metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­di­chloridobis(pyridine-κN)manganese(II)

aDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: manimaran.che@pondiuni.edu.in

(Received 16 August 2011; accepted 31 August 2011; online 14 September 2011)

The molecular title compound, [MnCl2(C5H5N)2(H2O)2], lies about an inversion centre. The MnII atom is in an all-trans octa­hedral environment defined by two water mol­ecules, two chloride anions and two pyridine ligands. An inter­molecular hydrogen-bonding inter­action between a water mol­ecule and a chloride anion bonded to an adjacent MnII atom generates an eight-membered ring. The crystal packing exhibits two inter­molecular ππ stacking inter­actions between the aromatic rings, with centroid–centroid distances of 3.485 (12) and 3.532 (12) Å.

Related literature

For hydrogen-bond motifs, see: Frost et al. (2006[Frost, B. J., Bautista, C. M., Huang, R. & Shearer, J. (2006). Inorg. Chem. 45, 3481-3483.]). For related structures, see: Cotton et al. (1995[Cotton, F. A., Daniels, L. M., Feng, X., Maloney, D. J., Murillo, C. A. & Zuniga, L. A. (1995). Inorg. Chim. Acta, 235, 21-28.]); Kruszynski et al. (2001[Kruszynski, R., Bartczak, T. J., Adamczyk, A., Czakis-Sulikowska, D. & Kałużna, J. (2001). Acta Cryst. E57, m183-m185.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C5H5N)2(H2O)2]

  • Mr = 320.07

  • Triclinic, [P \overline 1]

  • a = 6.2290 (5) Å

  • b = 6.6327 (5) Å

  • c = 8.6831 (7) Å

  • α = 108.931 (7)°

  • β = 103.499 (7)°

  • γ = 96.969 (6)°

  • V = 322.30 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 150 K

  • 0.26 × 0.14 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.733, Tmax = 1.000

  • 1951 measured reflections

  • 1137 independent reflections

  • 1031 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.056

  • S = 1.05

  • 1137 reflections

  • 87 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯Cl1i 0.86 (1) 2.38 (1) 3.2301 (13) 170 (2)
Symmetry code: (i) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The molecular structure of the title compound C10H14Cl2MnN2O2 is isostructural with Cr (Cotton et al., 1995) compound. The title compound is shown in Fig. 1. The bond length of Mn—N, Mn—O, and Mn—Cl is comparable to those observed in a related crystal structure namely that diaqua-dichloro-bis(1-((2-(2,4-dichlorophenyl)-1,3-dioxalan-2-yl)methyl)-4H-1,2,4-triazol-4-yl)-manganese(II) (Kruszynski et al., 2001). The molecule exibits two intermolecular hydrogen bonding (O—H···Cl) between water molecule coordinated to manganese and a chloride bonded to adjacent manganese center with a distance of 2.281 (15) Å (Fig. 2) and 2.377 (16) Å (Fig. 3) which leads to layered structure (Frost et al.., 2006). The crystal packing exhibits two intermolecular ππ stacking interaction between the aromatic rings with the centroid to centroid distance of 3.485 (12) and 3.532 (12) Å (Fig. 4).

Related literature top

For hydrogen-bond motifs, see: Frost et al. (2006). For related structures, see: Cotton et al. (1995); Kruszynski et al. (2001).

Experimental top

A solution of manganese(II) chloride tetrahydrate (692 mg, 3.5 mmol) in distilled water (2 ml) was added a solution of pyridine (0.28 ml, 3.5 mmol) in a 1:1 ethanol-water mixture (2 ml) slowly. Colorless white crystals began to form at ambient temperature after a week.

Refinement top

The non-hydrogen atoms were refined anisotropically whereas hydrogen atoms were refined isotropically. The other hydrogen atoms were placed in calculated positions (C—H = 0.93 Å) and included in the refinement in a riding-model approximation with Uiso(H) =1.2Ueq(C). The water H atoms were refined with a distance restraint.

Structure description top

The molecular structure of the title compound C10H14Cl2MnN2O2 is isostructural with Cr (Cotton et al., 1995) compound. The title compound is shown in Fig. 1. The bond length of Mn—N, Mn—O, and Mn—Cl is comparable to those observed in a related crystal structure namely that diaqua-dichloro-bis(1-((2-(2,4-dichlorophenyl)-1,3-dioxalan-2-yl)methyl)-4H-1,2,4-triazol-4-yl)-manganese(II) (Kruszynski et al., 2001). The molecule exibits two intermolecular hydrogen bonding (O—H···Cl) between water molecule coordinated to manganese and a chloride bonded to adjacent manganese center with a distance of 2.281 (15) Å (Fig. 2) and 2.377 (16) Å (Fig. 3) which leads to layered structure (Frost et al.., 2006). The crystal packing exhibits two intermolecular ππ stacking interaction between the aromatic rings with the centroid to centroid distance of 3.485 (12) and 3.532 (12) Å (Fig. 4).

For hydrogen-bond motifs, see: Frost et al. (2006). For related structures, see: Cotton et al. (1995); Kruszynski et al. (2001).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : A view of the intermolecular (O1—H1A···Cl1) hydrogen bonding interaction shown as dashed line.
[Figure 3] Fig. 3. : A view of the intermolecular (O1—H1B···Cl1) hydrogen bonding interaction shown as dashed line.
[Figure 4] Fig. 4. : A view of the crystal packing showing intermolecular π···π stacking interaction.
Diaquadichloridobis(pyridine-κN)manganese(II) top
Crystal data top
[MnCl2(C5H5N)2(H2O)2]Z = 1
Mr = 320.07F(000) = 163
Triclinic, P1Dx = 1.649 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2290 (5) ÅCell parameters from 1883 reflections
b = 6.6327 (5) Åθ = 2.6–28.8°
c = 8.6831 (7) ŵ = 1.43 mm1
α = 108.931 (7)°T = 150 K
β = 103.499 (7)°Block, colorless
γ = 96.969 (6)°0.26 × 0.14 × 0.07 mm
V = 322.30 (4) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1137 independent reflections
Radiation source: fine-focus sealed tube1031 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω scansh = 75
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 77
Tmin = 0.733, Tmax = 1.000l = 1010
1951 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0294P)2 + 0.1426P]
where P = (Fo2 + 2Fc2)/3
1137 reflections(Δ/σ)max = 0.011
87 parametersΔρmax = 0.27 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
[MnCl2(C5H5N)2(H2O)2]γ = 96.969 (6)°
Mr = 320.07V = 322.30 (4) Å3
Triclinic, P1Z = 1
a = 6.2290 (5) ÅMo Kα radiation
b = 6.6327 (5) ŵ = 1.43 mm1
c = 8.6831 (7) ÅT = 150 K
α = 108.931 (7)°0.26 × 0.14 × 0.07 mm
β = 103.499 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1137 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1031 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 1.000Rint = 0.022
1951 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0222 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
1137 reflectionsΔρmin = 0.22 e Å3
87 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H1A0.097 (2)0.252 (4)0.484 (3)0.038 (7)*
H1B0.237 (5)0.3957 (19)0.455 (3)0.045 (8)*
Mn10.50000.00000.50000.00900 (13)
Cl10.22317 (7)0.23567 (7)0.43191 (5)0.01375 (13)
N10.4713 (2)0.1480 (2)0.22133 (17)0.0115 (3)
O10.2181 (2)0.2694 (2)0.45397 (16)0.0150 (3)
C30.6365 (3)0.2269 (3)0.0085 (2)0.0169 (4)
H30.76570.21950.04440.020*
C20.4261 (3)0.3200 (3)0.1260 (2)0.0186 (4)
H20.41120.37820.24190.022*
C40.6529 (3)0.1449 (3)0.1626 (2)0.0139 (4)
H40.79560.08500.24070.017*
C50.2673 (3)0.2372 (3)0.1057 (2)0.0147 (4)
H50.13980.24010.14400.018*
C10.2383 (3)0.3246 (3)0.0671 (2)0.0188 (4)
H10.09430.38570.14290.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0090 (2)0.0087 (2)0.0082 (2)0.00120 (14)0.00223 (14)0.00214 (15)
Cl10.0119 (2)0.0125 (2)0.0175 (2)0.00426 (17)0.00427 (18)0.00570 (18)
N10.0138 (8)0.0098 (7)0.0107 (7)0.0030 (6)0.0030 (6)0.0037 (6)
O10.0135 (7)0.0115 (7)0.0213 (7)0.0018 (5)0.0070 (5)0.0066 (6)
C30.0228 (10)0.0162 (10)0.0186 (9)0.0092 (8)0.0120 (8)0.0092 (8)
C20.0336 (11)0.0135 (9)0.0102 (8)0.0087 (8)0.0064 (8)0.0051 (7)
C40.0144 (9)0.0114 (9)0.0151 (9)0.0038 (7)0.0030 (7)0.0043 (7)
C50.0139 (9)0.0140 (9)0.0154 (9)0.0011 (7)0.0028 (7)0.0060 (7)
C10.0207 (10)0.0148 (10)0.0138 (9)0.0010 (8)0.0030 (8)0.0031 (8)
Geometric parameters (Å, º) top
Mn1—O1i2.2100 (13)C3—C21.382 (3)
Mn1—O12.2100 (13)C3—C41.381 (2)
Mn1—N12.2505 (14)C3—H30.9300
Mn1—N1i2.2505 (14)C2—C11.383 (3)
Mn1—Cl12.5582 (4)C2—H20.9300
Mn1—Cl1i2.5582 (4)C4—H40.9300
N1—C41.346 (2)C5—C11.379 (3)
N1—C51.345 (2)C5—H50.9300
O1—H1A0.8629 (10)C1—H10.9300
O1—H1B0.8630 (10)
O1i—Mn1—O1180.00 (5)Mn1—O1—H1A124.5 (16)
O1i—Mn1—N192.86 (5)Mn1—O1—H1B123.3 (18)
O1—Mn1—N187.14 (5)H1A—O1—H1B105 (2)
O1i—Mn1—N1i87.14 (5)C2—C3—C4119.36 (17)
O1—Mn1—N1i92.86 (5)C2—C3—H3120.3
N1—Mn1—N1i180.00 (3)C4—C3—H3120.3
O1i—Mn1—Cl188.86 (3)C3—C2—C1118.34 (17)
O1—Mn1—Cl191.14 (3)C3—C2—H2120.8
N1—Mn1—Cl189.26 (4)C1—C2—H2120.8
N1i—Mn1—Cl190.74 (4)N1—C4—C3122.77 (17)
O1i—Mn1—Cl1i91.14 (3)N1—C4—H4118.6
O1—Mn1—Cl1i88.86 (3)C3—C4—H4118.6
N1—Mn1—Cl1i90.74 (4)N1—C5—C1123.08 (17)
N1i—Mn1—Cl1i89.26 (4)N1—C5—H5118.5
Cl1—Mn1—Cl1i180.0C1—C5—H5118.5
C4—N1—C5117.32 (15)C5—C1—C2119.12 (17)
C4—N1—Mn1122.28 (11)C5—C1—H1120.4
C5—N1—Mn1120.36 (12)C2—C1—H1120.4
O1i—Mn1—N1—C435.44 (13)Cl1i—Mn1—N1—C5126.61 (12)
O1—Mn1—N1—C4144.56 (13)C4—C3—C2—C10.9 (3)
N1i—Mn1—N1—C4174 (7)C5—N1—C4—C30.5 (2)
Cl1—Mn1—N1—C4124.26 (13)Mn1—N1—C4—C3177.19 (13)
Cl1i—Mn1—N1—C455.74 (13)C2—C3—C4—N11.2 (3)
O1i—Mn1—N1—C5142.21 (13)C4—N1—C5—C10.3 (3)
O1—Mn1—N1—C537.79 (13)Mn1—N1—C5—C1178.05 (14)
N1i—Mn1—N1—C54 (7)N1—C5—C1—C20.5 (3)
Cl1—Mn1—N1—C553.39 (12)C3—C2—C1—C50.2 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Cl1ii0.86 (1)2.38 (1)3.2301 (13)170 (2)
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[MnCl2(C5H5N)2(H2O)2]
Mr320.07
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.2290 (5), 6.6327 (5), 8.6831 (7)
α, β, γ (°)108.931 (7), 103.499 (7), 96.969 (6)
V3)322.30 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.26 × 0.14 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.733, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
1951, 1137, 1031
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.05
No. of reflections1137
No. of parameters87
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Cl1i0.8630 (10)2.376 (5)3.2301 (13)170 (2)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

BM thanks the Council of Science and Industrial Research (CSIR), Government of India, for financial support. We are thankful to the Department of Science and Technology (DST), Government of India, for providing the single crystal X-ray diffractometer facility at the Department of Chemistry, Pondicherry University, under the DST–FIST program.

References

First citationCotton, F. A., Daniels, L. M., Feng, X., Maloney, D. J., Murillo, C. A. & Zuniga, L. A. (1995). Inorg. Chim. Acta, 235, 21–28.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFrost, B. J., Bautista, C. M., Huang, R. & Shearer, J. (2006). Inorg. Chem. 45, 3481–3483.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKruszynski, R., Bartczak, T. J., Adamczyk, A., Czakis-Sulikowska, D. & Kałużna, J. (2001). Acta Cryst. E57, m183–m185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds