organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen-bond inter­actions in morpholinium bromide

aSchool of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
*Correspondence e-mail: Alvaro.DeSousa@wits.ac.za

(Received 11 August 2011; accepted 1 September 2011; online 14 September 2011)

In the title compound, C4H10NO+·Br, which was synthesized by dehydration of diethano­lamine with HBr, morpholinium and bromide ions are linked into chains by N—H⋯Br hydrogen bonds describing a C21(4) graph-set motif. Weaker bifurcated N—H⋯Br inter­actions join centrosymmetrically related chains through alternating binary graph-set R42(8) and R22(4) motifs, to form ladders along [100]. In addition, C—H⋯O inter­actions between centrosymmetric morpholinium cations link ladders, via [R^2_2](8) motifs, to yield sheets parallel to (101), which in turn are crosslinked by weak C—H⋯O inter­actions, related across a glide plane, to form a three-dimensional network.

Related literature

For the structures of related morpholinium salts, see: Loehlin & Okasako (2007[Loehlin, J. H. & Okasako, E. L. N. (2007). Acta Cryst. B63, 132-141.]); Mafud et al. (2011[Mafud, A. C., Sanches, E. A. & Gambardella, M. T. (2011). Acta Cryst. E67, o2008.]); Swaminathan et al. (1976[Swaminathan, S., Murthy, G. S. & Lessinger, L. (1976). Acta Cryst. B32, 3140-3142.]); Koroniak et al. (2000[Koroniak, H., Modzelewska, A. & Kosturkiewicz, Z. (2000). Pol. J. Chem. 74, 1031-1034.]); Turnbull (1997[Turnbull, M. M. (1997). Acta Cryst. C53, 818-820.]); Mazur et al. (2007[Mazur, L., Pitucha, M. & Rzaczynska, Z. (2007). Acta Cryst. E63, o4576.]); Yao (2010[Yao, J.-Y. (2010). Acta Cryst. E66, o1375.]); Christensen et al. (1993[Christensen, A. N., Hazell, R. G., Lehmann, M. S. & Neilsen, M. (1993). Acta Chem. Scand. 47, 753-756.]). For the synthesis, see: Pettit et al. (1964[Pettit, G. R., Chamberland, M. R., Blonda, D. S. & Vickers, M. A. (1964). Can. J. Chem. 42, 1699-1706.]). For the graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shinoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C4H10NO+·Br

  • Mr = 168.04

  • Monoclinic, P 21 /c

  • a = 6.1247 (2) Å

  • b = 10.3063 (3) Å

  • c = 10.1141 (3) Å

  • β = 100.312 (2)°

  • V = 628.12 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.44 mm−1

  • T = 173 K

  • 0.40 × 0.20 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (face indexed absorption corrections carried out with XPREP; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.183, Tmax = 0.595

  • 11662 measured reflections

  • 1516 independent reflections

  • 1314 reflections with I > 2σ(I)

  • Rint = 0.210

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.100

  • S = 1.03

  • 1516 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −1.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1 0.92 2.52 3.331 (2) 148
N1—H1A⋯Br1i 0.92 2.89 3.389 (2) 115
N1—H1B⋯Br1ii 0.92 2.40 3.292 (2) 164
C4—H4A⋯O1iii 0.99 2.52 3.366 (4) 143
C1—H1C⋯O1iv 0.99 2.59 3.498 (4) 152
Symmetry codes: (i) -x+1, -y, -z; (ii) x-1, y, z; (iii) -x+1, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structures and hydrogen bonding of several salts of morpholinium and its derivatives have been reported (Loehlin & Okasako, 2007; Mafud et al., 2011; Swaminathan et al., 1976; Koroniak et al., 2000 ; Turnbull, 1997; Mazur et al., 2007; Yao, 2010; Christensen et al., 1993). The title compound, morpholinium bromide, contains a single quaternary nitrogen donor (Figure1) and weak N-H···Br interactions are observable in the crystal structure. The morpholinium and bromide ions are joined into chains along the a-axis through N-H···Br hydrogen bonds in a motif of graph set C21(4). Chains are joined to form ladders by weak, bifurcated N-H···Br interactions at ammonium hydrogen, H1A, (Figure 2). Alternating ring motifs R42(8) and R22(4) describe the binary graph-set for ladders along [100]. Weak C4-H4A···O1 interactions between centrosymmetric morpholinium cations link ladders,via R22(8) motifs, to yield sheets parallel to the ac plane, which in turn are weakly joined by C1-H1C···O1 interactions (Figure 3) across a glide plane perpendicular to [010], glide component (0, 0, 0.5), to form a three dimensional network.

Related literature top

For the structures of related morpholinium salts, see: Loehlin & Okasako (2007); Mafud et al. (2011); Swaminathan et al. (1976); Koroniak et al. (2000); Turnbull (1997); Mazur et al. (2007); Yao (2010); Christensen et al. (1993). For the synthesis, see: Pettit et al. (1964). For the graph-set analysis, see: Bernstein et al. (1995).

Experimental top

Morpholinium Bromide was obtained as the minor product of the synthesis reported by Pettit et al. (1964). Diethanolamine (12 g, 0.114 mol) was added, with cooling, to 100 mL of 48% HBr. The reaction vessel was fitted with a Vigreaux column and Dean-Stark apparatus and the solution heated collecting approximately 70 mL of water through azeotropic distillation. The remaining HBr was removed under reduced pressure to yield viscous orange oil that crystallized upon cooling. The pure crystalline sample product was obtained by several recrystallisations from an ethanol-diethyl ether solution.

1H(D2O, 300 MHz) 3.667 (4H, t, CH2NH), 3.779 (4H, t, CH2O).

Refinement top

Hydrogen atoms were visible in the difference map and those bonded to carbon atoms were positioned geometrically and allowed for as riding atoms with C—H = 0.99 Å (CH2) and N—H = 0.92 Å (NH2). The coordinates of hydrogen atoms involved in hydrogen bonding were refined freely. During the refinements the Uiso(H) values were set at 1.2Ueq of the parent atom.

Structure description top

The structures and hydrogen bonding of several salts of morpholinium and its derivatives have been reported (Loehlin & Okasako, 2007; Mafud et al., 2011; Swaminathan et al., 1976; Koroniak et al., 2000 ; Turnbull, 1997; Mazur et al., 2007; Yao, 2010; Christensen et al., 1993). The title compound, morpholinium bromide, contains a single quaternary nitrogen donor (Figure1) and weak N-H···Br interactions are observable in the crystal structure. The morpholinium and bromide ions are joined into chains along the a-axis through N-H···Br hydrogen bonds in a motif of graph set C21(4). Chains are joined to form ladders by weak, bifurcated N-H···Br interactions at ammonium hydrogen, H1A, (Figure 2). Alternating ring motifs R42(8) and R22(4) describe the binary graph-set for ladders along [100]. Weak C4-H4A···O1 interactions between centrosymmetric morpholinium cations link ladders,via R22(8) motifs, to yield sheets parallel to the ac plane, which in turn are weakly joined by C1-H1C···O1 interactions (Figure 3) across a glide plane perpendicular to [010], glide component (0, 0, 0.5), to form a three dimensional network.

For the structures of related morpholinium salts, see: Loehlin & Okasako (2007); Mafud et al. (2011); Swaminathan et al. (1976); Koroniak et al. (2000); Turnbull (1997); Mazur et al. (2007); Yao (2010); Christensen et al. (1993). For the synthesis, see: Pettit et al. (1964). For the graph-set analysis, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1997); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON, (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (1), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Ring motifs (a) R22(4) and (b) R42(8) arising from intermolecular N-H···Br, and (c) R22(8) from C-H···O interactions, in sheets parallel to the ac plane. [symmetry codes: (i) 1-x,-y,-z; (ii) x-1,y,z; (iii) 1-x, -y,1-z;]
[Figure 3] Fig. 3. Intermolecular C1-H1C···O1 interactions linking sheets into a three dimensional network.
morpholinium bromide top
Crystal data top
C4H10NO+·BrF(000) = 336
Mr = 168.04Dx = 1.777 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5677 reflections
a = 6.1247 (2) Åθ = 2.9–28.3°
b = 10.3063 (3) ŵ = 6.44 mm1
c = 10.1141 (3) ÅT = 173 K
β = 100.312 (2)°Needle, colourless
V = 628.12 (3) Å30.40 × 0.20 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1516 independent reflections
Radiation source: fine-focus sealed tube1314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.210
φ and ω scansθmax = 28.0°, θmin = 2.9°
Absorption correction: integration
(face indexed absorption corrections carried out with XPREP; Sheldrick, 2008)
h = 88
Tmin = 0.183, Tmax = 0.595k = 1313
11662 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0518P)2]
where P = (Fo2 + 2Fc2)/3
1516 reflections(Δ/σ)max = 0.002
64 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 1.38 e Å3
Crystal data top
C4H10NO+·BrV = 628.12 (3) Å3
Mr = 168.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1247 (2) ŵ = 6.44 mm1
b = 10.3063 (3) ÅT = 173 K
c = 10.1141 (3) Å0.40 × 0.20 × 0.09 mm
β = 100.312 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1516 independent reflections
Absorption correction: integration
(face indexed absorption corrections carried out with XPREP; Sheldrick, 2008)
1314 reflections with I > 2σ(I)
Tmin = 0.183, Tmax = 0.595Rint = 0.210
11662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.03Δρmax = 1.07 e Å3
1516 reflectionsΔρmin = 1.38 e Å3
64 parameters
Special details top

Experimental. Intensity data were collected on a Bruker APEX II CCD area detector diffractometer with graphite monochromated Mo Kα radiation (50 kV, 30 mA) using the APEX 2 (Bruker, 2005) data collection software. The collection method involved ω-scans of width 0.5° and 512 x 512 bit data frames. Data reduction was carried out using the program SAINT-Plus (Bruker, 2005). The crystal structure was solved by direct methods using SHELXTL (Sheldrick, 2008). Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F2 using SHELXTL.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.74904 (4)0.11971 (3)0.07284 (3)0.02454 (16)
O10.2489 (4)0.10940 (17)0.4694 (3)0.0263 (5)
N10.2813 (4)0.0830 (2)0.1937 (2)0.0199 (5)
H1A0.37390.07580.13180.024*
H1B0.13720.08080.14800.024*
C10.3228 (5)0.2082 (3)0.2657 (3)0.0243 (6)
H1C0.27880.28070.20240.029*
H1D0.48310.21700.30260.029*
C40.3199 (5)0.0280 (3)0.2893 (3)0.0246 (6)
H4A0.48010.03470.32720.029*
H4B0.27320.10980.24100.029*
C20.1926 (5)0.2149 (3)0.3781 (3)0.0273 (6)
H2A0.22410.29800.42680.033*
H2B0.03190.21190.34040.033*
C30.1915 (5)0.0094 (3)0.4004 (3)0.0272 (6)
H3A0.03080.00950.36280.033*
H3B0.22210.08240.46460.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0153 (2)0.0332 (2)0.0242 (2)0.00109 (9)0.00118 (14)0.00764 (10)
O10.0358 (13)0.0301 (11)0.0127 (10)0.0010 (8)0.0031 (9)0.0004 (7)
N10.0159 (11)0.0289 (11)0.0147 (11)0.0018 (8)0.0021 (9)0.0013 (8)
C10.0259 (14)0.0220 (13)0.0238 (14)0.0055 (10)0.0014 (11)0.0010 (10)
C40.0274 (14)0.0238 (14)0.0213 (14)0.0042 (10)0.0014 (11)0.0004 (10)
C20.0336 (16)0.0246 (14)0.0225 (15)0.0050 (11)0.0018 (13)0.0047 (11)
C30.0340 (15)0.0245 (14)0.0230 (14)0.0033 (11)0.0053 (12)0.0037 (11)
Geometric parameters (Å, º) top
O1—C31.422 (3)C1—H1D0.9900
O1—C21.428 (3)C4—C31.495 (4)
N1—C11.481 (3)C4—H4A0.9900
N1—C41.490 (3)C4—H4B0.9900
N1—H1A0.9200C2—H2A0.9900
N1—H1B0.9200C2—H2B0.9900
C1—C21.502 (4)C3—H3A0.9900
C1—H1C0.9900C3—H3B0.9900
C3—O1—C2109.1 (2)N1—C4—H4B109.6
C1—N1—C4110.9 (2)C3—C4—H4B109.6
C1—N1—H1A109.5H4A—C4—H4B108.1
C4—N1—H1A109.5O1—C2—C1110.8 (2)
C1—N1—H1B109.5O1—C2—H2A109.5
C4—N1—H1B109.5C1—C2—H2A109.5
H1A—N1—H1B108.1O1—C2—H2B109.5
N1—C1—C2110.1 (2)C1—C2—H2B109.5
N1—C1—H1C109.6H2A—C2—H2B108.1
C2—C1—H1C109.6O1—C3—C4111.3 (2)
N1—C1—H1D109.6O1—C3—H3A109.4
C2—C1—H1D109.6C4—C3—H3A109.4
H1C—C1—H1D108.1O1—C3—H3B109.4
N1—C4—C3110.2 (2)C4—C3—H3B109.4
N1—C4—H4A109.6H3A—C3—H3B108.0
C3—C4—H4A109.6
C4—N1—C1—C252.4 (3)N1—C1—C2—O157.9 (3)
C1—N1—C4—C352.1 (3)C2—O1—C3—C462.3 (3)
C3—O1—C2—C162.4 (3)N1—C4—C3—O157.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.922.523.331 (2)148
N1—H1A···Br1i0.922.893.389 (2)115
N1—H1B···Br1ii0.922.403.292 (2)164
C4—H4A···O1iii0.992.523.366 (4)143
C1—H1C···O1iv0.992.593.498 (4)152
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC4H10NO+·Br
Mr168.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.1247 (2), 10.3063 (3), 10.1141 (3)
β (°) 100.312 (2)
V3)628.12 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.44
Crystal size (mm)0.40 × 0.20 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionIntegration
(face indexed absorption corrections carried out with XPREP; Sheldrick, 2008)
Tmin, Tmax0.183, 0.595
No. of measured, independent and
observed [I > 2σ(I)] reflections
11662, 1516, 1314
Rint0.210
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.03
No. of reflections1516
No. of parameters64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 1.38

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON, (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.922.523.331 (2)148
N1—H1A···Br1i0.922.893.389 (2)115
N1—H1B···Br1ii0.922.403.292 (2)164
C4—H4A···O1iii0.992.523.366 (4)143
C1—H1C···O1iv0.992.593.498 (4)152
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the National Research Foundation (South Africa).

References

First citationBernstein, J., Davis, R. E., Shinoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristensen, A. N., Hazell, R. G., Lehmann, M. S. & Neilsen, M. (1993). Acta Chem. Scand. 47, 753–756.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKoroniak, H., Modzelewska, A. & Kosturkiewicz, Z. (2000). Pol. J. Chem. 74, 1031–1034.  CAS Google Scholar
First citationLoehlin, J. H. & Okasako, E. L. N. (2007). Acta Cryst. B63, 132–141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMafud, A. C., Sanches, E. A. & Gambardella, M. T. (2011). Acta Cryst. E67, o2008.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMazur, L., Pitucha, M. & Rzaczynska, Z. (2007). Acta Cryst. E63, o4576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPettit, G. R., Chamberland, M. R., Blonda, D. S. & Vickers, M. A. (1964). Can. J. Chem. 42, 1699–1706.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwaminathan, S., Murthy, G. S. & Lessinger, L. (1976). Acta Cryst. B32, 3140–3142.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationTurnbull, M. M. (1997). Acta Cryst. C53, 818–820.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYao, J.-Y. (2010). Acta Cryst. E66, o1375.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds