organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-{1-[(6-Chloro­pyridin-3-yl)meth­yl]imidazolidin-2-yl­­idene}-2-cyano-N-(2-methylphenyl)acetamide

aCenter for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025 Guizhou, People's Republic of China
*Correspondence e-mail: jianwu2691@yahoo.com.cn

(Received 23 August 2011; accepted 14 September 2011; online 30 September 2011)

In the title compound, C19H18N5O, the imidazolidine ring makes dihedral angles of 87.62 (17) and 28.27 (11)° with the pyridine and benzene rings, respectively. An intra­molecular N—H⋯O hydrogen bond is observed between the carbonyl O atom and an imidazolidine H atom. In the crystal, an inter­molecular N—H⋯N hydrogen bond gives rise to a linear chain running along the b axis.

Related literature

For background to neonicotinoids and their biological activity, see: Shao et al. (2008[Shao, X. S., Zhang, W. W., Peng, Y. Q., Li, Z., Tian, Z. Z. & Qian, X. H. (2008). Bioorg. Med. Chem. Lett. 18, 6513-6516.]); Nishimura et al. (1994[Nishimura, K., Kanda, Y., Okazawa, A. & Ueno, T. (1994). Pestic. Biochem. Physiol. 50, 51-59.]); Mori et al. (2002[Mori, K., Okumoto, T., Kawahara, N. & Ozoe, Y. (2002). Pestic. Mngt Sci. 58, 190-196.]); Ohno et al. (2009[Ohno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). Chem. Res. Toxicol. 22, 476-482.]); Tomizawa et al. (2000[Tomizawa, M., Lee, D. L. & Casida, J. E. (2000). J. Agric. Food Chem. 48, 6016-6024.]); Wu et al. (2011[Wu, J., Yang, S., Song, B. A., Bhadury, P. S., Hu, D. Y., Zeng, S. & Xie, H. P. (2011). J. Heterocycl. Chem. 48, 901-906.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18ClN5O

  • Mr = 367.83

  • Monoclinic, P 21 /c

  • a = 16.2019 (18) Å

  • b = 7.6240 (9) Å

  • c = 14.7368 (18) Å

  • β = 97.007 (3)°

  • V = 1806.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.26 × 0.23 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997)[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.] Tmin = 0.943, Tmax = 0.953

  • 19209 measured reflections

  • 3512 independent reflections

  • 2618 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.139

  • S = 1.03

  • 3512 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N4i 0.86 2.49 3.044 (3) 123
N3—H3A⋯O1 0.86 2.07 2.659 (2) 126
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Neonicotinoids, an interesting class of insecticide known to act on the central nervous system of insects, are widely used in agriculture due to their broad spectrum activity and low mammalian toxicity. As a part of our ongoing investigation of neonicotinoids analogs, we presented a series of neonicotinoid analogs bearing amide moieties that exhibit good activity against Nilaparvata lugens at 100 mg/L (Wu et al., 2011). However,the accurate configuration of the active compound in our previous work has not been reported. Herein, we report the crystal structure of the title compound, (E)-2-(1-((6-chloropyridin-3-yl)methyl)imidazolidin-2-ylidene)-2- cyano-N-(o-tolyl)acetamide. It is noteworthy that the crystal of neonicotinoid analog bearing an amide moiety was obtained for the first time.

In the molecule of the title compound (Fig. 1), the imidazoline ring makes dihedral angles of 87.62 (17) ° with pyridine ring and 28.27 (11) ° with benzene ring. An intramolecular N—H···O hydrogen bond is observed between the O atom of carbonyl and imidazoline H atom; The ststructure possesses an intramolecular N3—H3A···O1 hydrogen bond with N3—H3A = 0.86 Å, H3A—O1 = 2.0661 Å, N3—O1 = 2.659 (2) Å, and N—H···O = 125.44 °. In the crystal structure, there are N3—H3A···N4i hydrogen bonds and C—H···π interactions between neighboring molecules, which with the length for bonds N3—H3A, H3A—N4, H3A—N4 were 0.86 Å, 2.4883 Å, 3.044 (3) Å and the angles for N—H···N, C8—H8B···Cg(2)ii were 123.03 ° and 113.20 °, respectively; Furthermore, the length for H8B···Cg(2)ii and C8···Cg(2)ii were 3.1386 Å and 3.632 (3) Å, the angle of C19—H12A···Cg(3)iii is 130.96 °; In addition, the length of H12A···Cg(3)iii and C19···Cg(3)iii were 3.0384 Å and 3.827 (3) Å, respectively [symmetry codes: (i) x,-1 + y,z, (ii) x,-1 + y,z, (iii) x,1 - y,1 - z].

Related literature top

For background to neonicotinoids and their biological activity, see: Shao et al. (2008); Nishimura et al. (1994); Mori et al. (2002); Ohno et al. (2009); Tomizawa et al. (2000); Wu et al. (2011).

Experimental top

A mixture of 2-cyano-3,3-bis(methylthio)-N-(o-tolyl)acrylamide (1 mmol) and N-((6-chloropyridin-3-yl) methyl) ethane-1,2-diamine (1 mmol) was stirred in refluxing ethanol (10 ml). The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was cooled to room temperature, block-shaped crystals were formed, which was filtered off, washed with ethanol and dried in the air.

Refinement top

All H atoms were placed in calculated positions and refined as riding on the parent C atoms with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2 Ueq (C, N).

Structure description top

Neonicotinoids, an interesting class of insecticide known to act on the central nervous system of insects, are widely used in agriculture due to their broad spectrum activity and low mammalian toxicity. As a part of our ongoing investigation of neonicotinoids analogs, we presented a series of neonicotinoid analogs bearing amide moieties that exhibit good activity against Nilaparvata lugens at 100 mg/L (Wu et al., 2011). However,the accurate configuration of the active compound in our previous work has not been reported. Herein, we report the crystal structure of the title compound, (E)-2-(1-((6-chloropyridin-3-yl)methyl)imidazolidin-2-ylidene)-2- cyano-N-(o-tolyl)acetamide. It is noteworthy that the crystal of neonicotinoid analog bearing an amide moiety was obtained for the first time.

In the molecule of the title compound (Fig. 1), the imidazoline ring makes dihedral angles of 87.62 (17) ° with pyridine ring and 28.27 (11) ° with benzene ring. An intramolecular N—H···O hydrogen bond is observed between the O atom of carbonyl and imidazoline H atom; The ststructure possesses an intramolecular N3—H3A···O1 hydrogen bond with N3—H3A = 0.86 Å, H3A—O1 = 2.0661 Å, N3—O1 = 2.659 (2) Å, and N—H···O = 125.44 °. In the crystal structure, there are N3—H3A···N4i hydrogen bonds and C—H···π interactions between neighboring molecules, which with the length for bonds N3—H3A, H3A—N4, H3A—N4 were 0.86 Å, 2.4883 Å, 3.044 (3) Å and the angles for N—H···N, C8—H8B···Cg(2)ii were 123.03 ° and 113.20 °, respectively; Furthermore, the length for H8B···Cg(2)ii and C8···Cg(2)ii were 3.1386 Å and 3.632 (3) Å, the angle of C19—H12A···Cg(3)iii is 130.96 °; In addition, the length of H12A···Cg(3)iii and C19···Cg(3)iii were 3.0384 Å and 3.827 (3) Å, respectively [symmetry codes: (i) x,-1 + y,z, (ii) x,-1 + y,z, (iii) x,1 - y,1 - z].

For background to neonicotinoids and their biological activity, see: Shao et al. (2008); Nishimura et al. (1994); Mori et al. (2002); Ohno et al. (2009); Tomizawa et al. (2000); Wu et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
(E)-2-{1-[(6-Chloropyridin-3-yl)methyl]imidazolidin-2-ylidene}- 2-cyano-N-(2-methylphenyl)acetamide top
Crystal data top
C19H18ClN5OF(000) = 768
Mr = 367.83Dx = 1.352 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19209 reflections
a = 16.2019 (18) Åθ = 1.3–26.0°
b = 7.6240 (9) ŵ = 0.23 mm1
c = 14.7368 (18) ÅT = 293 K
β = 97.007 (3)°Prism, colourless
V = 1806.7 (4) Å30.26 × 0.23 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3512 independent reflections
Radiation source: fine-focus sealed tube2618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ and ω scansθmax = 26.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1919
Tmin = 0.943, Tmax = 0.953k = 99
19209 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.3718P]
where P = (Fo2 + 2Fc2)/3
3512 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C19H18ClN5OV = 1806.7 (4) Å3
Mr = 367.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2019 (18) ŵ = 0.23 mm1
b = 7.6240 (9) ÅT = 293 K
c = 14.7368 (18) Å0.26 × 0.23 × 0.21 mm
β = 97.007 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3512 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2618 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.953Rint = 0.060
19209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
3512 reflectionsΔρmin = 0.28 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48863 (12)0.2075 (2)0.41527 (13)0.0530 (5)
C20.42330 (13)0.1992 (3)0.48356 (13)0.0598 (5)
H20.42440.26000.53810.072*
C30.35610 (13)0.0979 (3)0.46850 (13)0.0552 (5)
H30.31050.08900.51320.066*
C40.35663 (11)0.0093 (2)0.38658 (12)0.0477 (4)
C50.42631 (13)0.0274 (3)0.32411 (14)0.0623 (6)
H50.42780.03350.26930.075*
C60.28226 (13)0.0973 (3)0.36788 (15)0.0641 (6)
H6A0.25420.14070.42540.077*
H6B0.24370.02190.34070.077*
N20.30409 (10)0.2454 (2)0.30700 (11)0.0570 (4)
C80.32548 (15)0.5482 (3)0.28080 (15)0.0673 (6)
H8A0.37710.58600.24610.081*
H8B0.29890.64790.31320.081*
C90.26236 (11)0.2939 (2)0.23634 (12)0.0497 (5)
C100.22032 (12)0.1820 (2)0.18154 (13)0.0506 (5)
C110.23108 (16)0.0018 (3)0.18395 (18)0.0735 (6)
C120.17737 (11)0.2533 (2)0.10901 (12)0.0479 (4)
H12B0.19490.16080.03930.108 (10)*
H12C0.13910.24270.10110.117 (11)*
H12A0.10410.23070.00430.133 (11)*
C130.10396 (11)0.1528 (3)0.02201 (14)0.0540 (5)
C140.07069 (13)0.3118 (3)0.04596 (15)0.0631 (6)
H140.07180.40870.00780.076*
C150.03602 (16)0.3252 (4)0.12656 (17)0.0790 (7)
H150.01330.43130.14240.095*
C160.03473 (18)0.1828 (4)0.18372 (18)0.0889 (8)
H160.01180.19280.23840.107*
C170.06735 (16)0.0262 (4)0.15965 (18)0.0836 (7)
H170.06580.06940.19860.100*
C180.10247 (13)0.0055 (3)0.07951 (16)0.0652 (6)
C190.13699 (18)0.1683 (3)0.0544 (2)0.0883 (8)
N10.49193 (11)0.1261 (2)0.33656 (12)0.0644 (5)
C70.33994 (16)0.4000 (3)0.34602 (16)0.0731 (7)
H7A0.31240.42400.40690.088*
H7B0.39890.38350.34930.088*
N30.27094 (11)0.4658 (2)0.22247 (11)0.0592 (4)
H3A0.24650.52230.18280.071*
N40.2387 (2)0.1517 (3)0.1790 (2)0.1184 (10)
N50.13992 (11)0.1309 (2)0.05957 (12)0.0611 (5)
H5A0.13810.02620.08140.073*
O10.17555 (9)0.41125 (17)0.09060 (9)0.0620 (4)
Cl10.57548 (4)0.33450 (9)0.43072 (4)0.0805 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0587 (11)0.0458 (10)0.0560 (11)0.0075 (8)0.0131 (9)0.0006 (9)
C20.0789 (13)0.0558 (12)0.0450 (11)0.0146 (10)0.0080 (9)0.0111 (9)
C30.0672 (12)0.0540 (11)0.0427 (10)0.0125 (9)0.0005 (8)0.0057 (8)
C40.0561 (10)0.0442 (10)0.0431 (10)0.0042 (8)0.0076 (8)0.0042 (8)
C50.0650 (12)0.0714 (14)0.0496 (11)0.0127 (10)0.0032 (9)0.0184 (10)
C60.0623 (12)0.0744 (14)0.0548 (12)0.0141 (10)0.0040 (9)0.0206 (10)
N20.0692 (10)0.0508 (10)0.0532 (9)0.0108 (8)0.0160 (8)0.0081 (8)
C80.0861 (15)0.0555 (12)0.0639 (13)0.0111 (11)0.0236 (11)0.0056 (10)
C90.0564 (10)0.0471 (11)0.0452 (10)0.0146 (8)0.0046 (8)0.0048 (8)
C100.0572 (11)0.0408 (10)0.0540 (11)0.0068 (8)0.0072 (8)0.0082 (8)
C110.0889 (16)0.0509 (14)0.0875 (16)0.0048 (11)0.0375 (13)0.0124 (11)
C120.0520 (10)0.0436 (10)0.0473 (10)0.0052 (8)0.0027 (8)0.0048 (8)
C130.0453 (10)0.0568 (12)0.0600 (12)0.0044 (8)0.0067 (8)0.0024 (9)
C140.0614 (12)0.0642 (14)0.0654 (13)0.0096 (10)0.0145 (10)0.0006 (10)
C150.0834 (16)0.0865 (18)0.0714 (15)0.0118 (13)0.0267 (13)0.0074 (13)
C160.0936 (19)0.108 (2)0.0700 (16)0.0016 (16)0.0287 (14)0.0055 (16)
C170.0858 (17)0.0905 (19)0.0765 (17)0.0106 (14)0.0182 (14)0.0223 (14)
C180.0568 (11)0.0588 (13)0.0791 (15)0.0077 (10)0.0051 (11)0.0058 (11)
C190.0933 (19)0.0552 (15)0.117 (2)0.0042 (13)0.0150 (16)0.0151 (15)
N10.0613 (10)0.0739 (12)0.0561 (10)0.0134 (9)0.0004 (8)0.0134 (9)
C70.0949 (17)0.0642 (14)0.0654 (14)0.0189 (12)0.0303 (12)0.0051 (11)
N30.0820 (11)0.0422 (9)0.0569 (10)0.0107 (8)0.0229 (8)0.0018 (7)
N40.178 (3)0.0454 (13)0.150 (2)0.0096 (14)0.092 (2)0.0105 (13)
N50.0693 (11)0.0447 (9)0.0724 (12)0.0027 (8)0.0210 (9)0.0106 (8)
O10.0873 (10)0.0426 (8)0.0596 (9)0.0034 (7)0.0229 (7)0.0087 (6)
Cl10.0730 (4)0.0846 (5)0.0850 (5)0.0292 (3)0.0141 (3)0.0110 (3)
Geometric parameters (Å, º) top
C1—N11.311 (3)C10—C121.450 (3)
C1—C21.370 (3)C11—N41.151 (3)
C1—Cl11.7458 (19)C12—O11.236 (2)
C2—C31.375 (3)C12—N51.370 (3)
C2—H20.9300C13—C141.390 (3)
C3—C41.383 (3)C13—N51.408 (3)
C3—H30.9300C13—C181.408 (3)
C4—C51.374 (3)C14—C151.378 (3)
C4—C61.506 (3)C14—H140.9300
C5—N11.334 (3)C15—C161.376 (4)
C5—H50.9300C15—H150.9300
C6—N21.459 (3)C16—C171.370 (4)
C6—H6A0.9700C16—H160.9300
C6—H6B0.9700C17—C181.381 (4)
N2—C91.360 (2)C17—H170.9300
N2—C71.462 (3)C18—C191.502 (4)
C8—N31.449 (3)C19—H12B0.9917
C8—C71.520 (3)C19—H12C0.8887
C8—H8A0.9700C19—H12A1.0711
C8—H8B0.9700C7—H7A0.9700
C9—N31.331 (2)C7—H7B0.9700
C9—C101.407 (3)N3—H3A0.8600
C10—C111.413 (3)N5—H5A0.8600
N1—C1—C2124.94 (18)N5—C12—C10114.85 (16)
N1—C1—Cl1115.56 (15)C14—C13—N5122.25 (19)
C2—C1—Cl1119.50 (15)C14—C13—C18120.5 (2)
C1—C2—C3117.60 (18)N5—C13—C18117.29 (19)
C1—C2—H2121.2C15—C14—C13119.7 (2)
C3—C2—H2121.2C15—C14—H14120.2
C2—C3—C4119.67 (18)C13—C14—H14120.2
C2—C3—H3120.2C16—C15—C14120.5 (2)
C4—C3—H3120.2C16—C15—H15119.8
C5—C4—C3116.93 (17)C14—C15—H15119.8
C5—C4—C6122.82 (17)C17—C16—C15119.6 (2)
C3—C4—C6120.23 (17)C17—C16—H16120.2
N1—C5—C4124.64 (18)C15—C16—H16120.2
N1—C5—H5117.7C16—C17—C18122.2 (2)
C4—C5—H5117.7C16—C17—H17118.9
N2—C6—C4113.00 (17)C18—C17—H17118.9
N2—C6—H6A109.0C17—C18—C13117.6 (2)
C4—C6—H6A109.0C17—C18—C19121.1 (2)
N2—C6—H6B109.0C13—C18—C19121.4 (2)
C4—C6—H6B109.0C18—C19—H12B113.3
H6A—C6—H6B107.8C18—C19—H12C110.6
C9—N2—C6125.12 (18)H12B—C19—H12C105.3
C9—N2—C7109.92 (16)C18—C19—H12A115.3
C6—N2—C7117.40 (17)H12B—C19—H12A103.6
N3—C8—C7101.83 (18)H12C—C19—H12A108.1
N3—C8—H8A111.4C1—N1—C5116.21 (17)
C7—C8—H8A111.4N2—C7—C8104.54 (17)
N3—C8—H8B111.4N2—C7—H7A110.8
C7—C8—H8B111.4C8—C7—H7A110.8
H8A—C8—H8B109.3N2—C7—H7B110.8
N3—C9—N2109.43 (17)C8—C7—H7B110.8
N3—C9—C10123.91 (16)H7A—C7—H7B108.9
N2—C9—C10126.56 (17)C9—N3—C8113.30 (16)
C9—C10—C11121.14 (18)C9—N3—H3A123.3
C9—C10—C12120.36 (16)C8—N3—H3A123.3
C11—C10—C12117.51 (19)C12—N5—C13129.02 (17)
N4—C11—C10174.7 (3)C12—N5—H5A115.5
O1—C12—N5121.52 (17)C13—N5—H5A115.5
O1—C12—C10123.60 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N4i0.862.493.044 (3)123
N3—H3A···O10.862.072.659 (2)126
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H18ClN5O
Mr367.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.2019 (18), 7.6240 (9), 14.7368 (18)
β (°) 97.007 (3)
V3)1806.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.26 × 0.23 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.943, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
19209, 3512, 2618
Rint0.060
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.139, 1.03
No. of reflections3512
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: APEX2 (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N4i0.862.493.044 (3)123.0
N3—H3A···O10.862.072.659 (2)125.5
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The author gratefully acknowledges the National Natural Science Foundation of China (Nos 20872021 and 21162004) and the Agricultural Scientific and Technological Project of Guizhou Province (No. 20103068) for financial support. The author also acknowledges the assistance of Professor Q. L. Zhang of Guiyang Medical University.

References

First citationBruker (2002). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMori, K., Okumoto, T., Kawahara, N. & Ozoe, Y. (2002). Pestic. Mngt Sci. 58, 190–196.  Web of Science CrossRef CAS Google Scholar
First citationNishimura, K., Kanda, Y., Okazawa, A. & Ueno, T. (1994). Pestic. Biochem. Physiol. 50, 51–59.  CrossRef CAS Web of Science Google Scholar
First citationOhno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). Chem. Res. Toxicol. 22, 476–482.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShao, X. S., Zhang, W. W., Peng, Y. Q., Li, Z., Tian, Z. Z. & Qian, X. H. (2008). Bioorg. Med. Chem. Lett. 18, 6513–6516.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomizawa, M., Lee, D. L. & Casida, J. E. (2000). J. Agric. Food Chem. 48, 6016–6024.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, J., Yang, S., Song, B. A., Bhadury, P. S., Hu, D. Y., Zeng, S. & Xie, H. P. (2011). J. Heterocycl. Chem. 48, 901–906.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds