organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{(1Z)-1-[6-(4-Chloro­phen­­oxy)hex­y­l­­oxy]-1-(2,4-di­fluoro­phen­yl)prop-1-en-2-yl}-1H-1,2,4-triazol-4-ium nitrate

aJiangsu Engineering Technology Research Center of Polypeptide Pharmaceutical, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: yonghonghu09@gmail.com

(Received 20 July 2011; accepted 25 August 2011; online 14 September 2011)

In the title compound, C23H25ClF2N3O2+·NO3, the triazole ring makes dihedral angles of 60.9 (4) and 25.0 (3)° with the 6-chloro­phenyl and 2,4-difluoro­phenyl rings, respectively. The mol­ecule adopts a Z configuration about the C=C double bond. In the crystal, the cations and anions are linked by N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions.

Related literature

For the use of triazole derivatives as anti­fungal agents, see: Jeu et al. (2003[Jeu, L., Piacenti, F. J., Lyakhovetskiy, A. G. & Fung, H. B. (2003). Clin. Ther. 25, 1321-1381.]); Fromtling & Castaner (1996[Fromtling, R. & Castaner, J. (1996). Drugs Future, 21, 160-166.]). For the synthesis, see: Zirngibl & Thiele (1985[Zirngibl, L. & Thiele, K. (1985). US Patent Appl. US4554356.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25ClF2N3O2+·NO3

  • Mr = 510.92

  • Monoclinic, C 2/c

  • a = 35.538 (7) Å

  • b = 8.5550 (17) Å

  • c = 17.072 (3) Å

  • β = 105.21 (3)°

  • V = 5008.6 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.940, Tmax = 0.980

  • 9194 measured reflections

  • 4628 independent reflections

  • 1954 reflections with I > 2σ(I)

  • Rint = 0.063

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.176

  • S = 1.00

  • 4628 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4i 0.86 1.8 2.661 (5) 175
C22—H22A⋯O4ii 0.93 2.38 3.077 (6) 131
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triazole derivatives such as Voriconazole ((2R,3S)-2-(2,4-difluorophenyl) -3-(5-fluoropyrimidin-4-yl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol) and Posaconazole (4-(4-(4-(4-(((3R,5R)-5-(2,4-difluorophenyl)-5-(1,2,4- triazol-1-ylmethyl)oxolan-3-yl)methoxy)phenyl)piperazin-1-yl)phenyl)- 2-((2S,3S)-2-hydroxypentan-3-yl)-1,2,4-triazol-3-one) are safe and effective antifungal agents. (Jeu et al., 2003; Fromtling & Castaner, 1996) As part of our studies on the synthesis of new triazole derivatives, the crystal structure of the title compound was determined.

In the molecular structure of the title compound the double bond is Z configurated. In the crystal structure the anions and cations are connected via N—H···O hydrogen bonding and weak and C—H···O interactions (Table 1 and Fig. 2).

Related literature top

For the use of triazole derivatives as antifungal agents, see: Jeu et al. (2003); Fromtling & Castaner (1996). For the synthesis, see: Zirngibl & Thiele (1985).

Experimental top

Details on the synthesis can be found in the literature reported by Zirngibl & Thiele (1985). 3 g (0.01 mol) 1-(2,4-difluorophenyl)-2-(1,2,4-triazol)-1-y1)propan-1-one, 10 g of a 50% aqueous sodium hydroxide, 15 ml toluene and 1.5 ml of a 40% aqueous solution of tetrabutyl ammonium hydroxide are mixed and heated to 323.15 K under vigorous stirring. 3.0 g (0.01 mol) 1-bromo-6- (4-chlorophenoxy)-hexane, dissolved in 10 ml toluene, is instilled into the stirred and warmed solution in the course of 10 h. The mixture is subsequently stirred for another 20 h at 323.15 K. The reaction mixture is mixed with as much water and chloroform so that the aqueous phase becomes lighter than the organic phase. Thereafter, the organic and aqueous phases are separated. The organic phase is dried with sodium sulfate. The solvents are distilled under reduced pressure. The remaining residue is a dark oil that is diluted with 10 ml 2-propanol and then adjusted to a PH-value of 2 by means of 30% aqueous nitric acid. The thus derived nitric acid solution is then cooled in the refrigerator. The impure precipitated product herein is subsequently crystallized from a 1:1 mixture of ethyl acetate and ethanol. The purified product may be analytically identified as an approximately pure Z-isomer of propylene nitrate. Crystals of title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and with N—H = 0.86 Å for triazole H atom, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 (or 1.5 for methyl groups) times Ueq(C).

Structure description top

Triazole derivatives such as Voriconazole ((2R,3S)-2-(2,4-difluorophenyl) -3-(5-fluoropyrimidin-4-yl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol) and Posaconazole (4-(4-(4-(4-(((3R,5R)-5-(2,4-difluorophenyl)-5-(1,2,4- triazol-1-ylmethyl)oxolan-3-yl)methoxy)phenyl)piperazin-1-yl)phenyl)- 2-((2S,3S)-2-hydroxypentan-3-yl)-1,2,4-triazol-3-one) are safe and effective antifungal agents. (Jeu et al., 2003; Fromtling & Castaner, 1996) As part of our studies on the synthesis of new triazole derivatives, the crystal structure of the title compound was determined.

In the molecular structure of the title compound the double bond is Z configurated. In the crystal structure the anions and cations are connected via N—H···O hydrogen bonding and weak and C—H···O interactions (Table 1 and Fig. 2).

For the use of triazole derivatives as antifungal agents, see: Jeu et al. (2003); Fromtling & Castaner (1996). For the synthesis, see: Zirngibl & Thiele (1985).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability levels.
[Figure 2] Fig. 2. The packing diagram of the title compound. Hydron bonds are shown as dashed lines.
1-{(1Z)-1-[6-(4-Chlorophenoxy)hexyloxy]-1-(2,4-difluorophenyl)prop- 1-en-2-yl}-1H-1,2,4-triazol-4-ium nitrate top
Crystal data top
C23H25ClF2N3O2+·NO3F(000) = 2128
Mr = 510.92Dx = 1.355 Mg m3
Monoclinic, C2/cMelting point: 383.15 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 35.538 (7) ÅCell parameters from 25 reflections
b = 8.5550 (17) Åθ = 9–13°
c = 17.072 (3) ŵ = 0.21 mm1
β = 105.21 (3)°T = 293 K
V = 5008.6 (17) Å3Block, yellow
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1954 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 25.5°, θmin = 1.2°
ω/2θ scansh = 4242
Absorption correction: ψ scan
(North et al., 1968)
k = 100
Tmin = 0.940, Tmax = 0.980l = 2020
9194 measured reflections3 standard reflections every 200 reflections
4628 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4628 reflectionsΔρmax = 0.18 e Å3
317 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (3)
Crystal data top
C23H25ClF2N3O2+·NO3V = 5008.6 (17) Å3
Mr = 510.92Z = 8
Monoclinic, C2/cMo Kα radiation
a = 35.538 (7) ŵ = 0.21 mm1
b = 8.5550 (17) ÅT = 293 K
c = 17.072 (3) Å0.30 × 0.20 × 0.10 mm
β = 105.21 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1954 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.063
Tmin = 0.940, Tmax = 0.9803 standard reflections every 200 reflections
9194 measured reflections intensity decay: 1%
4628 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
4628 reflectionsΔρmin = 0.18 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.24234 (4)0.19455 (19)0.11286 (9)0.1265 (6)
N10.60062 (8)0.8994 (3)0.62210 (18)0.0581 (8)
O10.39276 (8)0.4929 (4)0.25522 (17)0.0823 (9)
F10.73827 (8)0.7269 (3)0.34649 (16)0.1146 (10)
C10.32631 (12)0.4430 (5)0.2609 (2)0.0796 (13)
H1A0.32930.50170.30800.096*
O20.58960 (7)0.7156 (3)0.48863 (16)0.0806 (9)
F20.68002 (7)0.5624 (3)0.54599 (15)0.1046 (9)
N20.61212 (9)0.9274 (4)0.70427 (19)0.0790 (10)
C20.29134 (12)0.3703 (6)0.2254 (3)0.0834 (13)
H2B0.27070.37980.24930.100*
N30.54892 (9)0.8995 (4)0.6624 (2)0.0728 (10)
H3A0.52490.89340.66380.087*
C30.28647 (12)0.2854 (6)0.1564 (3)0.0805 (13)
C40.31692 (13)0.2685 (5)0.1204 (3)0.0774 (12)
H4A0.31370.20950.07340.093*
C50.35210 (11)0.3405 (5)0.1553 (2)0.0693 (11)
H5A0.37270.33060.13140.083*
C60.35694 (11)0.4270 (5)0.2254 (2)0.0666 (11)
C70.39858 (12)0.5892 (6)0.3251 (3)0.0944 (14)
H7A0.39680.52680.37140.113*
H7B0.37860.66920.31620.113*
C80.43785 (13)0.6638 (6)0.3416 (3)0.1040 (16)
H8A0.43910.72490.29450.125*
H8B0.44060.73570.38670.125*
C90.47111 (12)0.5551 (6)0.3607 (3)0.0940 (15)
H9A0.46980.48790.31430.113*
H9B0.46950.48950.40600.113*
C100.51068 (13)0.6424 (6)0.3825 (3)0.1051 (16)
H10A0.51250.70540.33640.126*
H10B0.51140.71260.42750.126*
C110.54449 (13)0.5380 (6)0.4046 (3)0.1036 (16)
H11A0.54230.46220.36130.124*
H11B0.54350.48100.45310.124*
C120.58357 (12)0.6168 (6)0.4198 (3)0.1026 (16)
H12A0.60400.53840.42880.123*
H12B0.58470.67790.37260.123*
C130.62371 (10)0.7959 (5)0.5136 (2)0.0553 (9)
C140.65339 (10)0.7764 (5)0.4670 (2)0.0562 (10)
C150.65451 (12)0.8748 (5)0.4041 (2)0.0796 (12)
H15A0.63610.95400.38940.095*
C160.68307 (14)0.8571 (6)0.3618 (3)0.0880 (14)
H16A0.68350.92180.31820.106*
C170.71014 (12)0.7424 (6)0.3862 (3)0.0754 (13)
C180.71030 (11)0.6422 (5)0.4471 (3)0.0742 (12)
H18A0.72890.56380.46220.089*
C190.68107 (11)0.6632 (5)0.4859 (2)0.0638 (11)
C200.62999 (10)0.8855 (5)0.5780 (2)0.0584 (10)
C210.66594 (11)0.9797 (6)0.6133 (3)0.0979 (16)
H21A0.68420.96470.58130.147*
H21B0.67750.94640.66800.147*
H21C0.65921.08830.61310.147*
C220.57978 (13)0.9257 (5)0.7252 (3)0.0823 (13)
H22A0.57810.94100.77810.099*
C230.56259 (11)0.8848 (5)0.5979 (2)0.0700 (11)
H23A0.54790.86720.54500.084*
N40.45438 (12)0.1212 (5)0.0878 (3)0.0839 (11)
O30.41881 (10)0.1263 (5)0.0716 (2)0.1251 (13)
O40.47371 (9)0.1062 (5)0.1602 (2)0.1148 (13)
O50.47201 (9)0.1337 (4)0.03508 (19)0.1087 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0756 (9)0.1377 (13)0.1570 (13)0.0353 (8)0.0145 (8)0.0120 (10)
N10.0538 (19)0.066 (2)0.058 (2)0.0018 (16)0.0214 (15)0.0005 (17)
O10.0680 (19)0.100 (2)0.0800 (19)0.0165 (17)0.0211 (14)0.0192 (18)
F10.1021 (19)0.133 (2)0.142 (2)0.0203 (17)0.0900 (18)0.0211 (19)
C10.071 (3)0.106 (4)0.068 (3)0.006 (3)0.028 (2)0.001 (3)
O20.0637 (18)0.101 (2)0.088 (2)0.0172 (16)0.0399 (15)0.0352 (18)
F20.0991 (19)0.124 (2)0.1046 (19)0.0447 (16)0.0508 (15)0.0433 (17)
N20.070 (2)0.114 (3)0.060 (2)0.001 (2)0.0299 (18)0.004 (2)
C20.063 (3)0.106 (4)0.089 (3)0.011 (3)0.034 (2)0.014 (3)
N30.059 (2)0.080 (3)0.091 (3)0.0028 (19)0.040 (2)0.006 (2)
C30.064 (3)0.086 (3)0.091 (3)0.014 (2)0.018 (3)0.007 (3)
C40.079 (3)0.073 (3)0.077 (3)0.010 (3)0.013 (2)0.003 (2)
C50.067 (3)0.072 (3)0.074 (3)0.005 (2)0.027 (2)0.000 (2)
C60.054 (2)0.074 (3)0.070 (3)0.009 (2)0.013 (2)0.004 (2)
C70.077 (3)0.105 (4)0.096 (3)0.015 (3)0.015 (3)0.019 (3)
C80.084 (4)0.101 (4)0.113 (4)0.013 (3)0.001 (3)0.024 (3)
C90.069 (3)0.106 (4)0.099 (3)0.020 (3)0.008 (2)0.005 (3)
C100.080 (3)0.113 (4)0.115 (4)0.015 (3)0.014 (3)0.019 (3)
C110.077 (3)0.119 (4)0.117 (4)0.014 (3)0.029 (3)0.023 (3)
C120.063 (3)0.139 (4)0.109 (4)0.017 (3)0.029 (3)0.050 (4)
C130.046 (2)0.063 (3)0.059 (2)0.001 (2)0.0191 (18)0.002 (2)
C140.052 (2)0.065 (3)0.057 (2)0.001 (2)0.0227 (18)0.002 (2)
C150.079 (3)0.084 (3)0.085 (3)0.012 (2)0.038 (2)0.012 (3)
C160.103 (4)0.093 (4)0.083 (3)0.011 (3)0.052 (3)0.010 (3)
C170.066 (3)0.084 (4)0.091 (3)0.019 (3)0.046 (3)0.020 (3)
C180.053 (2)0.085 (3)0.091 (3)0.001 (2)0.031 (2)0.011 (3)
C190.061 (2)0.075 (3)0.059 (2)0.001 (2)0.023 (2)0.006 (2)
C200.049 (2)0.073 (3)0.058 (2)0.004 (2)0.0211 (18)0.001 (2)
C210.067 (3)0.132 (4)0.105 (3)0.030 (3)0.040 (2)0.040 (3)
C220.083 (3)0.109 (4)0.064 (3)0.008 (3)0.036 (3)0.011 (3)
C230.051 (2)0.094 (3)0.070 (3)0.001 (2)0.025 (2)0.011 (3)
N40.071 (3)0.099 (3)0.091 (3)0.004 (2)0.037 (2)0.015 (3)
O30.064 (2)0.180 (4)0.134 (3)0.024 (2)0.0314 (19)0.032 (3)
O40.076 (2)0.192 (4)0.089 (2)0.014 (2)0.0453 (19)0.026 (3)
O50.092 (2)0.156 (3)0.094 (2)0.004 (2)0.0514 (19)0.001 (2)
Geometric parameters (Å, º) top
Cl—C31.733 (4)C9—H9A0.9700
N1—C231.311 (4)C9—H9B0.9700
N1—N21.375 (4)C10—C111.465 (6)
N1—C201.443 (4)C10—H10A0.9700
O1—C61.363 (4)C10—H10B0.9700
O1—C71.420 (5)C11—C121.503 (5)
F1—C171.353 (4)C11—H11A0.9700
C1—C21.379 (5)C11—H11B0.9700
C1—C61.385 (5)C12—H12A0.9700
C1—H1A0.9300C12—H12B0.9700
O2—C131.361 (4)C13—C201.310 (5)
O2—C121.418 (5)C13—C141.488 (5)
F2—C191.349 (4)C14—C191.358 (5)
N2—C221.290 (4)C14—C151.374 (5)
C2—C31.357 (5)C15—C161.400 (5)
C2—H2B0.9300C15—H15A0.9300
N3—C231.321 (4)C16—C171.361 (6)
N3—C221.335 (5)C16—H16A0.9300
N3—H3A0.8600C17—C181.347 (5)
C3—C41.385 (6)C18—C191.381 (5)
C4—C51.381 (5)C18—H18A0.9300
C4—H4A0.9300C20—C211.497 (5)
C5—C61.378 (5)C21—H21A0.9600
C5—H5A0.9300C21—H21B0.9600
C7—C81.492 (5)C21—H21C0.9600
C7—H7A0.9700C22—H22A0.9300
C7—H7B0.9700C23—H23A0.9300
C8—C91.472 (6)N4—O31.222 (4)
C8—H8A0.9700N4—O41.253 (4)
C8—H8B0.9700N4—O51.229 (4)
C9—C101.548 (6)
C23—N1—N2110.1 (3)C10—C11—C12115.4 (5)
C23—N1—C20130.9 (3)C10—C11—H11A108.4
N2—N1—C20119.0 (3)C12—C11—H11A108.4
C6—O1—C7118.1 (3)C10—C11—H11B108.4
C2—C1—C6119.0 (4)C12—C11—H11B108.4
C2—C1—H1A120.5H11A—C11—H11B107.5
C6—C1—H1A120.5O2—C12—C11110.0 (4)
C13—O2—C12119.3 (3)O2—C12—H12A109.7
C22—N2—N1103.4 (3)C11—C12—H12A109.7
C3—C2—C1121.2 (4)O2—C12—H12B109.7
C3—C2—H2B119.4C11—C12—H12B109.7
C1—C2—H2B119.4H12A—C12—H12B108.2
C23—N3—C22106.3 (3)C20—C13—O2120.0 (3)
C23—N3—H3A126.9C20—C13—C14121.7 (3)
C22—N3—H3A126.9O2—C13—C14118.3 (3)
C2—C3—C4120.3 (4)C19—C14—C15117.0 (3)
C2—C3—Cl120.5 (4)C19—C14—C13121.7 (3)
C4—C3—Cl119.2 (4)C15—C14—C13121.3 (4)
C3—C4—C5119.1 (4)C14—C15—C16120.7 (4)
C3—C4—H4A120.4C14—C15—H15A119.6
C5—C4—H4A120.4C16—C15—H15A119.6
C6—C5—C4120.5 (4)C17—C16—C15118.0 (4)
C6—C5—H5A119.8C17—C16—H16A121.0
C4—C5—H5A119.8C15—C16—H16A121.0
O1—C6—C5116.0 (3)C18—C17—F1118.1 (5)
O1—C6—C1124.0 (4)C18—C17—C16123.7 (4)
C5—C6—C1120.0 (4)F1—C17—C16118.2 (5)
O1—C7—C8109.3 (4)C17—C18—C19115.8 (4)
O1—C7—H7A109.8C17—C18—H18A122.1
C8—C7—H7A109.8C19—C18—H18A122.1
O1—C7—H7B109.8F2—C19—C14118.3 (3)
C8—C7—H7B109.8F2—C19—C18117.1 (4)
H7A—C7—H7B108.3C14—C19—C18124.6 (4)
C9—C8—C7115.4 (4)C13—C20—N1119.9 (3)
C9—C8—H8A108.4C13—C20—C21126.3 (3)
C7—C8—H8A108.4N1—C20—C21113.8 (3)
C9—C8—H8B108.4C20—C21—H21A109.5
C7—C8—H8B108.4C20—C21—H21B109.5
H8A—C8—H8B107.5H21A—C21—H21B109.5
C8—C9—C10112.0 (4)C20—C21—H21C109.5
C8—C9—H9A109.2H21A—C21—H21C109.5
C10—C9—H9A109.2H21B—C21—H21C109.5
C8—C9—H9B109.2N2—C22—N3112.6 (4)
C10—C9—H9B109.2N2—C22—H22A123.7
H9A—C9—H9B107.9N3—C22—H22A123.7
C11—C10—C9113.6 (4)N1—C23—N3107.6 (3)
C11—C10—H10A108.8N1—C23—H23A126.2
C9—C10—H10A108.8N3—C23—H23A126.2
C11—C10—H10B108.8O3—N4—O4119.6 (4)
C9—C10—H10B108.8O3—N4—O5121.8 (4)
H10A—C10—H10B107.7O4—N4—O5118.6 (4)
C23—N1—N2—C220.9 (5)C19—C14—C15—C160.2 (6)
C20—N1—N2—C22177.0 (3)C13—C14—C15—C16178.7 (4)
C6—C1—C2—C30.6 (7)C14—C15—C16—C171.6 (7)
C1—C2—C3—C40.7 (7)C15—C16—C17—C182.0 (7)
C1—C2—C3—Cl179.8 (3)C15—C16—C17—F1178.7 (4)
C2—C3—C4—C50.6 (7)F1—C17—C18—C19179.8 (3)
Cl—C3—C4—C5179.8 (3)C16—C17—C18—C190.9 (6)
C3—C4—C5—C60.5 (6)C15—C14—C19—F2178.2 (3)
C7—O1—C6—C5177.0 (4)C13—C14—C19—F23.2 (5)
C7—O1—C6—C12.8 (6)C15—C14—C19—C181.1 (6)
C4—C5—C6—O1179.8 (3)C13—C14—C19—C18177.5 (4)
C4—C5—C6—C10.4 (6)C17—C18—C19—F2178.6 (3)
C2—C1—C6—O1179.7 (4)C17—C18—C19—C140.7 (6)
C2—C1—C6—C50.4 (6)O2—C13—C20—N10.3 (5)
C6—O1—C7—C8173.4 (4)C14—C13—C20—N1179.1 (3)
O1—C7—C8—C962.7 (6)O2—C13—C20—C21179.5 (4)
C7—C8—C9—C10176.3 (4)C14—C13—C20—C210.7 (6)
C8—C9—C10—C11178.0 (4)C23—N1—C20—C1327.6 (6)
C9—C10—C11—C12175.4 (4)N2—N1—C20—C13149.8 (3)
C13—O2—C12—C11178.8 (4)C23—N1—C20—C21152.6 (4)
C10—C11—C12—O264.8 (6)N2—N1—C20—C2130.0 (5)
C12—O2—C13—C20178.8 (4)N1—N2—C22—N30.3 (5)
C12—O2—C13—C140.1 (5)C23—N3—C22—N20.4 (5)
C20—C13—C14—C1989.2 (5)N2—N1—C23—N31.2 (5)
O2—C13—C14—C1989.7 (4)C20—N1—C23—N3176.4 (3)
C20—C13—C14—C1589.3 (5)C22—N3—C23—N11.0 (5)
O2—C13—C14—C1591.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.861.82.661 (5)175
C22—H22A···O4ii0.932.383.077 (6)131
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H25ClF2N3O2+·NO3
Mr510.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)35.538 (7), 8.5550 (17), 17.072 (3)
β (°) 105.21 (3)
V3)5008.6 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.940, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
9194, 4628, 1954
Rint0.063
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.176, 1.00
No. of reflections4628
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.861.82.661 (5)175
C22—H22A···O4ii0.932.383.077 (6)131
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

This research work was supported financially by the Program of Six Talent Tops Foundation of Jiangsu Province (2009 No. 2009118) and the Natural Science Basic Research Program of Higher Education in Jiangsu Province (08 K J A530002).

References

First citationEnraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFromtling, R. & Castaner, J. (1996). Drugs Future, 21, 160–166.  CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJeu, L., Piacenti, F. J., Lyakhovetskiy, A. G. & Fung, H. B. (2003). Clin. Ther. 25, 1321–1381.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZirngibl, L. & Thiele, K. (1985). US Patent Appl. US4554356.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds