metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­{[1,2-bis­­(pyridin-2-ylmeth­­oxy)benzene-κ4N,O,O′,N′]chloridocadmium}

aEngineering Research Center of Pesticides of Heilongjiang University, Heilongjiang University, Harbin 150050, People's Republic of China, and bCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 2 September 2011; accepted 16 September 2011; online 30 September 2011)

In centrosymmetric dinuclear title compound, [Cd2Cl4(C18H16N2O2)2], the CdII atom is seven-coordinated in a penta­gonal–bipyramidal environment defined by two N atoms and two O atoms from one ligand and three Cl anions, two of which are bridging. A ππ inter­action between adjacent pyridine rings [centroid–centroid distance = 3.773 (1) Å] further stablizes the dimer.

Related literature

For general background to flexible bipyridyl-based ligands, see: Wang et al. (2004)[Wang, R.-H., Han, L., Xu, L.-J., Gong, Y.-Q., Zhou, Y.-F., Hong, M.-C. & Chan, A. S. C. (2004). Eur. J. Inorg. Chem. pp. 3751-3763.]; Oh et al. (2005)[Oh, M., Stern, C. L. & Mirkin, C. A. (2005). Inorg. Chem. 44, 2647-2653.]. For the synthesis of the ligand, see: Liu et al. (2010a[Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010a). Cryst. Growth Des. 10, 1559-1568.],b[Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010b). Inorg. Chem. Commun. 13, 630-632.]). For a related structure, see: Liu et al. (2011[Liu, Y., Zhang, H.-S., Hou, G.-F. & Gao, J.-S. (2011). Acta Cryst. E67, m789.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2Cl4(C18H16N2O2)2]

  • Mr = 951.26

  • Monoclinic, P 21 /c

  • a = 10.833 (2) Å

  • b = 10.968 (2) Å

  • c = 16.095 (3) Å

  • β = 109.14 (3)°

  • V = 1806.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 293 K

  • 0.23 × 0.22 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.722, Tmax = 0.751

  • 17295 measured reflections

  • 4128 independent reflections

  • 3686 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.05

  • 4128 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N2 2.3920 (15)
Cd1—N1 2.3958 (15)
Cd1—Cl2 2.5103 (6)
Cd1—O1 2.6197 (14)
Cd1—Cl1 2.6197 (6)
Cd1—O2 2.6288 (14)
Cd1—Cl1i 2.6873 (11)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aromatic molecules containing two pyridyl groups have been widely used as building blocks for new supramolecular architectures in recent years. Compared with rigid bridging ligands, flexible bipyridine ligands are able to generate some unusual frameworks (Wang et al., 2004; Oh et al., 2005). In continuation of previous works (Liu et al., 2010a; 2010b), we report the crystal structure of the title compound.

In centrosymmetric dinuclear [CdCl2(C18H16N2O2)]2, the CdII atom is seven-coordinated in a pentagonal bipyramidal environment defined by two N atoms and two O atoms from one ligand and three chlorides. Two of chlorides serve are bridging. A ππ interaction between adjacent pyridine rings [center to center distance 3.773?(1)?Å] further stablizes the dimer (Fig. 1, Table 1).

Related literature top

For general background to flexible bipyridyl-based ligands, see: Wang et al. (2004); Oh et al. (2005). For the synthesis of the ligand, see: Liu et al. (2010a,b). For a related structure, see: Liu et al. (2011).

Experimental top

The 1,2-bis(pyridin-2-ylmethoxy)benzene ligand was synthesized according to a literature method (Liu et al.,2010a). A solution of CdCl2.5H2O (0.2 mmol,0.0456 g) in water (2 ml) was added to a solution of the ligand (0.2 mmol, 0.0584 g) in 5 ml methanol under constant stirring; the solution was stirred for about 1 hour and then filted. The filtate was maintained for about one week under room temperature to give colorless block-like crystals.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C).

Structure description top

Aromatic molecules containing two pyridyl groups have been widely used as building blocks for new supramolecular architectures in recent years. Compared with rigid bridging ligands, flexible bipyridine ligands are able to generate some unusual frameworks (Wang et al., 2004; Oh et al., 2005). In continuation of previous works (Liu et al., 2010a; 2010b), we report the crystal structure of the title compound.

In centrosymmetric dinuclear [CdCl2(C18H16N2O2)]2, the CdII atom is seven-coordinated in a pentagonal bipyramidal environment defined by two N atoms and two O atoms from one ligand and three chlorides. Two of chlorides serve are bridging. A ππ interaction between adjacent pyridine rings [center to center distance 3.773?(1)?Å] further stablizes the dimer (Fig. 1, Table 1).

For general background to flexible bipyridyl-based ligands, see: Wang et al. (2004); Oh et al. (2005). For the synthesis of the ligand, see: Liu et al. (2010a,b). For a related structure, see: Liu et al. (2011).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms. Symmetry codes: (I) -x+1,-y+1,1-z.
Di-µ-chlorido-bis{[1,2-bis(pyridin-2-ylmethoxy)benzene- κ4N,O,O',N']chloridocadmium} top
Crystal data top
[Cd2Cl4(C18H16N2O2)2]F(000) = 944
Mr = 951.26Dx = 1.749 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15418 reflections
a = 10.833 (2) Åθ = 3.3–27.5°
b = 10.968 (2) ŵ = 1.52 mm1
c = 16.095 (3) ÅT = 293 K
β = 109.14 (3)°Bolck, colorless
V = 1806.6 (6) Å30.23 × 0.22 × 0.20 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4128 independent reflections
Radiation source: fine-focus sealed tube3686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1413
Tmin = 0.722, Tmax = 0.751k = 1414
17295 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.5495P]
where P = (Fo2 + 2Fc2)/3
4128 reflections(Δ/σ)max = 0.002
226 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Cd2Cl4(C18H16N2O2)2]V = 1806.6 (6) Å3
Mr = 951.26Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.833 (2) ŵ = 1.52 mm1
b = 10.968 (2) ÅT = 293 K
c = 16.095 (3) Å0.23 × 0.22 × 0.20 mm
β = 109.14 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4128 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3686 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 0.751Rint = 0.021
17295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
4128 reflectionsΔρmin = 0.24 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6708 (2)0.4345 (2)0.34515 (14)0.0565 (5)
H10.59390.47870.32200.068*
C20.7136 (2)0.3659 (3)0.28896 (15)0.0679 (7)
H20.66680.36420.22910.081*
C30.8267 (2)0.2998 (2)0.32244 (16)0.0660 (6)
H30.85730.25150.28590.079*
C40.8935 (2)0.3064 (2)0.41076 (15)0.0546 (5)
H40.97080.26310.43500.065*
C50.84454 (17)0.37838 (17)0.46357 (13)0.0406 (4)
C60.9171 (2)0.3807 (2)0.55999 (13)0.0516 (5)
H6A0.89600.30810.58700.062*
H6B1.01030.38010.56960.062*
C70.93736 (16)0.48931 (16)0.69088 (11)0.0376 (4)
C81.0417 (2)0.41839 (18)0.73965 (14)0.0507 (5)
H81.08100.36490.71110.061*
C91.0880 (2)0.4263 (2)0.83053 (15)0.0565 (5)
H91.15870.37880.86280.068*
C101.0299 (2)0.5037 (2)0.87260 (13)0.0554 (5)
H101.06050.50810.93370.066*
C110.9252 (2)0.57610 (18)0.82491 (13)0.0473 (4)
H110.88600.62860.85420.057*
C120.87928 (17)0.57023 (15)0.73393 (12)0.0367 (4)
C130.68776 (19)0.68425 (18)0.72191 (12)0.0440 (4)
H13A0.73280.73220.77360.053*
H13B0.64760.61490.74040.053*
C140.58438 (17)0.76039 (16)0.65859 (12)0.0417 (4)
C150.5092 (3)0.8376 (2)0.69083 (17)0.0681 (7)
H150.52240.84150.75080.082*
C160.4150 (3)0.9084 (2)0.6327 (2)0.0826 (9)
H160.36290.96000.65290.099*
C170.3989 (2)0.9021 (2)0.5454 (2)0.0685 (7)
H170.33790.95130.50520.082*
C180.4747 (2)0.82148 (18)0.51789 (16)0.0546 (5)
H180.46320.81670.45810.066*
Cd10.660311 (11)0.587855 (10)0.515336 (7)0.03233 (5)
Cl10.57974 (4)0.42461 (4)0.60476 (3)0.03852 (9)
Cl20.76064 (5)0.75247 (5)0.44987 (3)0.05070 (12)
N10.73405 (15)0.44122 (14)0.43174 (10)0.0401 (3)
N20.56444 (15)0.74944 (13)0.57321 (10)0.0410 (3)
O10.88495 (11)0.48583 (11)0.60035 (8)0.0393 (3)
O20.77949 (11)0.64229 (11)0.68148 (8)0.0375 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0481 (11)0.0767 (15)0.0439 (11)0.0117 (11)0.0142 (9)0.0047 (10)
C20.0637 (14)0.0959 (18)0.0434 (12)0.0060 (14)0.0166 (10)0.0174 (12)
C30.0620 (13)0.0842 (17)0.0582 (13)0.0049 (13)0.0282 (11)0.0254 (12)
C40.0476 (11)0.0610 (12)0.0578 (12)0.0089 (10)0.0210 (10)0.0143 (10)
C50.0395 (9)0.0410 (9)0.0452 (10)0.0007 (8)0.0190 (8)0.0059 (8)
C60.0551 (12)0.0526 (11)0.0460 (11)0.0186 (10)0.0150 (9)0.0048 (9)
C70.0344 (8)0.0401 (9)0.0367 (9)0.0027 (7)0.0097 (7)0.0005 (7)
C80.0434 (10)0.0517 (11)0.0524 (11)0.0103 (9)0.0095 (9)0.0008 (9)
C90.0483 (11)0.0593 (13)0.0507 (12)0.0091 (10)0.0012 (9)0.0092 (10)
C100.0581 (12)0.0618 (13)0.0368 (10)0.0025 (11)0.0027 (9)0.0034 (9)
C110.0530 (11)0.0480 (10)0.0374 (9)0.0011 (9)0.0099 (8)0.0043 (8)
C120.0348 (8)0.0355 (8)0.0373 (9)0.0031 (7)0.0085 (7)0.0007 (7)
C130.0471 (10)0.0507 (10)0.0361 (9)0.0023 (9)0.0160 (8)0.0081 (8)
C140.0413 (9)0.0377 (9)0.0487 (10)0.0033 (8)0.0184 (8)0.0117 (8)
C150.0770 (16)0.0662 (14)0.0667 (15)0.0145 (13)0.0311 (13)0.0216 (12)
C160.0782 (18)0.0681 (16)0.104 (2)0.0297 (14)0.0327 (17)0.0219 (15)
C170.0594 (14)0.0456 (12)0.0910 (19)0.0189 (11)0.0119 (13)0.0043 (12)
C180.0595 (12)0.0414 (10)0.0585 (12)0.0116 (10)0.0132 (10)0.0016 (9)
Cd10.03316 (7)0.03389 (7)0.03234 (7)0.00016 (5)0.01399 (5)0.00062 (5)
Cl10.0354 (2)0.0422 (2)0.0366 (2)0.00347 (17)0.00993 (16)0.00500 (17)
Cl20.0531 (3)0.0566 (3)0.0449 (2)0.0115 (2)0.0195 (2)0.0106 (2)
N10.0396 (8)0.0453 (8)0.0383 (8)0.0041 (7)0.0168 (6)0.0027 (6)
N20.0439 (8)0.0360 (7)0.0436 (8)0.0059 (7)0.0148 (7)0.0010 (6)
O10.0369 (6)0.0421 (6)0.0380 (6)0.0080 (5)0.0109 (5)0.0019 (5)
O20.0389 (6)0.0393 (6)0.0345 (6)0.0039 (5)0.0124 (5)0.0020 (5)
Geometric parameters (Å, º) top
C1—N11.338 (3)C11—H110.9300
C1—C21.368 (3)C12—O21.381 (2)
C1—H10.9300C13—O21.431 (2)
C2—C31.373 (3)C13—C141.497 (3)
C2—H20.9300C13—H13A0.9700
C3—C41.369 (3)C13—H13B0.9700
C3—H30.9300C14—N21.325 (2)
C4—C51.387 (3)C14—C151.388 (3)
C4—H40.9300C15—C161.376 (4)
C5—N11.330 (2)C15—H150.9300
C5—C61.492 (3)C16—C171.360 (4)
C6—O11.422 (2)C16—H160.9300
C6—H6A0.9700C17—C181.376 (3)
C6—H6B0.9700C17—H170.9300
C7—O11.380 (2)C18—N21.339 (3)
C7—C81.385 (3)C18—H180.9300
C7—C121.396 (2)Cd1—N22.3920 (15)
C8—C91.385 (3)Cd1—N12.3958 (15)
C8—H80.9300Cd1—Cl22.5103 (6)
C9—C101.362 (3)Cd1—O12.6197 (14)
C9—H90.9300Cd1—Cl12.6197 (6)
C10—C111.391 (3)Cd1—O22.6288 (14)
C10—H100.9300Cd1—Cl1i2.6873 (11)
C11—C121.385 (3)Cl1—Cd1i2.6873 (11)
N1—C1—C2123.4 (2)C15—C14—C13119.04 (19)
N1—C1—H1118.3C16—C15—C14119.0 (2)
C2—C1—H1118.3C16—C15—H15120.5
C1—C2—C3118.9 (2)C14—C15—H15120.5
C1—C2—H2120.6C17—C16—C15119.3 (2)
C3—C2—H2120.6C17—C16—H16120.3
C4—C3—C2118.7 (2)C15—C16—H16120.3
C4—C3—H3120.7C16—C17—C18118.5 (2)
C2—C3—H3120.7C16—C17—H17120.8
C3—C4—C5119.2 (2)C18—C17—H17120.8
C3—C4—H4120.4N2—C18—C17123.0 (2)
C5—C4—H4120.4N2—C18—H18118.5
N1—C5—C4122.40 (18)C17—C18—H18118.5
N1—C5—C6119.51 (16)N2—Cd1—N1169.53 (5)
C4—C5—C6118.06 (17)N2—Cd1—Cl286.19 (4)
O1—C6—C5111.39 (16)N1—Cd1—Cl288.69 (4)
O1—C6—H6A109.3N2—Cd1—O1124.10 (5)
C5—C6—H6A109.3N1—Cd1—O165.35 (5)
O1—C6—H6B109.3Cl2—Cd1—O194.05 (3)
C5—C6—H6B109.3N2—Cd1—Cl191.55 (4)
H6A—C6—H6B108.0N1—Cd1—Cl194.72 (4)
O1—C7—C8124.05 (17)Cl2—Cd1—Cl1171.978 (16)
O1—C7—C12116.44 (15)O1—Cd1—Cl180.84 (3)
C8—C7—C12119.51 (17)N2—Cd1—O264.32 (5)
C7—C8—C9120.6 (2)N1—Cd1—O2125.51 (5)
C7—C8—H8119.7Cl2—Cd1—O297.34 (3)
C9—C8—H8119.7O1—Cd1—O260.22 (4)
C10—C9—C8119.8 (2)Cl1—Cd1—O274.77 (3)
C10—C9—H9120.1N2—Cd1—Cl1i82.91 (4)
C8—C9—H9120.1N1—Cd1—Cl1i89.09 (4)
C9—C10—C11120.51 (19)Cl2—Cd1—Cl1i100.64 (2)
C9—C10—H10119.7O1—Cd1—Cl1i150.24 (3)
C11—C10—H10119.7Cl1—Cd1—Cl1i86.69 (2)
C12—C11—C10120.13 (19)O2—Cd1—Cl1i141.26 (3)
C12—C11—H11119.9Cd1—Cl1—Cd1i93.31 (2)
C10—C11—H11119.9C5—N1—C1117.47 (16)
O2—C12—C11123.89 (16)C5—N1—Cd1123.73 (12)
O2—C12—C7116.75 (15)C1—N1—Cd1118.10 (13)
C11—C12—C7119.34 (17)C14—N2—C18118.17 (17)
O2—C13—C14110.24 (15)C14—N2—Cd1121.82 (12)
O2—C13—H13A109.6C18—N2—Cd1119.42 (13)
C14—C13—H13A109.6C7—O1—C6115.30 (14)
O2—C13—H13B109.6C7—O1—Cd1121.99 (10)
C14—C13—H13B109.6C6—O1—Cd1115.63 (11)
H13A—C13—H13B108.1C12—O2—C13115.29 (13)
N2—C14—C15121.80 (19)C12—O2—Cd1121.12 (10)
N2—C14—C13119.12 (15)C13—O2—Cd1110.67 (10)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd2Cl4(C18H16N2O2)2]
Mr951.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.833 (2), 10.968 (2), 16.095 (3)
β (°) 109.14 (3)
V3)1806.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.23 × 0.22 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.722, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
17295, 4128, 3686
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.05
No. of reflections4128
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.24

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N22.3920 (15)Cd1—Cl12.6197 (6)
Cd1—N12.3958 (15)Cd1—O22.6288 (14)
Cd1—Cl22.5103 (6)Cd1—Cl1i2.6873 (11)
Cd1—O12.6197 (14)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Project of Innovation Service Platform of Heilongjiang Province (PG09J001) and Heilongjiang University for supporting this work.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010a). Cryst. Growth Des. 10, 1559–1568.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010b). Inorg. Chem. Commun. 13, 630–632.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y., Zhang, H.-S., Hou, G.-F. & Gao, J.-S. (2011). Acta Cryst. E67, m789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOh, M., Stern, C. L. & Mirkin, C. A. (2005). Inorg. Chem. 44, 2647–2653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, R.-H., Han, L., Xu, L.-J., Gong, Y.-Q., Zhou, Y.-F., Hong, M.-C. & Chan, A. S. C. (2004). Eur. J. Inorg. Chem. pp. 3751–3763.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds