organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-O-Acetyl-D-ribono-1,4-lactone

aDepto. de Química - UFSC, 88040-900 - Florianópolis, SC, Brazil
*Correspondence e-mail: adajb@qmc.ufsc.br

(Received 6 August 2011; accepted 20 September 2011; online 30 September 2011)

The title compound, C7H10O6, was obtained from a regioselective enzyme-catalysed acyl­ation of D-ribono-1,4-lactone. The five-membered ring of the acyl­ated sugar shows an envelope conformation. In the crystal, the mol­ecules are linked by inter­molecular O—H⋯O hydrogen-bonds, forming a one-dimensional polymeric structure parallel to [010]. In addition, packing analysis shows stacking along the b axis.

Related literature

For general background to carbohydrates, see: Corma et al. (2007[Corma, A., Iborra, S. & Velty, A. (2007). Chem. Rev. 107, 2411-2502.]); Han et al. (1993[Han, S.-Y., Joullié, M. M., Petasis, N. A., Bigorra, J., Corbera, J., Font, J. & Ortuño, R. M. (1993). Tetrahedron 49, 349-362.]); Simone et al. (2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.]). For biocatalysed acyl­ation reactions, see: Díaz-Rodríguez et al. (2005[Díaz-Rodríguez, A., Fernández, S., Lavandera, I., Ferrero, M. & Gotor, V. (2005). Tetrahedron Lett. 46, 5835-5838.]); Wu et al. (2008[Wu, Q., Xia, A. & Lin, X. (2008). J. Mol. Catal. B Enzym. 54, 76-82.]). For related structures, see: Shalaby et al. (1994[Shalaby, M. A., Fronczek, F. R. & Younathan, E. S. (1994). Carbohydr. Res. 264, 181-190.]); Bye (1979[Bye, E. (1979). Acta Chem. Scand. 33, 169-171.]); Amador et al. (2004[Amador, P., Flores, H. & Bernès, S. (2004). Acta Cryst. E60, o904-o906.]); Sá et al. (2008[Sá, M. M., Silveira, G. P., Caro, M. S. B. & Ellena, J. (2008). J. Braz. Chem. Soc. 19, 18-23.]); Gress & Jeffrey (1976[Gress, M. E. & Jeffrey, G. A. (1976). Carbohydr. Res. 50, 159-168.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10O6

  • Mr = 190.15

  • Monoclinic, P 21

  • a = 6.1409 (4) Å

  • b = 5.1952 (15) Å

  • c = 13.1844 (18) Å

  • β = 95.118 (12)°

  • V = 418.95 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.50 × 0.30 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 2164 measured reflections

  • 1346 independent reflections

  • 1015 reflections with I > 2σ(I)

  • Rint = 0.046

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.07

  • 1346 reflections

  • 127 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.85 (5) 1.95 (5) 2.781 (3) 164 (3)
O4—H4⋯O2i 0.85 (5) 2.15 (5) 2.910 (3) 148 (5)
O4—H4⋯O3i 0.85 (5) 2.41 (6) 3.086 (4) 136 (4)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996[Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carbohydrates are valuable sources for the production of synthetic compounds of general relevance (Corma et al., 2007). D-Ribono-1,4-lactone (1) is an inexpensive and abundant sugar derivative that is commercially available from renewable resources (Han et al., 1993, Simone et al., 2005). Many synthetic transformations involving 1 lead to unexpected processes ranging from rearrangements to functional group migrations. In such cases, single-crystal X-ray analysis is the only reliable method for the correct structural and conformational assignments (Sá et al., 2008). Enzyme-catalyzed acylation of sugars is, in general, regioselective. Lipases (EC 3.1.1.3) are the most used biocatalyst for this purpose, especially Candida antarctica lipase B - CAL-B (Díaz-Rodríguez et al., 2005; Wu et al., 2008). We describe herein the crystal structure of 5-O-acetyl-D-ribono-1,4-lactone (2), synthesized from the regioselective acetylation of 1 using CAL-B (Fig. 1).

The molecular structure of the title compound exhibits its 1,4-lactone ring with envelope conformation, which is enveloped on C3 (Fig. 2). Hydroxyl groups are involved in different types of intermolecular O—H···O hydrogen-bonds (Table 1). Hydroxyl group (O3) is the donor for linear hydrogen-bond (O3—H3···O4), whereas hydroxyl group (O4) is the donor for bifurcated interactions (O4—H4···O2 and O4—H4···O3). These interactions link molecules forming one-dimensional zigzag infinite chain parallel to [010] direction. Also, packing analysis shows stack along the b crystallographic axis (Fig. 3).

Related literature top

For general background to carbohydrates, see: Corma et al. (2007); Han et al. (1993); Simone et al. (2005). For biocatalysed acylation reactions, see: Díaz-Rodríguez et al. (2005); Wu et al. (2008). For related structures, see: Shalaby et al. (1994); Bye (1979); Amador et al. (2004); Sá et al. (2008); Gress & Jeffrey (1976).

Experimental top

The reaction was initiated by dissolving D-ribono-1,4-lactone (74.0 mg, 0.5 mmol) and vinyl acetate (0.14 ml, 1.5 mmol) in anhydrous acetonitrile (10.0 ml) followed by the addition of CAL-B (10.0 mg, Novozym 435, 10,000 PLU/g). The mixture was shaken at 308 K and 150 rpm for 24 h. The reaction was stopped by filtering off the lipase. Finally, solvent was evaporated and the product 5-O-acetyl-D-ribono-1,4-lactone was obtained as a white solid (94% yield). Careful recrystallization from acetone provided the crystals (413–414 K) suitable for X-ray diffraction analysis.

Refinement top

H atoms attached to carbon atoms were placed at their idealized positions with distances of 0.98, 0.97 and 0.96 Å and Ueq fixed at 1.2 and 1.5 times Uiso of the preceding atom for CH, CH2 and CH3, respectively. H atoms of the hydroxyl groups were found from difference map and treated as free atoms. The final refinement of the structure was done averaging all equivalents.

Structure description top

Carbohydrates are valuable sources for the production of synthetic compounds of general relevance (Corma et al., 2007). D-Ribono-1,4-lactone (1) is an inexpensive and abundant sugar derivative that is commercially available from renewable resources (Han et al., 1993, Simone et al., 2005). Many synthetic transformations involving 1 lead to unexpected processes ranging from rearrangements to functional group migrations. In such cases, single-crystal X-ray analysis is the only reliable method for the correct structural and conformational assignments (Sá et al., 2008). Enzyme-catalyzed acylation of sugars is, in general, regioselective. Lipases (EC 3.1.1.3) are the most used biocatalyst for this purpose, especially Candida antarctica lipase B - CAL-B (Díaz-Rodríguez et al., 2005; Wu et al., 2008). We describe herein the crystal structure of 5-O-acetyl-D-ribono-1,4-lactone (2), synthesized from the regioselective acetylation of 1 using CAL-B (Fig. 1).

The molecular structure of the title compound exhibits its 1,4-lactone ring with envelope conformation, which is enveloped on C3 (Fig. 2). Hydroxyl groups are involved in different types of intermolecular O—H···O hydrogen-bonds (Table 1). Hydroxyl group (O3) is the donor for linear hydrogen-bond (O3—H3···O4), whereas hydroxyl group (O4) is the donor for bifurcated interactions (O4—H4···O2 and O4—H4···O3). These interactions link molecules forming one-dimensional zigzag infinite chain parallel to [010] direction. Also, packing analysis shows stack along the b crystallographic axis (Fig. 3).

For general background to carbohydrates, see: Corma et al. (2007); Han et al. (1993); Simone et al. (2005). For biocatalysed acylation reactions, see: Díaz-Rodríguez et al. (2005); Wu et al. (2008). For related structures, see: Shalaby et al. (1994); Bye (1979); Amador et al. (2004); Sá et al. (2008); Gress & Jeffrey (1976).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Biocatalyzed acylation reaction.
[Figure 2] Fig. 2. The molecular structure of enantiomeric pair of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 40% probability level.
[Figure 3] Fig. 3. Partial packing of the title compound showing hydrogen bonds.
5-O-Acetyl-D-ribono-1,4-lactone top
Crystal data top
C7H10O6F(000) = 200
Mr = 190.15Dx = 1.507 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 6.1409 (4) Åθ = 3.5–20.5°
b = 5.1952 (15) ŵ = 0.13 mm1
c = 13.1844 (18) ÅT = 293 K
β = 95.118 (12)°Prismatic, colorless
V = 418.95 (14) Å30.50 × 0.30 × 0.13 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.046
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 1.6°
Graphite monochromatorh = 88
ω–2θ scansk = 72
2164 measured reflectionsl = 182
1346 independent reflections3 standard reflections every 200 reflections
1015 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0807P)2 + 0.0065P]
where P = (Fo2 + 2Fc2)/3
1346 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C7H10O6V = 418.95 (14) Å3
Mr = 190.15Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.1409 (4) ŵ = 0.13 mm1
b = 5.1952 (15) ÅT = 293 K
c = 13.1844 (18) Å0.50 × 0.30 × 0.13 mm
β = 95.118 (12)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.046
2164 measured reflections3 standard reflections every 200 reflections
1346 independent reflections intensity decay: 1%
1015 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.29 e Å3
1346 reflectionsΔρmin = 0.18 e Å3
127 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4264 (4)0.0865 (5)0.32056 (19)0.0355 (5)
C20.4464 (4)0.1808 (5)0.3674 (2)0.0344 (5)
H20.48390.30620.31620.041*
C30.2154 (4)0.2326 (5)0.3976 (2)0.0364 (6)
H3A0.17740.41550.39130.044*
C40.0742 (4)0.0687 (6)0.3213 (2)0.0405 (6)
H4A0.04600.00500.35590.049*
C50.0206 (5)0.2048 (8)0.2270 (2)0.0507 (8)
H5A0.10290.08500.18200.061*
H5B0.11810.34130.24480.061*
C60.1100 (5)0.5012 (7)0.1095 (2)0.0482 (7)
C70.3079 (6)0.5894 (10)0.0629 (3)0.0660 (11)
H7A0.32940.48480.00460.099*
H7B0.43290.57480.11180.099*
H7C0.28950.76580.04220.099*
O10.2157 (3)0.1406 (4)0.29314 (16)0.0433 (5)
O20.5706 (3)0.2355 (4)0.30942 (17)0.0480 (5)
O30.6139 (3)0.1709 (5)0.44808 (17)0.0449 (5)
O40.1877 (3)0.1377 (5)0.49711 (16)0.0445 (5)
O50.1590 (3)0.3103 (5)0.17745 (16)0.0482 (6)
O60.0705 (4)0.5837 (6)0.0916 (2)0.0666 (8)
H30.661 (6)0.325 (9)0.455 (3)0.047 (10)*
H40.265 (7)0.229 (12)0.540 (4)0.070 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0392 (12)0.0292 (12)0.0375 (12)0.0038 (11)0.0002 (10)0.0020 (11)
C20.0301 (10)0.0282 (12)0.0445 (13)0.0040 (10)0.0004 (9)0.0007 (11)
C30.0332 (11)0.0304 (14)0.0452 (13)0.0003 (10)0.0004 (9)0.0002 (11)
C40.0320 (11)0.0398 (16)0.0489 (14)0.0059 (12)0.0006 (10)0.0034 (13)
C50.0368 (12)0.060 (2)0.0535 (16)0.0001 (15)0.0068 (11)0.0076 (17)
C60.0556 (16)0.0446 (16)0.0417 (14)0.0035 (16)0.0107 (12)0.0012 (14)
C70.068 (2)0.078 (3)0.0513 (18)0.002 (2)0.0015 (16)0.015 (2)
O10.0416 (9)0.0331 (10)0.0535 (11)0.0079 (9)0.0054 (8)0.0032 (9)
O20.0480 (11)0.0389 (12)0.0566 (12)0.0027 (10)0.0018 (9)0.0052 (10)
O30.0371 (9)0.0401 (13)0.0555 (12)0.0052 (10)0.0078 (8)0.0051 (10)
O40.0411 (9)0.0487 (13)0.0438 (10)0.0013 (10)0.0033 (8)0.0021 (10)
O50.0429 (10)0.0534 (14)0.0478 (11)0.0049 (10)0.0014 (8)0.0081 (11)
O60.0569 (13)0.0666 (18)0.0728 (15)0.0090 (13)0.0140 (11)0.0155 (15)
Geometric parameters (Å, º) top
C1—O21.195 (3)C5—O51.439 (4)
C1—O11.342 (3)C5—H5A0.9700
C1—C21.521 (4)C5—H5B0.9700
C2—O31.413 (3)C6—O61.192 (4)
C2—C31.531 (4)C6—O51.352 (4)
C2—H20.9800C6—C71.482 (5)
C3—O41.425 (4)C7—H7A0.9600
C3—C41.528 (4)C7—H7B0.9600
C3—H3A0.9800C7—H7C0.9600
C4—O11.460 (4)O3—H30.85 (5)
C4—C51.502 (4)O4—H40.85 (5)
C4—H4A0.9800
O2—C1—O1122.6 (3)C3—C4—H4A108.5
O2—C1—C2127.4 (2)O5—C5—C4107.4 (2)
O1—C1—C2110.0 (2)O5—C5—H5A110.2
O3—C2—C1107.4 (2)C4—C5—H5A110.2
O3—C2—C3116.1 (2)O5—C5—H5B110.2
C1—C2—C3102.9 (2)C4—C5—H5B110.2
O3—C2—H2110.0H5A—C5—H5B108.5
C1—C2—H2110.0O6—C6—O5122.9 (3)
C3—C2—H2110.0O6—C6—C7126.1 (3)
O4—C3—C4107.8 (2)O5—C6—C7111.0 (3)
O4—C3—C2111.6 (2)C6—C7—H7A109.5
C4—C3—C2102.4 (2)C6—C7—H7B109.5
O4—C3—H3A111.5H7A—C7—H7B109.5
C4—C3—H3A111.5C6—C7—H7C109.5
C2—C3—H3A111.5H7A—C7—H7C109.5
O1—C4—C5109.6 (3)H7B—C7—H7C109.5
O1—C4—C3105.5 (2)C1—O1—C4110.9 (2)
C5—C4—C3116.0 (3)C2—O3—H3105 (2)
O1—C4—H4A108.5C3—O4—H4108 (3)
C5—C4—H4A108.5C6—O5—C5116.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.85 (5)1.95 (5)2.781 (3)164 (3)
O4—H4···O2i0.85 (5)2.15 (5)2.910 (3)148 (5)
O4—H4···O3i0.85 (5)2.41 (6)3.086 (4)136 (4)
Symmetry code: (i) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC7H10O6
Mr190.15
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.1409 (4), 5.1952 (15), 13.1844 (18)
β (°) 95.118 (12)
V3)418.95 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.50 × 0.30 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2164, 1346, 1015
Rint0.046
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.07
No. of reflections1346
No. of parameters127
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SET4 in CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.85 (5)1.95 (5)2.781 (3)164 (3)
O4—H4···O2i0.85 (5)2.15 (5)2.910 (3)148 (5)
O4—H4···O3i0.85 (5)2.41 (6)3.086 (4)136 (4)
Symmetry code: (i) x+1, y+1/2, z+1.
 

Acknowledgements

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmador, P., Flores, H. & Bernès, S. (2004). Acta Cryst. E60, o904–o906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBye, E. (1979). Acta Chem. Scand. 33, 169–171.  CrossRef Web of Science Google Scholar
First citationCorma, A., Iborra, S. & Velty, A. (2007). Chem. Rev. 107, 2411–2502.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDíaz-Rodríguez, A., Fernández, S., Lavandera, I., Ferrero, M. & Gotor, V. (2005). Tetrahedron Lett. 46, 5835–5838.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGress, M. E. & Jeffrey, G. A. (1976). Carbohydr. Res. 50, 159–168.  CSD CrossRef CAS Web of Science Google Scholar
First citationHan, S.-Y., Joullié, M. M., Petasis, N. A., Bigorra, J., Corbera, J., Font, J. & Ortuño, R. M. (1993). Tetrahedron 49, 349–362.  CrossRef Web of Science Google Scholar
First citationSá, M. M., Silveira, G. P., Caro, M. S. B. & Ellena, J. (2008). J. Braz. Chem. Soc. 19, 18–23.  Google Scholar
First citationShalaby, M. A., Fronczek, F. R. & Younathan, E. S. (1994). Carbohydr. Res. 264, 181–190.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Q., Xia, A. & Lin, X. (2008). J. Mol. Catal. B Enzym. 54, 76–82.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds