysis is the only reliable method for the correct structural and conformational assignments (Sá et al., 2008). Enzyme-catalyzed acylation of sugars is, in general, regioselective. Lipases (EC 3.1.1.3) are the most used biocatalyst for this purpose, especially Candida antarctica lipase B - CAL-B (Díaz-Rodríguez et al., 2005; Wu et al., 2008). We describe herein the of 5-O-acetyl-D-ribono-1,4-lactone (2), synthesized from the regioselective acetylation of 1 using CAL-B (Fig. 1).The molecular structure of the title compound exhibits its 1,4-lactone ring with
which is enveloped on C3 (Fig. 2). Hydroxyl groups are involved in different types of intermolecular O—H···O hydrogen-bonds (Table 1). Hydroxyl group (O3) is the donor for linear hydrogen-bond (O3—H3···O4), whereas hydroxyl group (O4) is the donor for bifurcated interactions (O4—H4···O2 and O4—H4···O3). These interactions link molecules forming one-dimensional zigzag infinite chain parallel to [010] direction. Also, packing analysis shows stack along the b crystallographic axis (Fig. 3).For general background to
see: Corma et al. (2007); Han et al. (1993); Simone et al. (2005). For biocatalysed acylation reactions, see: Díaz-Rodríguez et al. (2005); Wu et al. (2008). For related structures, see: Shalaby et al. (1994); Bye (1979); Amador et al. (2004); Sá et al. (2008); Gress & Jeffrey (1976).Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C7H10O6 | F(000) = 200 |
Mr = 190.15 | Dx = 1.507 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 25 reflections |
a = 6.1409 (4) Å | θ = 3.5–20.5° |
b = 5.1952 (15) Å | µ = 0.13 mm−1 |
c = 13.1844 (18) Å | T = 293 K |
β = 95.118 (12)° | Prismatic, colorless |
V = 418.95 (14) Å3 | 0.50 × 0.30 × 0.13 mm |
Z = 2 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.046 |
Radiation source: fine-focus sealed tube | θmax = 30.0°, θmin = 1.6° |
Graphite monochromator | h = −8→8 |
ω–2θ scans | k = −7→2 |
2164 measured reflections | l = −18→2 |
1346 independent reflections | 3 standard reflections every 200 reflections |
1015 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0807P)2 + 0.0065P] where P = (Fo2 + 2Fc2)/3 |
1346 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.29 e Å−3 |
1 restraint | Δρmin = −0.18 e Å−3 |
C7H10O6 | V = 418.95 (14) Å3 |
Mr = 190.15 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 6.1409 (4) Å | µ = 0.13 mm−1 |
b = 5.1952 (15) Å | T = 293 K |
c = 13.1844 (18) Å | 0.50 × 0.30 × 0.13 mm |
β = 95.118 (12)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.046 |
2164 measured reflections | 3 standard reflections every 200 reflections |
1346 independent reflections | intensity decay: 1% |
1015 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.047 | 1 restraint |
wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.29 e Å−3 |
1346 reflections | Δρmin = −0.18 e Å−3 |
127 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4264 (4) | −0.0865 (5) | 0.32056 (19) | 0.0355 (5) | |
C2 | 0.4464 (4) | 0.1808 (5) | 0.3674 (2) | 0.0344 (5) | |
H2 | 0.4839 | 0.3062 | 0.3162 | 0.041* | |
C3 | 0.2154 (4) | 0.2326 (5) | 0.3976 (2) | 0.0364 (6) | |
H3A | 0.1774 | 0.4155 | 0.3913 | 0.044* | |
C4 | 0.0742 (4) | 0.0687 (6) | 0.3213 (2) | 0.0405 (6) | |
H4A | −0.0460 | −0.0050 | 0.3559 | 0.049* | |
C5 | −0.0206 (5) | 0.2048 (8) | 0.2270 (2) | 0.0507 (8) | |
H5A | −0.1029 | 0.0850 | 0.1820 | 0.061* | |
H5B | −0.1181 | 0.3413 | 0.2448 | 0.061* | |
C6 | 0.1100 (5) | 0.5012 (7) | 0.1095 (2) | 0.0482 (7) | |
C7 | 0.3079 (6) | 0.5894 (10) | 0.0629 (3) | 0.0660 (11) | |
H7A | 0.3294 | 0.4848 | 0.0046 | 0.099* | |
H7B | 0.4329 | 0.5748 | 0.1118 | 0.099* | |
H7C | 0.2895 | 0.7658 | 0.0422 | 0.099* | |
O1 | 0.2157 (3) | −0.1406 (4) | 0.29314 (16) | 0.0433 (5) | |
O2 | 0.5706 (3) | −0.2355 (4) | 0.30942 (17) | 0.0480 (5) | |
O3 | 0.6139 (3) | 0.1709 (5) | 0.44808 (17) | 0.0449 (5) | |
O4 | 0.1877 (3) | 0.1377 (5) | 0.49711 (16) | 0.0445 (5) | |
O5 | 0.1590 (3) | 0.3103 (5) | 0.17745 (16) | 0.0482 (6) | |
O6 | −0.0705 (4) | 0.5837 (6) | 0.0916 (2) | 0.0666 (8) | |
H3 | 0.661 (6) | 0.325 (9) | 0.455 (3) | 0.047 (10)* | |
H4 | 0.265 (7) | 0.229 (12) | 0.540 (4) | 0.070 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0392 (12) | 0.0292 (12) | 0.0375 (12) | −0.0038 (11) | 0.0002 (10) | 0.0020 (11) |
C2 | 0.0301 (10) | 0.0282 (12) | 0.0445 (13) | −0.0040 (10) | 0.0004 (9) | 0.0007 (11) |
C3 | 0.0332 (11) | 0.0304 (14) | 0.0452 (13) | 0.0003 (10) | 0.0004 (9) | −0.0002 (11) |
C4 | 0.0320 (11) | 0.0398 (16) | 0.0489 (14) | −0.0059 (12) | −0.0006 (10) | 0.0034 (13) |
C5 | 0.0368 (12) | 0.060 (2) | 0.0535 (16) | −0.0001 (15) | −0.0068 (11) | 0.0076 (17) |
C6 | 0.0556 (16) | 0.0446 (16) | 0.0417 (14) | 0.0035 (16) | −0.0107 (12) | −0.0012 (14) |
C7 | 0.068 (2) | 0.078 (3) | 0.0513 (18) | −0.002 (2) | 0.0015 (16) | 0.015 (2) |
O1 | 0.0416 (9) | 0.0331 (10) | 0.0535 (11) | −0.0079 (9) | −0.0054 (8) | −0.0032 (9) |
O2 | 0.0480 (11) | 0.0389 (12) | 0.0566 (12) | 0.0027 (10) | 0.0018 (9) | −0.0052 (10) |
O3 | 0.0371 (9) | 0.0401 (13) | 0.0555 (12) | −0.0052 (10) | −0.0078 (8) | −0.0051 (10) |
O4 | 0.0411 (9) | 0.0487 (13) | 0.0438 (10) | 0.0013 (10) | 0.0033 (8) | −0.0021 (10) |
O5 | 0.0429 (10) | 0.0534 (14) | 0.0478 (11) | 0.0049 (10) | 0.0014 (8) | 0.0081 (11) |
O6 | 0.0569 (13) | 0.0666 (18) | 0.0728 (15) | 0.0090 (13) | −0.0140 (11) | 0.0155 (15) |
C1—O2 | 1.195 (3) | C5—O5 | 1.439 (4) |
C1—O1 | 1.342 (3) | C5—H5A | 0.9700 |
C1—C2 | 1.521 (4) | C5—H5B | 0.9700 |
C2—O3 | 1.413 (3) | C6—O6 | 1.192 (4) |
C2—C3 | 1.531 (4) | C6—O5 | 1.352 (4) |
C2—H2 | 0.9800 | C6—C7 | 1.482 (5) |
C3—O4 | 1.425 (4) | C7—H7A | 0.9600 |
C3—C4 | 1.528 (4) | C7—H7B | 0.9600 |
C3—H3A | 0.9800 | C7—H7C | 0.9600 |
C4—O1 | 1.460 (4) | O3—H3 | 0.85 (5) |
C4—C5 | 1.502 (4) | O4—H4 | 0.85 (5) |
C4—H4A | 0.9800 | ||
O2—C1—O1 | 122.6 (3) | C3—C4—H4A | 108.5 |
O2—C1—C2 | 127.4 (2) | O5—C5—C4 | 107.4 (2) |
O1—C1—C2 | 110.0 (2) | O5—C5—H5A | 110.2 |
O3—C2—C1 | 107.4 (2) | C4—C5—H5A | 110.2 |
O3—C2—C3 | 116.1 (2) | O5—C5—H5B | 110.2 |
C1—C2—C3 | 102.9 (2) | C4—C5—H5B | 110.2 |
O3—C2—H2 | 110.0 | H5A—C5—H5B | 108.5 |
C1—C2—H2 | 110.0 | O6—C6—O5 | 122.9 (3) |
C3—C2—H2 | 110.0 | O6—C6—C7 | 126.1 (3) |
O4—C3—C4 | 107.8 (2) | O5—C6—C7 | 111.0 (3) |
O4—C3—C2 | 111.6 (2) | C6—C7—H7A | 109.5 |
C4—C3—C2 | 102.4 (2) | C6—C7—H7B | 109.5 |
O4—C3—H3A | 111.5 | H7A—C7—H7B | 109.5 |
C4—C3—H3A | 111.5 | C6—C7—H7C | 109.5 |
C2—C3—H3A | 111.5 | H7A—C7—H7C | 109.5 |
O1—C4—C5 | 109.6 (3) | H7B—C7—H7C | 109.5 |
O1—C4—C3 | 105.5 (2) | C1—O1—C4 | 110.9 (2) |
C5—C4—C3 | 116.0 (3) | C2—O3—H3 | 105 (2) |
O1—C4—H4A | 108.5 | C3—O4—H4 | 108 (3) |
C5—C4—H4A | 108.5 | C6—O5—C5 | 116.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O4i | 0.85 (5) | 1.95 (5) | 2.781 (3) | 164 (3) |
O4—H4···O2i | 0.85 (5) | 2.15 (5) | 2.910 (3) | 148 (5) |
O4—H4···O3i | 0.85 (5) | 2.41 (6) | 3.086 (4) | 136 (4) |
Symmetry code: (i) −x+1, y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C7H10O6 |
Mr | 190.15 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 293 |
a, b, c (Å) | 6.1409 (4), 5.1952 (15), 13.1844 (18) |
β (°) | 95.118 (12) |
V (Å3) | 418.95 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.50 × 0.30 × 0.13 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2164, 1346, 1015 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.135, 1.07 |
No. of reflections | 1346 |
No. of parameters | 127 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.18 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SET4 in CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O4i | 0.85 (5) | 1.95 (5) | 2.781 (3) | 164 (3) |
O4—H4···O2i | 0.85 (5) | 2.15 (5) | 2.910 (3) | 148 (5) |
O4—H4···O3i | 0.85 (5) | 2.41 (6) | 3.086 (4) | 136 (4) |
Symmetry code: (i) −x+1, y+1/2, −z+1. |
Acknowledgements
The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) for financial support.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Amador, P., Flores, H. & Bernès, S. (2004). Acta Cryst. E60, o904–o906. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bye, E. (1979). Acta Chem. Scand. 33, 169–171. CrossRef Web of Science Google Scholar
Corma, A., Iborra, S. & Velty, A. (2007). Chem. Rev. 107, 2411–2502. Web of Science CrossRef PubMed CAS Google Scholar
Díaz-Rodríguez, A., Fernández, S., Lavandera, I., Ferrero, M. & Gotor, V. (2005). Tetrahedron Lett. 46, 5835–5838. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gress, M. E. & Jeffrey, G. A. (1976). Carbohydr. Res. 50, 159–168. CSD CrossRef CAS Web of Science Google Scholar
Han, S.-Y., Joullié, M. M., Petasis, N. A., Bigorra, J., Corbera, J., Font, J. & Ortuño, R. M. (1993). Tetrahedron 49, 349–362. CrossRef Web of Science Google Scholar
Sá, M. M., Silveira, G. P., Caro, M. S. B. & Ellena, J. (2008). J. Braz. Chem. Soc. 19, 18–23. Google Scholar
Shalaby, M. A., Fronczek, F. R. & Younathan, E. S. (1994). Carbohydr. Res. 264, 181–190. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, Q., Xia, A. & Lin, X. (2008). J. Mol. Catal. B Enzym. 54, 76–82. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carbohydrates are valuable sources for the production of synthetic compounds of general relevance (Corma et al., 2007). D-Ribono-1,4-lactone (1) is an inexpensive and abundant sugar derivative that is commercially available from renewable resources (Han et al., 1993, Simone et al., 2005). Many synthetic transformations involving 1 lead to unexpected processes ranging from rearrangements to functional group migrations. In such cases, single-crystal X-ray analysis is the only reliable method for the correct structural and conformational assignments (Sá et al., 2008). Enzyme-catalyzed acylation of sugars is, in general, regioselective. Lipases (EC 3.1.1.3) are the most used biocatalyst for this purpose, especially Candida antarctica lipase B - CAL-B (Díaz-Rodríguez et al., 2005; Wu et al., 2008). We describe herein the crystal structure of 5-O-acetyl-D-ribono-1,4-lactone (2), synthesized from the regioselective acetylation of 1 using CAL-B (Fig. 1).
The molecular structure of the title compound exhibits its 1,4-lactone ring with envelope conformation, which is enveloped on C3 (Fig. 2). Hydroxyl groups are involved in different types of intermolecular O—H···O hydrogen-bonds (Table 1). Hydroxyl group (O3) is the donor for linear hydrogen-bond (O3—H3···O4), whereas hydroxyl group (O4) is the donor for bifurcated interactions (O4—H4···O2 and O4—H4···O3). These interactions link molecules forming one-dimensional zigzag infinite chain parallel to [010] direction. Also, packing analysis shows stack along the b crystallographic axis (Fig. 3).