organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4R)-4-(Bi­phenyl-4-yl)-7-chloro-1,2,3,4-tetra­hydro­quinoline

aInstitute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 9 September 2011; accepted 19 September 2011; online 30 September 2011)

The title compound, C21H18ClN, was synthesized by an enanti­oselective Brønsted acid-catalysed transfer hydrogenation reaction. The six-membered heterocycle adopts a half-chair conformation. It has the biphenyl residue in an axial position. The two rings of the biphenyl residue are almost coplanar [dihedral angle = 2.65 (9)°]. The crystal packing is stabilized by N—H⋯Cl hydrogen bonds, which connect the mol­ecules into chains running along the a axis.

Related literature

For organocatalysed processes, see: Rueping, Sugiono & Schoepke (2010[Rueping, M., Sugiono, E. & Schoepke, F. R. (2010). Synlett, pp. 852-865.]); Rueping, Dufour & Schoepke (2011[Rueping, M., Dufour, J. & Schoepke, F. R. (2011). Green Chem. 13, 1084-1105.]). For Brønsted acid-catalysed transfer hydrogenations, see: Rueping et al. (2008[Rueping, M., Theissmann, T., Raja, S. & Bats, J. B. (2008). Adv. Synth. Catal. 350, 1001-1006.]); Rueping, Stoeckel et al. (2010[Rueping, M., Stoeckel, M., Sugiono, E. & Theissmann, T. (2010). Tetrahedron, 66, 6565-6568.]). For the synthesis of the title compound, see: Rueping, Theissmann et al. (2011[Rueping, M., Theissmann, T., Stoeckel, M. & Antonchick, A. P. (2011). Org. Biomol. Chem. 9, 6844-6850]).

[Scheme 1]

Experimental

Crystal data
  • C21H18ClN

  • Mr = 319.81

  • Orthorhombic, P 21 21 21

  • a = 5.5354 (4) Å

  • b = 8.0039 (4) Å

  • c = 35.8207 (17) Å

  • V = 1587.03 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.35 × 0.21 × 0.11 mm

Data collection
  • STOE IPDS II two-circle-diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.921, Tmax = 0.984

  • 18042 measured reflections

  • 3071 independent reflections

  • 2867 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.05

  • 3071 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1240 Friedel pairs

  • Flack parameter: 0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.90 (3) 2.66 (3) 3.5466 (17) 171 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetrahydroquinolines are widely distributed in nature. Due to their importance as synthetic intermediates in the preparation of pharmaceuticals, agrochemicals, and in material science, considerable effort has been made to prepare these important molecules. Recently organocatalyzed processes have found widespread applications (Rueping, Sugiono & Schoepke, 2010; Rueping, Dufour & Schoepke, 2011). In particular Brønsted acid catalyzed transfer hydrogenations have been reported to provide a series of N-heterocyclic compounds with highest enantioselectivities (Rueping et al., 2008; Rueping, Stoeckel et al., 2010). The title compound was synthesized for the first time following this methodology (Rueping, Theissmann et al., 2011) and colourless plates suitable for crystal structure determination were obtained.

The six-membered heterocycle in the title compound adopts a half chair conformation. It has the biphenyl residue in an axial position. The two rings of the biphenyl residue are almost coplanar [dihedral angle 2.65 (9)°]. The crystal packing is stabilized by N—H···Cl hydrogen bonds connecting the molecules to chains running along the a axis.

Related literature top

For organocatalysed processes, see: Rueping, Sugiono & Schoepke (2010); Rueping, Dufour & Schoepke (2011). For Brønsted acid-catalysed transfer hydrogenations, see: Rueping et al. (2008); Rueping, Stoeckel et al. (2010). For the synthesis of the title compound, see: Rueping, Theissmann et al. (2011).

Experimental top

The title compound has been synthesized as described by Rueping, Theissmann et al. (2011).

Refinement top

All H atoms could be located by difference Fourier synthesis. Those bonded to C were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C—H ranging from 0.95Å to 1.00 Å. The H atom bonded to N was freely refined.

Structure description top

Tetrahydroquinolines are widely distributed in nature. Due to their importance as synthetic intermediates in the preparation of pharmaceuticals, agrochemicals, and in material science, considerable effort has been made to prepare these important molecules. Recently organocatalyzed processes have found widespread applications (Rueping, Sugiono & Schoepke, 2010; Rueping, Dufour & Schoepke, 2011). In particular Brønsted acid catalyzed transfer hydrogenations have been reported to provide a series of N-heterocyclic compounds with highest enantioselectivities (Rueping et al., 2008; Rueping, Stoeckel et al., 2010). The title compound was synthesized for the first time following this methodology (Rueping, Theissmann et al., 2011) and colourless plates suitable for crystal structure determination were obtained.

The six-membered heterocycle in the title compound adopts a half chair conformation. It has the biphenyl residue in an axial position. The two rings of the biphenyl residue are almost coplanar [dihedral angle 2.65 (9)°]. The crystal packing is stabilized by N—H···Cl hydrogen bonds connecting the molecules to chains running along the a axis.

For organocatalysed processes, see: Rueping, Sugiono & Schoepke (2010); Rueping, Dufour & Schoepke (2011). For Brønsted acid-catalysed transfer hydrogenations, see: Rueping et al. (2008); Rueping, Stoeckel et al. (2010). For the synthesis of the title compound, see: Rueping, Theissmann et al. (2011).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. Hydrogen atoms bonded to C have been omitted for clarity. Hydrogen bonds are drawn as dashed lines.
(4R)-4-(biphenyl-4-yl)-7-chloro-1,2,3,4-tetrahydroquinoline top
Crystal data top
C21H18ClNF(000) = 672
Mr = 319.81Dx = 1.339 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 18030 reflections
a = 5.5354 (4) Åθ = 2.3–26.4°
b = 8.0039 (4) ŵ = 0.24 mm1
c = 35.8207 (17) ÅT = 173 K
V = 1587.03 (16) Å3Plate, colourless
Z = 40.35 × 0.21 × 0.11 mm
Data collection top
STOE IPDS II two-circle-
diffractometer
3071 independent reflections
Radiation source: fine-focus sealed tube2867 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω scansθmax = 25.9°, θmin = 2.3°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 66
Tmin = 0.921, Tmax = 0.984k = 99
18042 measured reflectionsl = 4344
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.1208P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.21 e Å3
3071 reflectionsΔρmin = 0.18 e Å3
213 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.026 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1240 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (5)
Crystal data top
C21H18ClNV = 1587.03 (16) Å3
Mr = 319.81Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5354 (4) ŵ = 0.24 mm1
b = 8.0039 (4) ÅT = 173 K
c = 35.8207 (17) Å0.35 × 0.21 × 0.11 mm
Data collection top
STOE IPDS II two-circle-
diffractometer
3071 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
2867 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.984Rint = 0.059
18042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079Δρmax = 0.21 e Å3
S = 1.05Δρmin = 0.18 e Å3
3071 reflectionsAbsolute structure: Flack (1983), 1240 Friedel pairs
213 parametersAbsolute structure parameter: 0.01 (5)
0 restraints
Special details top

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.19210 (10)0.59051 (5)0.005768 (11)0.04965 (15)
N10.1122 (3)0.01504 (19)0.06517 (4)0.0428 (4)
H10.002 (5)0.000 (3)0.0477 (7)0.059 (6)*
C20.1862 (4)0.12356 (19)0.08883 (4)0.0407 (4)
H2A0.13730.23020.07710.049*
H2B0.10340.11510.11330.049*
C30.4575 (4)0.12319 (19)0.09483 (5)0.0406 (4)
H3A0.54030.14690.07090.049*
H3B0.50170.21200.11280.049*
C40.5406 (3)0.04765 (18)0.10990 (4)0.0317 (3)
H40.72130.04810.11000.038*
C50.4573 (3)0.18288 (17)0.08315 (4)0.0281 (3)
C60.2442 (3)0.15963 (19)0.06229 (4)0.0308 (3)
C70.1654 (3)0.28714 (19)0.03814 (4)0.0331 (3)
H70.02110.27390.02410.040*
C80.3000 (3)0.43151 (18)0.03507 (4)0.0337 (3)
C90.5160 (3)0.45488 (18)0.05393 (4)0.0349 (3)
H90.60920.55340.05060.042*
C100.5906 (3)0.32869 (19)0.07781 (4)0.0327 (3)
H100.73810.34210.09100.039*
C110.4564 (3)0.07013 (17)0.15017 (4)0.0277 (3)
C120.5861 (3)0.00906 (19)0.17846 (4)0.0319 (3)
H120.72950.06820.17230.038*
C130.5108 (3)0.00350 (18)0.21525 (4)0.0311 (3)
H130.60350.05900.23380.037*
C140.3006 (3)0.08229 (16)0.22576 (4)0.0248 (3)
C150.1743 (3)0.16460 (19)0.19743 (4)0.0304 (3)
H150.03250.22570.20350.037*
C160.2518 (3)0.15902 (19)0.16041 (4)0.0310 (3)
H160.16280.21720.14180.037*
C210.2160 (3)0.08270 (16)0.26536 (4)0.0249 (3)
C220.3477 (3)0.00061 (19)0.29322 (4)0.0351 (4)
H220.49340.05510.28680.042*
C230.2701 (3)0.0012 (2)0.33005 (4)0.0403 (4)
H230.36320.05770.34840.048*
C240.0585 (3)0.07846 (19)0.34030 (4)0.0357 (4)
H240.00480.07620.36550.043*
C250.0739 (3)0.1618 (2)0.31320 (5)0.0371 (4)
H250.21880.21780.31990.045*
C260.0041 (3)0.16382 (19)0.27635 (4)0.0321 (3)
H260.08880.22170.25820.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0746 (3)0.0413 (2)0.0330 (2)0.0169 (2)0.0022 (2)0.00881 (16)
N10.0445 (8)0.0444 (8)0.0394 (8)0.0146 (7)0.0043 (7)0.0067 (6)
C20.0615 (11)0.0297 (7)0.0309 (8)0.0111 (8)0.0079 (8)0.0035 (6)
C30.0623 (11)0.0287 (8)0.0309 (8)0.0079 (8)0.0097 (8)0.0005 (6)
C40.0329 (7)0.0325 (7)0.0296 (7)0.0056 (6)0.0058 (6)0.0022 (6)
C50.0316 (8)0.0290 (7)0.0237 (7)0.0038 (6)0.0040 (6)0.0007 (5)
C60.0341 (8)0.0337 (7)0.0246 (7)0.0020 (6)0.0060 (6)0.0018 (5)
C70.0337 (8)0.0420 (8)0.0237 (7)0.0033 (7)0.0008 (6)0.0011 (6)
C80.0473 (9)0.0304 (7)0.0235 (7)0.0083 (7)0.0045 (7)0.0002 (5)
C90.0461 (9)0.0271 (7)0.0315 (7)0.0031 (7)0.0041 (7)0.0018 (6)
C100.0351 (8)0.0345 (7)0.0284 (7)0.0023 (6)0.0025 (6)0.0044 (6)
C110.0301 (7)0.0250 (6)0.0280 (7)0.0008 (6)0.0016 (6)0.0003 (6)
C120.0287 (7)0.0335 (8)0.0336 (8)0.0093 (6)0.0012 (6)0.0005 (6)
C130.0312 (7)0.0327 (7)0.0294 (7)0.0073 (6)0.0046 (6)0.0016 (6)
C140.0253 (6)0.0214 (6)0.0278 (6)0.0025 (6)0.0017 (6)0.0012 (5)
C150.0278 (7)0.0329 (7)0.0306 (7)0.0083 (6)0.0009 (6)0.0003 (6)
C160.0312 (8)0.0334 (7)0.0285 (7)0.0079 (6)0.0021 (6)0.0037 (6)
C210.0281 (7)0.0201 (6)0.0266 (6)0.0038 (6)0.0018 (5)0.0023 (5)
C220.0377 (8)0.0345 (8)0.0330 (8)0.0069 (7)0.0011 (7)0.0025 (6)
C230.0523 (10)0.0389 (8)0.0296 (8)0.0077 (7)0.0025 (7)0.0058 (6)
C240.0491 (9)0.0307 (7)0.0273 (7)0.0037 (7)0.0057 (7)0.0027 (6)
C250.0374 (9)0.0396 (8)0.0344 (8)0.0023 (7)0.0045 (7)0.0068 (7)
C260.0317 (8)0.0345 (7)0.0302 (7)0.0036 (7)0.0027 (6)0.0013 (6)
Geometric parameters (Å, º) top
Cl1—C81.7545 (15)C11—C161.387 (2)
N1—C61.372 (2)C11—C121.394 (2)
N1—C21.455 (2)C12—C131.383 (2)
N1—H10.90 (3)C12—H120.9500
C2—C31.517 (3)C13—C141.402 (2)
C2—H2A0.9900C13—H130.9500
C2—H2B0.9900C14—C151.397 (2)
C3—C41.540 (2)C14—C211.4937 (19)
C3—H3A0.9900C15—C161.395 (2)
C3—H3B0.9900C15—H150.9500
C4—C51.5175 (19)C16—H160.9500
C4—C111.5267 (19)C21—C261.398 (2)
C4—H41.0000C21—C221.399 (2)
C5—C101.394 (2)C22—C231.388 (2)
C5—C61.409 (2)C22—H220.9500
C6—C71.407 (2)C23—C241.383 (2)
C7—C81.379 (2)C23—H230.9500
C7—H70.9500C24—C251.387 (2)
C8—C91.386 (2)C24—H240.9500
C9—C101.386 (2)C25—C261.389 (2)
C9—H90.9500C25—H250.9500
C10—H100.9500C26—H260.9500
C6—N1—C2122.48 (15)C5—C10—H10118.8
C6—N1—H1115.7 (15)C16—C11—C12117.50 (13)
C2—N1—H1120.3 (15)C16—C11—C4124.03 (13)
N1—C2—C3111.07 (14)C12—C11—C4118.41 (13)
N1—C2—H2A109.4C13—C12—C11121.50 (13)
C3—C2—H2A109.4C13—C12—H12119.2
N1—C2—H2B109.4C11—C12—H12119.2
C3—C2—H2B109.4C12—C13—C14121.44 (13)
H2A—C2—H2B108.0C12—C13—H13119.3
C2—C3—C4110.31 (13)C14—C13—H13119.3
C2—C3—H3A109.6C15—C14—C13116.80 (13)
C4—C3—H3A109.6C15—C14—C21122.13 (12)
C2—C3—H3B109.6C13—C14—C21121.06 (12)
C4—C3—H3B109.6C16—C15—C14121.43 (13)
H3A—C3—H3B108.1C16—C15—H15119.3
C5—C4—C11114.82 (12)C14—C15—H15119.3
C5—C4—C3108.73 (13)C11—C16—C15121.28 (13)
C11—C4—C3110.15 (12)C11—C16—H16119.4
C5—C4—H4107.6C15—C16—H16119.4
C11—C4—H4107.6C26—C21—C22117.03 (13)
C3—C4—H4107.6C26—C21—C14122.11 (12)
C10—C5—C6118.75 (14)C22—C21—C14120.86 (13)
C10—C5—C4121.53 (14)C23—C22—C21121.44 (15)
C6—C5—C4119.69 (13)C23—C22—H22119.3
N1—C6—C7119.52 (15)C21—C22—H22119.3
N1—C6—C5121.15 (14)C24—C23—C22120.65 (15)
C7—C6—C5119.33 (14)C24—C23—H23119.7
C8—C7—C6119.28 (14)C22—C23—H23119.7
C8—C7—H7120.4C23—C24—C25118.89 (14)
C6—C7—H7120.4C23—C24—H24120.6
C7—C8—C9122.71 (14)C25—C24—H24120.6
C7—C8—Cl1118.13 (13)C24—C25—C26120.44 (15)
C9—C8—Cl1119.17 (12)C24—C25—H25119.8
C8—C9—C10117.34 (14)C26—C25—H25119.8
C8—C9—H9121.3C25—C26—C21121.54 (14)
C10—C9—H9121.3C25—C26—H26119.2
C9—C10—C5122.47 (15)C21—C26—H26119.2
C9—C10—H10118.8
C6—N1—C2—C325.4 (2)C5—C4—C11—C12157.97 (14)
N1—C2—C3—C454.08 (17)C3—C4—C11—C1278.90 (17)
C2—C3—C4—C555.71 (17)C16—C11—C12—C131.8 (2)
C2—C3—C4—C1170.92 (17)C4—C11—C12—C13175.56 (15)
C11—C4—C5—C1088.01 (17)C11—C12—C13—C140.1 (2)
C3—C4—C5—C10148.10 (14)C12—C13—C14—C151.3 (2)
C11—C4—C5—C693.87 (16)C12—C13—C14—C21177.88 (14)
C3—C4—C5—C630.02 (18)C13—C14—C15—C161.1 (2)
C2—N1—C6—C7178.40 (14)C21—C14—C15—C16178.13 (13)
C2—N1—C6—C51.7 (2)C12—C11—C16—C152.0 (2)
C10—C5—C6—N1176.93 (14)C4—C11—C16—C15175.14 (14)
C4—C5—C6—N11.2 (2)C14—C15—C16—C110.6 (2)
C10—C5—C6—C73.2 (2)C15—C14—C21—C260.8 (2)
C4—C5—C6—C7178.64 (13)C13—C14—C21—C26178.40 (13)
N1—C6—C7—C8179.37 (14)C15—C14—C21—C22179.32 (14)
C5—C6—C7—C80.7 (2)C13—C14—C21—C221.5 (2)
C6—C7—C8—C92.3 (2)C26—C21—C22—C230.5 (2)
C6—C7—C8—Cl1178.17 (11)C14—C21—C22—C23179.43 (14)
C7—C8—C9—C102.6 (2)C21—C22—C23—C240.1 (2)
Cl1—C8—C9—C10177.80 (11)C22—C23—C24—C250.6 (2)
C8—C9—C10—C50.0 (2)C23—C24—C25—C260.5 (2)
C6—C5—C10—C92.8 (2)C24—C25—C26—C210.1 (2)
C4—C5—C10—C9179.01 (14)C22—C21—C26—C250.6 (2)
C5—C4—C11—C1624.9 (2)C14—C21—C26—C25179.31 (14)
C3—C4—C11—C1698.23 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.90 (3)2.66 (3)3.5466 (17)171 (2)
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC21H18ClN
Mr319.81
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)5.5354 (4), 8.0039 (4), 35.8207 (17)
V3)1587.03 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.35 × 0.21 × 0.11
Data collection
DiffractometerSTOE IPDS II two-circle-
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.921, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
18042, 3071, 2867
Rint0.059
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.05
No. of reflections3071
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.18
Absolute structureFlack (1983), 1240 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.90 (3)2.66 (3)3.5466 (17)171 (2)
Symmetry code: (i) x1/2, y+1/2, z.
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRueping, M., Dufour, J. & Schoepke, F. R. (2011). Green Chem. 13, 1084–1105.  Web of Science CrossRef CAS Google Scholar
First citationRueping, M., Stoeckel, M., Sugiono, E. & Theissmann, T. (2010). Tetrahedron, 66, 6565–6568.  Web of Science CrossRef CAS Google Scholar
First citationRueping, M., Sugiono, E. & Schoepke, F. R. (2010). Synlett, pp. 852–865.  Web of Science CrossRef Google Scholar
First citationRueping, M., Theissmann, T., Raja, S. & Bats, J. B. (2008). Adv. Synth. Catal. 350, 1001–1006.  Web of Science CrossRef CAS Google Scholar
First citationRueping, M., Theissmann, T., Stoeckel, M. & Antonchick, A. P. (2011). Org. Biomol. Chem. 9, 6844–6850  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds