organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11α,15α-Dihy­dr­oxy­androst-4-ene-3,17-dione

aCollege of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
*Correspondence e-mail: minw@tust.edu.cn

(Received 22 July 2011; accepted 20 September 2011; online 30 September 2011)

The title compound, C19H26O4, was biotransformed from androstenedione. In the crystal, inter­molecular O—H⋯O hydrogen bonds link molecules into a corrugated sheet, which lies parallel to the ab plane. Ring A has a slightly distorted half-chair conformation, rings B and C adopt chair conformations, while the cyclo­pentane ring D adopts a 14α-envelope conformation.

Related literature

For related structures, see: Galdecki et al. (1990[Galdecki, Z., Grochulski, P. & Wawrzak, Z. (1990). J. Cryst. Spectrosc. 20, 425-428.]); Thamotharan et al. (2004[Thamotharan, S., Parthasarathi, V., Dubey, S., Jindal, D. P. & Linden, A. (2004). Acta Cryst. C60, o110-o112.]); Vasuki et al. (2002[Vasuki, G., Parthasarathi, V., Ramamurthi, K., Dubey, S. & Jindal, D. P. (2002). Acta Cryst. E58, o1359-o1360.]). For details of biotransformation, see: Ahmad et al. (1992[Ahmad, S., Garg, S. K. & Johri, B. N. (1992). Biotechnol. Adv. 10, 1-67.]); Kollerov et al. (2008[Kollerov, V. V., Shutov, A. A., Fokina, V. V., Sukhodolskaya, G. V. & Donova, M. V. (2008). J. Mol. Catal. B Enzym. 55, 61-68.]); Malaviya & Gomes (2008[Malaviya, A. & Gomes, J. (2008). Bioresource Technol. 99, 6725-6737.]); Perez et al. (2006[Perez, C., Falero, A., Luu Duc, H., Balcinde, Y. & Hung, B. R. (2006). J. Ind. Microbiol. Biotechnol. 148, 719-723.]). For conformational analysis, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H26O4

  • Mr = 318.40

  • Orthorhombic, P 21 21 21

  • a = 7.8716 (8) Å

  • b = 12.2725 (12) Å

  • c = 17.2100 (16) Å

  • V = 1662.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.22 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn 724CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.981, Tmax = 0.990

  • 17662 measured reflections

  • 2275 independent reflections

  • 2050 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.081

  • S = 1.03

  • 2275 reflections

  • 218 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.88 (3) 1.94 (3) 2.800 (2) 164 (3)
O2—H2⋯O1ii 0.81 (3) 1.95 (3) 2.7600 (19) 180 (3)
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Androst-4-ene-3,17-dione (AD) is the important intermediate in the pharmaceutical industry (Perez et al., 2006; Kollerov et al. 2008). The production of several high value steroid drugs is mostly derived from key compounds such as AD by chemical synthesis (Ahmad et al., 1992; Malaviya & Gomes, 2008).

The structure of the title compound is depicted in Fig. 1. The 11α,15α-dihydroxy-androstenedione has three six-membered rings (A/B/C) and one five-membered rings (D). Ring A has a slightly distorted half-chair conformation. Rings B and C adopt chair conformations, while the cyclopentane ring D adopts a 14α-envelope conformation. The torsion angle C8—C9—C11—O2 = 162.83 (13), indicates that the 11-hydroxy has an α configuration. The 15-hydroxy has an α configuration with the torsion angle C13—C14—C15—O3 = -160.83 (14)°. The bond lengths and angles are within normal ranges (Thamotharan et al., 2004; Vasuki, et al., 2002; Galdecki et al., 1990).

Two types of intermolecular hydrogen bonds contribute to the formation of a two-dimensional corrugated sheet lying parallel to the ab-plane, Figure 2. The O3 hydroxyl hydrogen forms a hydrogen bond to hydroxyl atom O2 at (1-x,y,z) by unit translation along the a-axis. Hydroxyl oxygen O2 forms a hydrogen bond to the screw-related carbonyl atom O1 at (1-x,-1/2+y,1/2-z), Table 1.

Related literature top

For related structures, see: Galdecki et al. (1990); Thamotharan et al. (2004); Vasuki et al. (2002). For details of biotransformation, see: Ahmad et al. (1992); Kollerov et al. (2008); Malaviya & Gomes (2008); Perez et al. (2006). For conformational analysis, see Cremer & Pople (1975).

Experimental top

Experimental

Reagents: Colletotrichum lini AS3. 4486 was obtained from Institute of Microbiology, Chinese Academy of Sciences and maintained on Potato Dextrose Agar at 4°C. Androst-4-en-3,17-dione was obtained from Tianjin Pharmaceutical Company.

Cultures Protocol: Colletotrichum lini AS3. 4486 was cultivated in shake flasks in two consecutive cultivation steps: 72 h for seed culture and 24 h for cell cultivation. Seed medium comprised glucose 30 g/L, corn steep liquor 10 g/L and tap water (pH 7.0). Cell cultivation medium comprised glucose 3 g/L, corn steep liquor 10 g/L, soy meal 10 g/L, NaNO3 2 g/L, KH2PO4, 1 g/L, K2HPO4, 2 g/L, MgSO4.7H2O 0.5g/L, KCl, 0.5g/L, FeSO4.7H2O, 0.02 g/L, (pH 7.0). Cells were grown in 250 ml shake flasks containing 50 ml culture medium on a rotary shaker (200 r/min) at 25°C using 10% (v/v) of the seed culture as inoculum.

Biotransformation: 50 mg of the androst-4-en-3,17-dione dissolved in 1 ml of ethanol was added to the culture after 24 h for growth and the reaction was allowed to proceed for 72 h. The mycelium was then removed by filtration.

Separation and purification: The biomass and the broth were extracted separately with EtOAc. All extracts were combined and dried (anhydr. MgSO4). The solvents after filtration were evaporated under reduced pressure. The crude extracts were purified by Si gel column using dichloromethane/ether/methanol (25:2:1, v/v/v). The white powder was diffused with n-hexane/acetone at room temperature. Colorless prismatic crystals suitable for X-ray analysis were obtained.

Refinement top

In the absence of significant anomalous dispersion effects, Freidel pairs were merged. All H atoms of O—H were initially located in a difference Fourier map and were refined with the restraints O—H bond lengths ranging 0.81 (3)–0.88 (3). O—H = 0.81 - 0.99 Å. Other H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 - 1.00Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The absolute configuration was assumed since the structure of the commercially obtained androst-4-en-3,17-dione used in the preparation was known.

Structure description top

Androst-4-ene-3,17-dione (AD) is the important intermediate in the pharmaceutical industry (Perez et al., 2006; Kollerov et al. 2008). The production of several high value steroid drugs is mostly derived from key compounds such as AD by chemical synthesis (Ahmad et al., 1992; Malaviya & Gomes, 2008).

The structure of the title compound is depicted in Fig. 1. The 11α,15α-dihydroxy-androstenedione has three six-membered rings (A/B/C) and one five-membered rings (D). Ring A has a slightly distorted half-chair conformation. Rings B and C adopt chair conformations, while the cyclopentane ring D adopts a 14α-envelope conformation. The torsion angle C8—C9—C11—O2 = 162.83 (13), indicates that the 11-hydroxy has an α configuration. The 15-hydroxy has an α configuration with the torsion angle C13—C14—C15—O3 = -160.83 (14)°. The bond lengths and angles are within normal ranges (Thamotharan et al., 2004; Vasuki, et al., 2002; Galdecki et al., 1990).

Two types of intermolecular hydrogen bonds contribute to the formation of a two-dimensional corrugated sheet lying parallel to the ab-plane, Figure 2. The O3 hydroxyl hydrogen forms a hydrogen bond to hydroxyl atom O2 at (1-x,y,z) by unit translation along the a-axis. Hydroxyl oxygen O2 forms a hydrogen bond to the screw-related carbonyl atom O1 at (1-x,-1/2+y,1/2-z), Table 1.

For related structures, see: Galdecki et al. (1990); Thamotharan et al. (2004); Vasuki et al. (2002). For details of biotransformation, see: Ahmad et al. (1992); Kollerov et al. (2008); Malaviya & Gomes (2008); Perez et al. (2006). For conformational analysis, see Cremer & Pople (1975).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the packing of the title compound
11α,15α-Dihydroxyandrost-4-ene-3,17-dione top
Crystal data top
C19H26O4Dx = 1.272 Mg m3
Mr = 318.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6101 reflections
a = 7.8716 (8) Åθ = 2.0–28.0°
b = 12.2725 (12) ŵ = 0.09 mm1
c = 17.2100 (16) ÅT = 113 K
V = 1662.6 (3) Å3Prism, colourless
Z = 40.22 × 0.18 × 0.12 mm
F(000) = 688
Data collection top
Rigaku Saturn 724CCD
diffractometer
2275 independent reflections
Radiation source: rotating anode2050 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.047
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 2.0°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1416
Tmin = 0.981, Tmax = 0.990l = 2122
17662 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0478P)2]
where P = (Fo2 + 2Fc2)/3
2275 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H26O4V = 1662.6 (3) Å3
Mr = 318.40Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.8716 (8) ŵ = 0.09 mm1
b = 12.2725 (12) ÅT = 113 K
c = 17.2100 (16) Å0.22 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn 724CCD
diffractometer
2275 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2050 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.990Rint = 0.047
17662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
2275 reflectionsΔρmin = 0.20 e Å3
218 parameters
Special details top

Experimental. Rigaku CrystalClear-SM Expert 2.0 r2

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31267 (17)0.53408 (9)0.26929 (8)0.0327 (3)
O20.51158 (16)0.08691 (11)0.09715 (8)0.0284 (3)
H20.563 (3)0.0711 (19)0.1363 (15)0.056 (8)*
O30.27423 (18)0.05176 (12)0.03028 (8)0.0328 (3)
H30.357 (4)0.064 (2)0.0029 (16)0.071 (9)*
O40.16087 (19)0.21111 (10)0.06034 (7)0.0349 (4)
C10.4080 (2)0.26310 (14)0.19535 (12)0.0286 (4)
H1A0.48880.20420.20870.034*
H1B0.44280.29350.14450.034*
C20.4205 (2)0.35273 (15)0.25684 (12)0.0309 (4)
H2A0.40370.32030.30890.037*
H2B0.53570.38500.25530.037*
C30.2921 (2)0.44021 (14)0.24442 (10)0.0238 (4)
C40.1357 (2)0.40863 (14)0.20623 (10)0.0232 (4)
H40.05350.46360.19640.028*
C50.1002 (2)0.30692 (13)0.18408 (10)0.0214 (4)
C60.0777 (2)0.28022 (15)0.15829 (11)0.0299 (4)
H6A0.13980.34890.14820.036*
H6B0.13710.24150.20080.036*
C70.0825 (2)0.21006 (14)0.08549 (11)0.0267 (4)
H7A0.03850.25220.04080.032*
H7B0.20120.18900.07400.032*
C80.0253 (2)0.10785 (13)0.09697 (10)0.0202 (4)
H80.01580.06960.14470.024*
C90.2132 (2)0.14340 (14)0.11087 (9)0.0185 (3)
H90.24340.19300.06690.022*
C100.2289 (2)0.21395 (13)0.18739 (10)0.0205 (4)
C110.3406 (2)0.04730 (14)0.10728 (10)0.0213 (4)
H110.33460.00640.15750.026*
C120.3116 (2)0.03257 (14)0.04087 (10)0.0236 (4)
H12A0.34010.00300.00910.028*
H12B0.38750.09630.04740.028*
C130.1278 (2)0.07058 (13)0.03913 (9)0.0212 (4)
C140.0122 (2)0.02890 (13)0.02873 (9)0.0216 (4)
H140.05450.06880.01810.026*
C150.1598 (2)0.02117 (14)0.00633 (10)0.0257 (4)
H150.21470.05370.05330.031*
C160.1069 (3)0.11229 (16)0.05010 (11)0.0328 (5)
H16A0.18200.17650.04400.039*
H16B0.11390.08660.10450.039*
C170.0746 (2)0.14129 (15)0.02929 (10)0.0262 (4)
C180.0840 (2)0.13973 (14)0.11174 (9)0.0256 (4)
H18A0.03160.16850.10670.038*
H18B0.09130.09400.15830.038*
H18C0.16450.20030.11610.038*
C190.1869 (3)0.14572 (15)0.26033 (10)0.0325 (5)
H19A0.20290.19050.30690.049*
H19B0.26250.08240.26270.049*
H19C0.06860.12100.25770.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0360 (8)0.0215 (6)0.0407 (8)0.0023 (6)0.0052 (6)0.0074 (6)
O20.0162 (6)0.0369 (7)0.0322 (7)0.0014 (6)0.0021 (6)0.0035 (6)
O30.0253 (7)0.0453 (8)0.0277 (7)0.0002 (7)0.0082 (6)0.0004 (6)
O40.0415 (9)0.0337 (7)0.0296 (7)0.0005 (7)0.0077 (6)0.0113 (6)
C10.0193 (9)0.0242 (10)0.0422 (11)0.0024 (8)0.0062 (8)0.0097 (8)
C20.0246 (9)0.0266 (9)0.0414 (11)0.0001 (8)0.0094 (9)0.0079 (9)
C30.0274 (9)0.0224 (8)0.0217 (8)0.0033 (8)0.0029 (7)0.0018 (7)
C40.0235 (9)0.0214 (9)0.0246 (8)0.0046 (7)0.0005 (7)0.0006 (7)
C50.0210 (9)0.0227 (9)0.0206 (8)0.0002 (7)0.0018 (7)0.0007 (7)
C60.0181 (9)0.0265 (9)0.0452 (11)0.0025 (8)0.0018 (8)0.0105 (9)
C70.0187 (9)0.0256 (9)0.0357 (10)0.0004 (8)0.0058 (8)0.0030 (8)
C80.0158 (8)0.0217 (8)0.0233 (8)0.0014 (7)0.0008 (7)0.0004 (7)
C90.0162 (8)0.0193 (8)0.0201 (8)0.0001 (7)0.0008 (6)0.0020 (7)
C100.0206 (9)0.0189 (8)0.0221 (8)0.0005 (7)0.0024 (7)0.0004 (7)
C110.0169 (8)0.0233 (8)0.0238 (8)0.0007 (7)0.0006 (7)0.0007 (7)
C120.0219 (9)0.0248 (9)0.0243 (8)0.0023 (8)0.0022 (7)0.0041 (7)
C130.0233 (9)0.0219 (9)0.0186 (8)0.0019 (7)0.0027 (7)0.0048 (7)
C140.0184 (8)0.0253 (9)0.0212 (8)0.0024 (7)0.0005 (7)0.0001 (7)
C150.0223 (9)0.0315 (10)0.0234 (9)0.0038 (8)0.0026 (7)0.0024 (8)
C160.0302 (10)0.0405 (11)0.0275 (9)0.0075 (9)0.0003 (8)0.0099 (9)
C170.0311 (10)0.0269 (9)0.0206 (8)0.0068 (9)0.0063 (8)0.0026 (8)
C180.0323 (10)0.0219 (8)0.0225 (8)0.0027 (8)0.0041 (8)0.0014 (7)
C190.0553 (13)0.0225 (8)0.0197 (8)0.0005 (10)0.0029 (9)0.0007 (8)
Geometric parameters (Å, º) top
O1—C31.240 (2)C8—H81.0000
O2—C111.442 (2)C9—C111.549 (2)
O2—H20.81 (3)C9—C101.581 (2)
O3—C151.417 (2)C9—H91.0000
O3—H30.88 (3)C10—C191.545 (2)
O4—C171.217 (2)C11—C121.523 (2)
C1—C21.530 (2)C11—H111.0000
C1—C101.539 (2)C12—C131.521 (2)
C1—H1A0.9900C12—H12A0.9900
C1—H1B0.9900C12—H12B0.9900
C2—C31.490 (2)C13—C171.521 (2)
C2—H2A0.9900C13—C141.533 (2)
C2—H2B0.9900C13—C181.549 (2)
C3—C41.449 (2)C14—C151.536 (2)
C4—C51.335 (2)C14—H141.0000
C4—H40.9500C15—C161.539 (2)
C5—C61.505 (2)C15—H151.0000
C5—C101.527 (2)C16—C171.515 (3)
C6—C71.521 (2)C16—H16A0.9900
C6—H6A0.9900C16—H16B0.9900
C6—H6B0.9900C18—H18A0.9800
C7—C81.527 (2)C18—H18B0.9800
C7—H7A0.9900C18—H18C0.9800
C7—H7B0.9900C19—H19A0.9800
C8—C141.526 (2)C19—H19B0.9800
C8—C91.561 (2)C19—H19C0.9800
C11—O2—H2106.5 (18)C19—C10—C9111.30 (12)
C15—O3—H3107.0 (18)O2—C11—C12105.43 (13)
C2—C1—C10113.73 (15)O2—C11—C9110.63 (13)
C2—C1—H1A108.8C12—C11—C9115.02 (13)
C10—C1—H1A108.8O2—C11—H11108.5
C2—C1—H1B108.8C12—C11—H11108.5
C10—C1—H1B108.8C9—C11—H11108.5
H1A—C1—H1B107.7C13—C12—C11110.77 (14)
C3—C2—C1112.03 (15)C13—C12—H12A109.5
C3—C2—H2A109.2C11—C12—H12A109.5
C1—C2—H2A109.2C13—C12—H12B109.5
C3—C2—H2B109.2C11—C12—H12B109.5
C1—C2—H2B109.2H12A—C12—H12B108.1
H2A—C2—H2B107.9C12—C13—C17116.88 (14)
O1—C3—C4121.08 (17)C12—C13—C14108.82 (13)
O1—C3—C2122.11 (16)C17—C13—C14101.58 (13)
C4—C3—C2116.67 (14)C12—C13—C18111.33 (15)
C5—C4—C3123.90 (17)C17—C13—C18104.51 (13)
C5—C4—H4118.0C14—C13—C18113.48 (14)
C3—C4—H4118.0C8—C14—C13112.07 (13)
C4—C5—C6118.85 (16)C8—C14—C15120.43 (14)
C4—C5—C10123.31 (16)C13—C14—C15103.52 (13)
C6—C5—C10117.76 (14)C8—C14—H14106.7
C5—C6—C7112.89 (15)C13—C14—H14106.7
C5—C6—H6A109.0C15—C14—H14106.7
C7—C6—H6A109.0O3—C15—C14114.78 (14)
C5—C6—H6B109.0O3—C15—C16110.50 (15)
C7—C6—H6B109.0C14—C15—C16102.16 (15)
H6A—C6—H6B107.8O3—C15—H15109.7
C6—C7—C8110.18 (14)C14—C15—H15109.7
C6—C7—H7A109.6C16—C15—H15109.7
C8—C7—H7A109.6C17—C16—C15106.06 (15)
C6—C7—H7B109.6C17—C16—H16A110.5
C8—C7—H7B109.6C15—C16—H16A110.5
H7A—C7—H7B108.1C17—C16—H16B110.5
C14—C8—C7112.61 (13)C15—C16—H16B110.5
C14—C8—C9111.06 (13)H16A—C16—H16B108.7
C7—C8—C9108.46 (13)O4—C17—C16126.00 (17)
C14—C8—H8108.2O4—C17—C13126.01 (18)
C7—C8—H8108.2C16—C17—C13107.96 (15)
C9—C8—H8108.2C13—C18—H18A109.5
C11—C9—C8113.24 (13)C13—C18—H18B109.5
C11—C9—C10113.54 (12)H18A—C18—H18B109.5
C8—C9—C10110.80 (13)C13—C18—H18C109.5
C11—C9—H9106.2H18A—C18—H18C109.5
C8—C9—H9106.2H18B—C18—H18C109.5
C10—C9—H9106.2C10—C19—H19A109.5
C5—C10—C1108.55 (13)C10—C19—H19B109.5
C5—C10—C19107.05 (14)H19A—C19—H19B109.5
C1—C10—C19109.65 (15)C10—C19—H19C109.5
C5—C10—C9109.03 (13)H19A—C19—H19C109.5
C1—C10—C9111.13 (14)H19B—C19—H19C109.5
C10—C1—C2—C353.7 (2)C10—C9—C11—O269.69 (17)
C1—C2—C3—O1155.82 (17)C8—C9—C11—C1243.52 (19)
C1—C2—C3—C428.3 (2)C10—C9—C11—C12171.00 (14)
O1—C3—C4—C5174.15 (17)O2—C11—C12—C13173.29 (13)
C2—C3—C4—C51.8 (3)C9—C11—C12—C1351.13 (19)
C3—C4—C5—C6169.05 (16)C11—C12—C13—C17173.62 (14)
C3—C4—C5—C107.7 (3)C11—C12—C13—C1459.39 (18)
C4—C5—C6—C7136.19 (17)C11—C12—C13—C1866.41 (17)
C10—C5—C6—C746.9 (2)C7—C8—C14—C13177.14 (14)
C5—C6—C7—C853.8 (2)C9—C8—C14—C1355.28 (18)
C6—C7—C8—C14174.60 (14)C7—C8—C14—C1560.8 (2)
C6—C7—C8—C962.07 (19)C9—C8—C14—C15177.33 (15)
C14—C8—C9—C1144.45 (18)C12—C13—C14—C863.21 (17)
C7—C8—C9—C11168.71 (14)C17—C13—C14—C8172.92 (14)
C14—C8—C9—C10173.35 (13)C18—C13—C14—C861.33 (18)
C7—C8—C9—C1062.39 (17)C12—C13—C14—C15165.52 (14)
C4—C5—C10—C116.8 (2)C17—C13—C14—C1541.65 (16)
C6—C5—C10—C1166.38 (16)C18—C13—C14—C1569.93 (17)
C4—C5—C10—C19101.45 (19)C8—C14—C15—O373.1 (2)
C6—C5—C10—C1975.32 (18)C13—C14—C15—O3160.83 (14)
C4—C5—C10—C9138.03 (16)C8—C14—C15—C16167.34 (15)
C6—C5—C10—C945.2 (2)C13—C14—C15—C1641.22 (17)
C2—C1—C10—C546.6 (2)O3—C15—C16—C17147.08 (15)
C2—C1—C10—C1970.07 (19)C14—C15—C16—C1724.51 (18)
C2—C1—C10—C9166.46 (14)C15—C16—C17—O4179.09 (17)
C11—C9—C10—C5179.05 (13)C15—C16—C17—C131.08 (18)
C8—C9—C10—C552.21 (17)C12—C13—C17—O437.5 (2)
C11—C9—C10—C159.44 (18)C14—C13—C17—O4155.76 (17)
C8—C9—C10—C1171.82 (14)C18—C13—C17—O486.0 (2)
C11—C9—C10—C1963.08 (18)C12—C13—C17—C16144.46 (16)
C8—C9—C10—C1965.66 (18)C14—C13—C17—C1626.23 (17)
C8—C9—C11—O2162.83 (13)C18—C13—C17—C1692.00 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.88 (3)1.94 (3)2.800 (2)164 (3)
O2—H2···O1ii0.81 (3)1.95 (3)2.7600 (19)180 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H26O4
Mr318.40
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)7.8716 (8), 12.2725 (12), 17.2100 (16)
V3)1662.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn 724CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.981, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
17662, 2275, 2050
Rint0.047
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.081, 1.03
No. of reflections2275
No. of parameters218
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.88 (3)1.94 (3)2.800 (2)164 (3)
O2—H2···O1ii0.81 (3)1.95 (3)2.7600 (19)180 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21076158), the Program for New Century Excellent Talents in Universities (No. NCET-08–0911) and the Foundation for Excellent Doctoral Dissertations of Tianjin University of Science and Technology in 2010 (No. B201001).

References

First citationAhmad, S., Garg, S. K. & Johri, B. N. (1992). Biotechnol. Adv. 10, 1–67.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGaldecki, Z., Grochulski, P. & Wawrzak, Z. (1990). J. Cryst. Spectrosc. 20, 425–428.  CAS Google Scholar
First citationKollerov, V. V., Shutov, A. A., Fokina, V. V., Sukhodolskaya, G. V. & Donova, M. V. (2008). J. Mol. Catal. B Enzym. 55, 61–68.  Web of Science CrossRef CAS Google Scholar
First citationMalaviya, A. & Gomes, J. (2008). Bioresource Technol. 99, 6725–6737.  Web of Science CrossRef CAS Google Scholar
First citationPerez, C., Falero, A., Luu Duc, H., Balcinde, Y. & Hung, B. R. (2006). J. Ind. Microbiol. Biotechnol. 148, 719–723.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThamotharan, S., Parthasarathi, V., Dubey, S., Jindal, D. P. & Linden, A. (2004). Acta Cryst. C60, o110–o112.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVasuki, G., Parthasarathi, V., Ramamurthi, K., Dubey, S. & Jindal, D. P. (2002). Acta Cryst. E58, o1359–o1360.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds