metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromido­tetra­kis­(2-iso­propyl-1H-imidazole-κN3)copper(II) bromide

aDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicz St, 80952 – PL Gdańsk, Poland
*Correspondence e-mail: anndoleg@pg.gda.pl

(Received 26 August 2011; accepted 29 August 2011; online 14 September 2011)

The CuII atom in the title salt, [CuBr(C6H10N2)4]Br, is coordinated in a square-pyramidal geometry by four imidazole N atoms and one bromide anion that is located at the apex of the pyramid. The cations and the anions form a two-dimensional network parallel to (001) through N—H⋯Br hydrogen bonds.

Related literature

For similar compounds, see: Hossaini Sadr et al. (2004[Hossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324-m1326.]); Li et al. (2007[Li, T. B., Hu, Y. L., Li, J. K. & He, G. F. (2007). Acta Cryst. E63, m2536.]); Liu et al. (2007[Liu, F.-Q., Liu, W.-L., Li, W., Li, R.-X. & Liu, G.-Y. (2007). Acta Cryst. E63, m2454.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr(C6H10N2)4]Br

  • Mr = 664

  • Monoclinic, P 21 /c

  • a = 10.7094 (7) Å

  • b = 19.9917 (6) Å

  • c = 16.7885 (19) Å

  • β = 121.552 (7)°

  • V = 3063.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.35 mm−1

  • T = 120 K

  • 0.41 × 0.25 × 0.23 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.628, Tmax = 1

  • 11133 measured reflections

  • 5710 independent reflections

  • 4597 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.05

  • 5710 reflections

  • 324 parameters

  • H-atom parameters constrained

  • Δρmax = 1.86 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Br2 0.88 2.48 3.358 (2) 175
N4—H4A⋯Br2i 0.88 2.48 3.342 (2) 167
N6—H6D⋯Br2ii 0.88 2.53 3.351 (2) 155
N8—H8A⋯Br2iii 0.88 2.49 3.362 (2) 169
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Title compound was synthesized as a substrate for further synthesis of mixed ligand copper complexes.

The structure of the complex ion in (I) is similar to those described earlier (Hossaini Sadr et al. (2004); Li et al. (2007); Liu et al. (2007)). However, Cu1—Br1 bond in (I) [2.6608 (6) Å] is significantly shorter compared to the Cu1—Br1 bond found in bromotetrakis(1H-imidazole-κN3)copper(II) bromide [2.755 (1) Å] (Hossaini Sadr et al. (2004)). The steric hindrance introduced with the isopropyl group causes the rotation of the planes of imidazole rings and the hydrogen bond formed by Br1 in (1H-imidazole-κN3)copper(II) bromide is no longer present in (I). This obviously results in the strengthening and shortening of Cu1—Br1. The two-dimensional hydrogen bonding network in (I) consists of four NH···Br hydrogen bonds formed by Br2.

The structure of (I) is shown in Fig. 1 and crystal packing diagram is presented in Fig.2.

Related literature top

For similar compounds, see: Hossaini Sadr et al. (2004); Li et al. (2007); Liu et al. (2007).

Experimental top

Compound (I) was prepared by the reaction of 2-isopropylimidazole (0.496 g, 4.5 mmol) with CuBr2 (0.223 g, 1 mmol) in methanol and slow evaporation of solvent from the reaction solution.

Refinement top

All C–H hydrogen atoms were refined as riding on carbon atoms with methyl C–H = 0.98 Å, methine C–H = 1 Å, aromatic C–H = 0.95 Å and Uiso(H)=1.2 Ueq(C)for aromatic and methine CH and 1.5Ueq(C) for methyl groups. The final difference Fourier map had a peak/hole in the vicinity of the Br atoms.

Structure description top

Title compound was synthesized as a substrate for further synthesis of mixed ligand copper complexes.

The structure of the complex ion in (I) is similar to those described earlier (Hossaini Sadr et al. (2004); Li et al. (2007); Liu et al. (2007)). However, Cu1—Br1 bond in (I) [2.6608 (6) Å] is significantly shorter compared to the Cu1—Br1 bond found in bromotetrakis(1H-imidazole-κN3)copper(II) bromide [2.755 (1) Å] (Hossaini Sadr et al. (2004)). The steric hindrance introduced with the isopropyl group causes the rotation of the planes of imidazole rings and the hydrogen bond formed by Br1 in (1H-imidazole-κN3)copper(II) bromide is no longer present in (I). This obviously results in the strengthening and shortening of Cu1—Br1. The two-dimensional hydrogen bonding network in (I) consists of four NH···Br hydrogen bonds formed by Br2.

The structure of (I) is shown in Fig. 1 and crystal packing diagram is presented in Fig.2.

For similar compounds, see: Hossaini Sadr et al. (2004); Li et al. (2007); Liu et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms of isopropyl groups have been omitted. Hydrogen bonds indicated with dashed lines.
[Figure 2] Fig. 2. The packing of (I) along the c axis. H atoms of isopropyl groups have been omitted. Hydrogen bonds indicated with dashed lines.
Bromidotetrakis(2-isopropyl-1H-imidazole-κN3)copper(II) bromide top
Crystal data top
[CuBr(C6H10N2)4]BrF(000) = 1356
Mr = 664Dx = 1.44 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4456 reflections
a = 10.7094 (7) Åθ = 2.5–30.0°
b = 19.9917 (6) ŵ = 3.35 mm1
c = 16.7885 (19) ÅT = 120 K
β = 121.552 (7)°Prism, blue
V = 3063.0 (4) Å30.41 × 0.25 × 0.23 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
5710 independent reflections
Graphite monochromator4597 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.017
ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1211
Tmin = 0.628, Tmax = 1k = 1424
11133 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0602P)2]
where P = (Fo2 + 2Fc2)/3
5710 reflections(Δ/σ)max = 0.001
324 parametersΔρmax = 1.86 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
[CuBr(C6H10N2)4]BrV = 3063.0 (4) Å3
Mr = 664Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7094 (7) ŵ = 3.35 mm1
b = 19.9917 (6) ÅT = 120 K
c = 16.7885 (19) Å0.41 × 0.25 × 0.23 mm
β = 121.552 (7)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
5710 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
4597 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 1Rint = 0.017
11133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.05Δρmax = 1.86 e Å3
5710 reflectionsΔρmin = 1.04 e Å3
324 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.31171 (3)0.779079 (15)0.001639 (19)0.02020 (10)
Cu10.45146 (4)0.766296 (16)0.18655 (2)0.01437 (10)
N10.6390 (3)0.71702 (11)0.21910 (16)0.0171 (5)
N20.8002 (3)0.64385 (13)0.23226 (17)0.0223 (6)
H2A0.83880.60950.220.027*
N30.5719 (3)0.85202 (11)0.22788 (16)0.0161 (5)
N40.7488 (3)0.92415 (12)0.26694 (17)0.0215 (6)
H4A0.81680.94780.26540.026*
N50.3114 (2)0.81177 (11)0.21723 (16)0.0157 (5)
N60.1974 (3)0.88848 (12)0.24787 (17)0.0219 (6)
H6D0.15160.9260.24440.026*
N70.3763 (3)0.67785 (11)0.20488 (16)0.0176 (5)
N80.2343 (3)0.60629 (12)0.21834 (18)0.0247 (6)
H8A0.15540.58390.2060.03*
C10.7738 (3)0.73116 (15)0.2985 (2)0.0209 (7)
H10.79240.76690.34060.025*
C20.8743 (3)0.68637 (15)0.3069 (2)0.0233 (7)
H20.97520.68470.35440.028*
C30.6587 (3)0.66308 (14)0.1806 (2)0.0179 (6)
C40.5460 (3)0.62848 (14)0.0936 (2)0.0194 (6)
H40.45250.65420.06730.023*
C50.5900 (4)0.62837 (17)0.0204 (2)0.0294 (8)
H5A0.60990.67430.00980.044*
H5B0.50990.60970.03820.044*
H5C0.67820.60110.04280.044*
C60.5164 (4)0.55681 (15)0.1124 (2)0.0303 (8)
H6A0.60510.52980.13540.046*
H6B0.43650.53730.05440.046*
H6C0.48850.55760.15950.046*
C70.6050 (3)0.88407 (14)0.3097 (2)0.0194 (6)
H70.55840.87590.34380.023*
C80.7131 (3)0.92847 (15)0.3338 (2)0.0229 (7)
H80.75620.95710.38670.028*
C90.6617 (3)0.87732 (14)0.2031 (2)0.0174 (6)
C100.6682 (3)0.86072 (15)0.1187 (2)0.0220 (7)
H100.60140.82190.08650.026*
C110.8215 (4)0.84085 (19)0.1435 (3)0.0378 (9)
H11A0.88890.87830.17490.057*
H11B0.82030.82940.08640.057*
H11C0.85430.8020.18530.057*
C120.6135 (4)0.9195 (2)0.0515 (3)0.0472 (11)
H12A0.51320.93070.03420.071*
H12B0.61460.90760.00480.071*
H12C0.67740.95820.08170.071*
C130.2988 (3)0.79106 (15)0.2919 (2)0.0196 (6)
H130.33420.74990.32440.023*
C140.2289 (3)0.83811 (15)0.3109 (2)0.0231 (7)
H140.20590.83680.35840.028*
C150.2480 (3)0.87125 (14)0.1918 (2)0.0177 (6)
C160.2259 (3)0.91264 (15)0.1117 (2)0.0217 (7)
H160.28550.89240.08780.026*
C170.2765 (4)0.98551 (15)0.1391 (2)0.0305 (8)
H17A0.21691.00720.16040.046*
H17B0.26511.00960.08480.046*
H17C0.37970.98620.18960.046*
C180.0635 (4)0.90979 (17)0.0320 (2)0.0328 (8)
H18A0.03430.86310.01440.049*
H18B0.05060.93450.02220.049*
H18C0.00240.930.05320.049*
C190.4603 (3)0.64040 (14)0.2861 (2)0.0225 (7)
H190.56270.64520.32850.027*
C200.3729 (4)0.59637 (16)0.2946 (2)0.0273 (7)
H200.40120.56480.34340.033*
C210.2391 (3)0.65596 (14)0.1655 (2)0.0184 (6)
C220.1103 (3)0.67838 (15)0.0751 (2)0.0223 (7)
H220.13560.72230.05850.027*
C230.0812 (4)0.62825 (19)0.0015 (2)0.0395 (9)
H23A0.170.62290.00410.059*
H23B0.00130.64470.06190.059*
H23C0.05360.5850.01230.059*
C240.0242 (4)0.68883 (19)0.0820 (3)0.0389 (9)
H24A0.0540.6460.09550.058*
H24B0.10440.70660.02270.058*
H24C0.00110.72060.13240.058*
Br20.96167 (4)0.511235 (15)0.20034 (3)0.03505 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02145 (17)0.02243 (16)0.01668 (16)0.00041 (12)0.00995 (13)0.00114 (12)
Cu10.01376 (19)0.01431 (18)0.01683 (19)0.00066 (14)0.00923 (16)0.00082 (14)
N10.0161 (13)0.0162 (12)0.0198 (13)0.0008 (10)0.0100 (11)0.0018 (11)
N20.0202 (14)0.0239 (13)0.0251 (14)0.0077 (11)0.0134 (12)0.0037 (11)
N30.0166 (13)0.0150 (11)0.0185 (12)0.0001 (10)0.0105 (11)0.0006 (10)
N40.0186 (13)0.0196 (13)0.0272 (14)0.0056 (11)0.0126 (12)0.0028 (11)
N50.0147 (12)0.0163 (12)0.0173 (12)0.0005 (10)0.0092 (11)0.0004 (10)
N60.0195 (14)0.0232 (13)0.0267 (14)0.0048 (11)0.0146 (12)0.0015 (12)
N70.0159 (13)0.0158 (12)0.0213 (13)0.0006 (10)0.0099 (11)0.0008 (11)
N80.0226 (14)0.0224 (13)0.0306 (15)0.0056 (12)0.0150 (13)0.0033 (12)
C10.0190 (16)0.0221 (15)0.0180 (15)0.0021 (13)0.0072 (13)0.0001 (13)
C20.0159 (16)0.0271 (16)0.0214 (15)0.0014 (13)0.0059 (13)0.0038 (14)
C30.0191 (16)0.0183 (14)0.0217 (15)0.0013 (12)0.0144 (13)0.0052 (13)
C40.0203 (16)0.0205 (15)0.0203 (15)0.0027 (13)0.0125 (13)0.0015 (13)
C50.0328 (19)0.0355 (19)0.0232 (17)0.0018 (16)0.0170 (16)0.0001 (15)
C60.036 (2)0.0236 (16)0.0334 (18)0.0031 (15)0.0194 (17)0.0055 (15)
C70.0193 (16)0.0206 (15)0.0193 (15)0.0007 (13)0.0107 (13)0.0015 (13)
C80.0195 (16)0.0241 (16)0.0203 (16)0.0013 (13)0.0071 (14)0.0078 (13)
C90.0152 (15)0.0146 (14)0.0216 (15)0.0002 (12)0.0091 (13)0.0000 (12)
C100.0230 (16)0.0237 (15)0.0236 (16)0.0039 (13)0.0151 (14)0.0014 (13)
C110.038 (2)0.048 (2)0.041 (2)0.0064 (18)0.0295 (18)0.0013 (18)
C120.052 (3)0.066 (3)0.030 (2)0.022 (2)0.027 (2)0.018 (2)
C130.0194 (16)0.0228 (15)0.0194 (15)0.0000 (13)0.0121 (13)0.0015 (13)
C140.0223 (16)0.0285 (16)0.0216 (15)0.0029 (14)0.0136 (14)0.0033 (14)
C150.0129 (14)0.0197 (15)0.0184 (15)0.0025 (12)0.0068 (13)0.0043 (12)
C160.0212 (16)0.0219 (15)0.0216 (15)0.0047 (13)0.0109 (14)0.0013 (13)
C170.033 (2)0.0225 (17)0.0296 (18)0.0012 (15)0.0117 (16)0.0066 (14)
C180.0311 (19)0.0294 (17)0.0248 (17)0.0028 (15)0.0056 (16)0.0034 (15)
C190.0202 (16)0.0223 (15)0.0236 (15)0.0034 (13)0.0106 (14)0.0060 (14)
C200.0262 (18)0.0272 (17)0.0256 (17)0.0012 (14)0.0115 (15)0.0094 (15)
C210.0201 (16)0.0158 (14)0.0234 (15)0.0011 (12)0.0141 (14)0.0008 (13)
C220.0182 (16)0.0210 (15)0.0267 (16)0.0027 (13)0.0111 (14)0.0018 (14)
C230.028 (2)0.045 (2)0.0281 (19)0.0014 (17)0.0028 (16)0.0066 (17)
C240.0246 (19)0.047 (2)0.045 (2)0.0101 (17)0.0181 (18)0.0131 (19)
Br20.0299 (2)0.01770 (17)0.0730 (3)0.00417 (13)0.0376 (2)0.00779 (16)
Geometric parameters (Å, º) top
Br1—Cu12.6608 (6)C7—H70.95
Cu1—N72.032 (2)C8—H80.95
Cu1—N32.036 (2)C9—C101.492 (4)
Cu1—N52.037 (2)C10—C121.519 (5)
Cu1—N12.038 (2)C10—C111.521 (4)
N1—C31.330 (4)C10—H101
N1—C11.388 (4)C11—H11A0.98
N2—C31.350 (4)C11—H11B0.98
N2—C21.371 (4)C11—H11C0.98
N2—H2A0.88C12—H12A0.98
N3—C91.332 (4)C12—H12B0.98
N3—C71.384 (3)C12—H12C0.98
N4—C91.360 (4)C13—C141.340 (4)
N4—C81.364 (4)C13—H130.95
N4—H4A0.88C14—H140.95
N5—C151.324 (4)C15—C161.489 (4)
N5—C131.392 (4)C16—C171.539 (4)
N6—C151.354 (4)C16—C181.544 (4)
N6—C141.369 (4)C16—H161
N6—H6D0.88C17—H17A0.98
N7—C211.330 (4)C17—H17B0.98
N7—C191.394 (4)C17—H17C0.98
N8—C211.350 (4)C18—H18A0.98
N8—C201.375 (4)C18—H18B0.98
N8—H8A0.88C18—H18C0.98
C1—C21.350 (4)C19—C201.346 (4)
C1—H10.95C19—H190.95
C2—H20.95C20—H200.95
C3—C41.490 (4)C21—C221.489 (4)
C4—C51.529 (4)C22—C241.520 (4)
C4—C61.536 (4)C22—C231.528 (5)
C4—H41C22—H221
C5—H5A0.98C23—H23A0.98
C5—H5B0.98C23—H23B0.98
C5—H5C0.98C23—H23C0.98
C6—H6A0.98C24—H24A0.98
C6—H6B0.98C24—H24B0.98
C6—H6C0.98C24—H24C0.98
C7—C81.342 (4)
N7—Cu1—N3155.70 (9)C9—C10—C11112.2 (3)
N7—Cu1—N587.00 (9)C12—C10—C11110.3 (3)
N3—Cu1—N587.54 (9)C9—C10—H10108.1
N7—Cu1—N187.23 (9)C12—C10—H10108.1
N3—Cu1—N187.47 (9)C11—C10—H10108.1
N5—Cu1—N1154.22 (9)C10—C11—H11A109.5
N7—Cu1—Br1103.58 (7)C10—C11—H11B109.5
N3—Cu1—Br1100.72 (7)H11A—C11—H11B109.5
N5—Cu1—Br1102.30 (7)C10—C11—H11C109.5
N1—Cu1—Br1103.47 (7)H11A—C11—H11C109.5
C3—N1—C1106.4 (2)H11B—C11—H11C109.5
C3—N1—Cu1130.2 (2)C10—C12—H12A109.5
C1—N1—Cu1122.86 (19)C10—C12—H12B109.5
C3—N2—C2109.2 (2)H12A—C12—H12B109.5
C3—N2—H2A125.4C10—C12—H12C109.5
C2—N2—H2A125.4H12A—C12—H12C109.5
C9—N3—C7106.4 (2)H12B—C12—H12C109.5
C9—N3—Cu1130.20 (19)C14—C13—N5109.6 (3)
C7—N3—Cu1121.06 (18)C14—C13—H13125.2
C9—N4—C8108.7 (2)N5—C13—H13125.2
C9—N4—H4A125.7C13—C14—N6106.0 (3)
C8—N4—H4A125.7C13—C14—H14127
C15—N5—C13106.4 (2)N6—C14—H14127
C15—N5—Cu1129.80 (19)N5—C15—N6109.2 (3)
C13—N5—Cu1121.74 (19)N5—C15—C16127.1 (3)
C15—N6—C14108.9 (2)N6—C15—C16123.7 (3)
C15—N6—H6D125.6C15—C16—C17113.0 (3)
C14—N6—H6D125.6C15—C16—C18109.7 (3)
C21—N7—C19106.8 (2)C17—C16—C18110.8 (3)
C21—N7—Cu1129.27 (19)C15—C16—H16107.7
C19—N7—Cu1120.74 (19)C17—C16—H16107.7
C21—N8—C20108.9 (2)C18—C16—H16107.7
C21—N8—H8A125.5C16—C17—H17A109.5
C20—N8—H8A125.5C16—C17—H17B109.5
C2—C1—N1109.7 (3)H17A—C17—H17B109.5
C2—C1—H1125.2C16—C17—H17C109.5
N1—C1—H1125.2H17A—C17—H17C109.5
C1—C2—N2105.5 (3)H17B—C17—H17C109.5
C1—C2—H2127.3C16—C18—H18A109.5
N2—C2—H2127.3C16—C18—H18B109.5
N1—C3—N2109.2 (3)H18A—C18—H18B109.5
N1—C3—C4126.9 (3)C16—C18—H18C109.5
N2—C3—C4124.0 (3)H18A—C18—H18C109.5
C3—C4—C5110.9 (3)H18B—C18—H18C109.5
C3—C4—C6112.4 (3)C20—C19—N7109.0 (3)
C5—C4—C6110.3 (3)C20—C19—H19125.5
C3—C4—H4107.7N7—C19—H19125.5
C5—C4—H4107.7C19—C20—N8106.2 (3)
C6—C4—H4107.7C19—C20—H20126.9
C4—C5—H5A109.5N8—C20—H20126.9
C4—C5—H5B109.5N7—C21—N8109.1 (3)
H5A—C5—H5B109.5N7—C21—C22126.9 (3)
C4—C5—H5C109.5N8—C21—C22123.9 (3)
H5A—C5—H5C109.5C21—C22—C24111.9 (3)
H5B—C5—H5C109.5C21—C22—C23109.4 (3)
C4—C6—H6A109.5C24—C22—C23111.7 (3)
C4—C6—H6B109.5C21—C22—H22107.9
H6A—C6—H6B109.5C24—C22—H22107.9
C4—C6—H6C109.5C23—C22—H22107.9
H6A—C6—H6C109.5C22—C23—H23A109.5
H6B—C6—H6C109.5C22—C23—H23B109.5
C8—C7—N3109.7 (3)H23A—C23—H23B109.5
C8—C7—H7125.1C22—C23—H23C109.5
N3—C7—H7125.1H23A—C23—H23C109.5
C7—C8—N4106.2 (3)H23B—C23—H23C109.5
C7—C8—H8126.9C22—C24—H24A109.5
N4—C8—H8126.9C22—C24—H24B109.5
N3—C9—N4108.9 (2)H24A—C24—H24B109.5
N3—C9—C10127.8 (3)C22—C24—H24C109.5
N4—C9—C10123.3 (3)H24A—C24—H24C109.5
C9—C10—C12110.0 (3)H24B—C24—H24C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Br20.882.483.358 (2)175
N4—H4A···Br2i0.882.483.342 (2)167
N6—H6D···Br2ii0.882.533.351 (2)155
N8—H8A···Br2iii0.882.493.362 (2)169
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[CuBr(C6H10N2)4]Br
Mr664
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)10.7094 (7), 19.9917 (6), 16.7885 (19)
β (°) 121.552 (7)
V3)3063.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.35
Crystal size (mm)0.41 × 0.25 × 0.23
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.628, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
11133, 5710, 4597
Rint0.017
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.05
No. of reflections5710
No. of parameters324
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.86, 1.04

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Br20.882.483.358 (2)175.1
N4—H4A···Br2i0.882.483.342 (2)167.1
N6—H6D···Br2ii0.882.533.351 (2)154.8
N8—H8A···Br2iii0.882.493.362 (2)169.4
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

SA thanks the Polish Ministry of Science and Higher Education for financial support (decision Nr 155/03/E-359/M/2011).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324–m1326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, T. B., Hu, Y. L., Li, J. K. & He, G. F. (2007). Acta Cryst. E63, m2536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, F.-Q., Liu, W.-L., Li, W., Li, R.-X. & Liu, G.-Y. (2007). Acta Cryst. E63, m2454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds