organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Thia-1,6-di­aza­bi­cyclo­[4.3.0]nonane-7,9-dione

aDepartment of Organic Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 24 July 2011; accepted 21 September 2011; online 30 September 2011)

There are two independent mol­ecules, A and B, in the asymmetric unit of the title compound, C6H8N2O2S. In the crystal, pairs of inter­molecular S⋯O contacts [3.286 (1) Å] link the B mol­ecules into inversion dimers.

Related literature

For applications of the title compound, see: Yamaguchi et al. (1989[Yamaguchi, M., Suzuki, C., Matsunari, K., Miyazawa, T. & Nakamura, Y. (1989). EP Patent 0312064A2.]). For the synthesis, see: Zhu et al. (2011[Zhu, H. J., Xi, B. B., Feng, M. L., Wang, K., Li, Y. F., Shi, L. & Chen, C. (2011). CN Patent Appl. CN 201110091918.8.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a review of carbon­yl–carbonyl inter­actions, see: Allen et al. (1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N2O2S

  • Mr = 172.20

  • Triclinic, [P \overline 1]

  • a = 7.8400 (16) Å

  • b = 10.464 (2) Å

  • c = 10.514 (2) Å

  • α = 63.84 (3)°

  • β = 79.62 (3)°

  • γ = 89.42 (3)°

  • V = 759.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.896, Tmax = 0.964

  • 3018 measured reflections

  • 2795 independent reflections

  • 2092 reflections with I > 2σ(I)

  • Rint = 0.041

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 1.00

  • 2795 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 8-thia-1,6-diazabicyclo[4.3.0]nonane-7,9-dione, is an important intermediate for a kind of manufacturing agrochemical, especially for Fluthiacet-methyl as a super-effective, wide-spectral and safe herbicide (Yamaguchi et al., 1989). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1 and there are two independent unique molecules [labeled A & B]. The bond lengths and angles are within normal ranges (Allen et al., 1987). The crystal packing (Fig. 2) is stabilized by an intermolecular S···O interaction between the sulfur and the O atom of the carbonyl group interpreted as similar to type-II carbonyl–carbonyl interaction (Allen et al., 1998), with S1···O2i distance of 3.286 (1) Å.

Related literature top

For applications of the title compound, see: Yamaguchi et al. (1989). For the synthesis, see: Zhu et al. (2011). For bond-length data, see: Allen et al. (1987). For a review of carbonyl–carbonyl interactions, see: Allen et al. (1998).

Experimental top

The title compound was prepared according to reported in literature (Zhu et al., 2011). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature for ca. 6 d.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and Uiso(H) =1.5Ueq(C).

Structure description top

The title compound, 8-thia-1,6-diazabicyclo[4.3.0]nonane-7,9-dione, is an important intermediate for a kind of manufacturing agrochemical, especially for Fluthiacet-methyl as a super-effective, wide-spectral and safe herbicide (Yamaguchi et al., 1989). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1 and there are two independent unique molecules [labeled A & B]. The bond lengths and angles are within normal ranges (Allen et al., 1987). The crystal packing (Fig. 2) is stabilized by an intermolecular S···O interaction between the sulfur and the O atom of the carbonyl group interpreted as similar to type-II carbonyl–carbonyl interaction (Allen et al., 1998), with S1···O2i distance of 3.286 (1) Å.

For applications of the title compound, see: Yamaguchi et al. (1989). For the synthesis, see: Zhu et al. (2011). For bond-length data, see: Allen et al. (1987). For a review of carbonyl–carbonyl interactions, see: Allen et al. (1998).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the S···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x, - y + 2, - z.]
8-Thia-1,6-diazabicyclo[4.3.0]nonane-7,9-dione top
Crystal data top
C6H8N2O2SZ = 4
Mr = 172.20F(000) = 360
Triclinic, P1Dx = 1.507 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8400 (16) ÅCell parameters from 25 reflections
b = 10.464 (2) Åθ = 10–13°
c = 10.514 (2) ŵ = 0.37 mm1
α = 63.84 (3)°T = 293 K
β = 79.62 (3)°Block, colourless
γ = 89.42 (3)°0.30 × 0.20 × 0.10 mm
V = 759.2 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2092 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.4°, θmin = 2.2°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.896, Tmax = 0.964l = 1212
3018 measured reflections3 standard reflections every 200 reflections
2795 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.077P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2795 reflectionsΔρmax = 0.22 e Å3
200 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.327 (16)
Crystal data top
C6H8N2O2Sγ = 89.42 (3)°
Mr = 172.20V = 759.2 (3) Å3
Triclinic, P1Z = 4
a = 7.8400 (16) ÅMo Kα radiation
b = 10.464 (2) ŵ = 0.37 mm1
c = 10.514 (2) ÅT = 293 K
α = 63.84 (3)°0.30 × 0.20 × 0.10 mm
β = 79.62 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2092 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.041
Tmin = 0.896, Tmax = 0.9643 standard reflections every 200 reflections
3018 measured reflections intensity decay: 1%
2795 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
2795 reflectionsΔρmin = 0.32 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09731 (11)0.82576 (8)0.04086 (8)0.0598 (3)
O10.3185 (3)0.5944 (3)0.1791 (3)0.0737 (7)
O20.2479 (3)0.8734 (2)0.0219 (2)0.0632 (6)
N10.0292 (2)0.5625 (2)0.1507 (2)0.0416 (5)
N20.1318 (3)0.6432 (2)0.1083 (2)0.0411 (5)
C10.2837 (3)0.5721 (3)0.0768 (3)0.0464 (6)
H1A0.38920.63000.05910.056*
H1B0.28030.56040.00920.056*
C20.2842 (4)0.4278 (3)0.2034 (3)0.0547 (7)
H2A0.30270.44040.28600.066*
H2B0.37890.37710.17910.066*
C30.1134 (4)0.3408 (3)0.2418 (3)0.0529 (7)
H3A0.10020.32050.16230.063*
H3B0.11370.25050.32610.063*
C40.0370 (4)0.4199 (3)0.2726 (3)0.0491 (7)
H4A0.14560.36690.28780.059*
H4B0.03260.42900.35990.059*
C50.1691 (3)0.6421 (3)0.1356 (3)0.0497 (7)
C60.1243 (4)0.7859 (3)0.0365 (3)0.0462 (6)
S20.16047 (9)0.00770 (8)0.62686 (8)0.0517 (3)
O30.3930 (3)0.1856 (2)0.6988 (2)0.0625 (6)
O40.1494 (2)0.2796 (2)0.5788 (2)0.0585 (5)
N30.4698 (2)0.0396 (2)0.6615 (2)0.0396 (5)
N40.3934 (3)0.1675 (2)0.6431 (2)0.0379 (5)
C70.5149 (3)0.2948 (3)0.5815 (3)0.0462 (6)
H7A0.45340.37490.58370.055*
H7B0.56480.31870.48170.055*
C80.6568 (4)0.2672 (3)0.6669 (3)0.0567 (8)
H8A0.60830.25670.76290.068*
H8B0.74300.34830.62030.068*
C90.7431 (3)0.1341 (3)0.6786 (3)0.0541 (7)
H9A0.82980.11580.73840.065*
H9B0.80150.14810.58330.065*
C100.6102 (3)0.0070 (3)0.7438 (3)0.0502 (7)
H10A0.66550.07560.74180.060*
H10B0.56280.01530.84370.060*
C110.3614 (3)0.0634 (3)0.6686 (3)0.0433 (6)
C120.2314 (3)0.1752 (3)0.6121 (3)0.0412 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0698 (5)0.0513 (5)0.0626 (5)0.0262 (4)0.0203 (4)0.0268 (4)
O10.0382 (12)0.0922 (17)0.0976 (17)0.0078 (11)0.0077 (11)0.0508 (14)
O20.0749 (14)0.0403 (11)0.0593 (13)0.0102 (10)0.0012 (11)0.0138 (10)
N10.0357 (11)0.0393 (11)0.0448 (12)0.0011 (9)0.0052 (9)0.0153 (10)
N20.0369 (11)0.0349 (11)0.0453 (12)0.0006 (9)0.0038 (9)0.0139 (9)
C10.0375 (14)0.0472 (15)0.0502 (15)0.0045 (11)0.0008 (11)0.0213 (13)
C20.0508 (17)0.0486 (16)0.0617 (18)0.0155 (13)0.0147 (14)0.0209 (14)
C30.073 (2)0.0344 (14)0.0467 (15)0.0053 (13)0.0151 (14)0.0130 (12)
C40.0545 (16)0.0431 (15)0.0406 (14)0.0101 (12)0.0044 (12)0.0120 (12)
C50.0418 (16)0.0638 (18)0.0531 (16)0.0122 (13)0.0109 (13)0.0343 (15)
C60.0585 (17)0.0418 (15)0.0362 (13)0.0039 (13)0.0048 (12)0.0172 (12)
S20.0443 (4)0.0511 (4)0.0589 (5)0.0031 (3)0.0175 (3)0.0208 (3)
O30.0769 (15)0.0407 (11)0.0712 (14)0.0081 (10)0.0188 (11)0.0247 (10)
O40.0494 (11)0.0536 (12)0.0682 (13)0.0176 (10)0.0212 (10)0.0200 (10)
N30.0358 (11)0.0354 (11)0.0451 (12)0.0058 (9)0.0080 (9)0.0159 (9)
N40.0328 (10)0.0335 (11)0.0445 (12)0.0028 (8)0.0076 (9)0.0150 (9)
C70.0446 (15)0.0356 (13)0.0543 (16)0.0040 (11)0.0011 (12)0.0195 (12)
C80.0418 (15)0.0667 (19)0.0708 (19)0.0067 (14)0.0050 (14)0.0409 (16)
C90.0312 (13)0.076 (2)0.0632 (18)0.0066 (13)0.0108 (13)0.0377 (16)
C100.0381 (14)0.0576 (16)0.0520 (16)0.0119 (12)0.0132 (12)0.0204 (14)
C110.0467 (15)0.0393 (15)0.0413 (14)0.0016 (12)0.0056 (11)0.0167 (11)
C120.0386 (13)0.0453 (14)0.0359 (13)0.0049 (12)0.0095 (11)0.0138 (11)
Geometric parameters (Å, º) top
S1—C51.771 (3)S2—C121.776 (3)
S1—C61.780 (3)S2—C111.779 (3)
O1—C51.203 (3)O3—C111.208 (3)
O2—C61.209 (3)O4—C121.208 (3)
N1—C51.360 (3)N3—C111.347 (3)
N1—N21.411 (3)N3—N41.409 (3)
N1—C41.470 (3)N3—C101.467 (3)
N2—C61.351 (3)N4—C121.360 (3)
N2—C11.463 (3)N4—C71.464 (3)
C1—C21.510 (4)C7—C81.501 (4)
C1—H1A0.9700C7—H7A0.9700
C1—H1B0.9700C7—H7B0.9700
C2—C31.514 (4)C8—C91.508 (4)
C2—H2A0.9700C8—H8A0.9700
C2—H2B0.9700C8—H8B0.9700
C3—C41.503 (4)C9—C101.514 (4)
C3—H3A0.9700C9—H9A0.9700
C3—H3B0.9700C9—H9B0.9700
C4—H4A0.9700C10—H10A0.9700
C4—H4B0.9700C10—H10B0.9700
C5—S1—C691.50 (13)C12—S2—C1191.50 (12)
C5—N1—N2114.0 (2)C11—N3—N4114.76 (19)
C5—N1—C4121.3 (2)C11—N3—C10122.2 (2)
N2—N1—C4114.5 (2)N4—N3—C10114.6 (2)
C6—N2—N1114.8 (2)C12—N4—N3114.5 (2)
C6—N2—C1121.8 (2)C12—N4—C7121.1 (2)
N1—N2—C1115.11 (19)N3—N4—C7115.35 (19)
N2—C1—C2109.5 (2)N4—C7—C8109.7 (2)
N2—C1—H1A109.8N4—C7—H7A109.7
C2—C1—H1A109.8C8—C7—H7A109.7
N2—C1—H1B109.8N4—C7—H7B109.7
C2—C1—H1B109.8C8—C7—H7B109.7
H1A—C1—H1B108.2H7A—C7—H7B108.2
C1—C2—C3110.6 (2)C7—C8—C9111.1 (2)
C1—C2—H2A109.5C7—C8—H8A109.4
C3—C2—H2A109.5C9—C8—H8A109.4
C1—C2—H2B109.5C7—C8—H8B109.4
C3—C2—H2B109.5C9—C8—H8B109.4
H2A—C2—H2B108.1H8A—C8—H8B108.0
C4—C3—C2110.8 (2)C8—C9—C10110.7 (2)
C4—C3—H3A109.5C8—C9—H9A109.5
C2—C3—H3A109.5C10—C9—H9A109.5
C4—C3—H3B109.5C8—C9—H9B109.5
C2—C3—H3B109.5C10—C9—H9B109.5
H3A—C3—H3B108.1H9A—C9—H9B108.1
N1—C4—C3109.9 (2)N3—C10—C9109.7 (2)
N1—C4—H4A109.7N3—C10—H10A109.7
C3—C4—H4A109.7C9—C10—H10A109.7
N1—C4—H4B109.7N3—C10—H10B109.7
C3—C4—H4B109.7C9—C10—H10B109.7
H4A—C4—H4B108.2H10A—C10—H10B108.2
O1—C5—N1125.0 (3)O3—C11—N3126.2 (3)
O1—C5—S1125.5 (2)O3—C11—S2124.5 (2)
N1—C5—S1109.5 (2)N3—C11—S2109.34 (18)
O2—C6—N2125.7 (3)O4—C12—N4125.5 (2)
O2—C6—S1125.1 (2)O4—C12—S2125.4 (2)
N2—C6—S1109.2 (2)N4—C12—S2109.10 (18)
C5—N1—N2—C611.3 (3)C11—N3—N4—C1210.1 (3)
C4—N1—N2—C6157.2 (2)C10—N3—N4—C12159.0 (2)
C5—N1—N2—C1160.4 (2)C11—N3—N4—C7157.8 (2)
C4—N1—N2—C153.6 (3)C10—N3—N4—C753.3 (3)
C6—N2—C1—C2160.1 (2)C12—N4—C7—C8162.2 (2)
N1—N2—C1—C253.2 (3)N3—N4—C7—C852.4 (3)
N2—C1—C2—C354.1 (3)N4—C7—C8—C953.6 (3)
C1—C2—C3—C456.3 (3)C7—C8—C9—C1056.1 (3)
C5—N1—C4—C3164.3 (2)C11—N3—C10—C9161.2 (2)
N2—N1—C4—C352.4 (3)N4—N3—C10—C952.4 (3)
C2—C3—C4—N153.8 (3)C8—C9—C10—N353.8 (3)
N2—N1—C5—O1171.7 (3)N4—N3—C11—O3171.8 (2)
C4—N1—C5—O128.3 (4)C10—N3—C11—O325.6 (4)
N2—N1—C5—S18.8 (3)N4—N3—C11—S27.9 (3)
C4—N1—C5—S1152.26 (19)C10—N3—C11—S2154.20 (19)
C6—S1—C5—O1176.8 (3)C12—S2—C11—O3176.4 (2)
C6—S1—C5—N13.76 (19)C12—S2—C11—N33.33 (19)
N1—N2—C6—O2172.2 (2)N3—N4—C12—O4172.5 (2)
C1—N2—C6—O225.3 (4)C7—N4—C12—O426.9 (4)
N1—N2—C6—S17.8 (3)N3—N4—C12—S26.9 (3)
C1—N2—C6—S1154.63 (19)C7—N4—C12—S2152.55 (18)
C5—S1—C6—O2177.7 (3)C11—S2—C12—O4177.4 (2)
C5—S1—C6—N22.26 (19)C11—S2—C12—N42.03 (19)

Experimental details

Crystal data
Chemical formulaC6H8N2O2S
Mr172.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8400 (16), 10.464 (2), 10.514 (2)
α, β, γ (°)63.84 (3), 79.62 (3), 89.42 (3)
V3)759.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.896, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
3018, 2795, 2092
Rint0.041
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.00
No. of reflections2795
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.32

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamaguchi, M., Suzuki, C., Matsunari, K., Miyazawa, T. & Nakamura, Y. (1989). EP Patent 0312064A2.  Google Scholar
First citationZhu, H. J., Xi, B. B., Feng, M. L., Wang, K., Li, Y. F., Shi, L. & Chen, C. (2011). CN Patent Appl. CN 201110091918.8.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds