organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-N-methyl-5-nitro-N-phenyl­pyrimidin-4-amine

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China, and bSchool of Bioscience and Technology, Changchun University, Changchun 130022, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 14 September 2011; accepted 15 September 2011; online 20 September 2011)

In the title compound, C11H9ClN4O2, the dihedral angle between the aromatic rings is 79.67 (8)°. ππ stacking between centrosymmetrically related pairs of pyrimidine rings occurs along [100] [centroid–centroid separations = 3.4572 (8) and 3.5433 (7) Å].

Related literature

For a related structure, see: Shi et al. (2011[Shi, F., Zhu, L.-H., Zhang, L. & Li, Y.-F. (2011). Acta Cryst. E67, o2089.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9ClN4O2

  • Mr = 264.67

  • Triclinic, [P \overline 1]

  • a = 6.8980 (14) Å

  • b = 8.9282 (18) Å

  • c = 11.427 (2) Å

  • α = 73.76 (3)°

  • β = 86.80 (3)°

  • γ = 84.21 (3)°

  • V = 672.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.44 × 0.38 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.885, Tmax = 0.964

  • 5925 measured reflections

  • 2730 independent reflections

  • 1742 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.154

  • S = 1.07

  • 2730 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Here, the crystal structure of 6-chloro-N-methyl-5-nitro-N-phenylpyrimidin-4-amine, the precursor of 6-chloro-N-methyl-N-phenylpyrimidine-4,5-diamine (Shi et al., 2011) is determined by X-ray single crystal diffraction.

In the structure of (I) (Fig. 1), the dihedral angle between the aromatic rings is 79.667 (81)°. Uninterrupted aromatic π-π stacking between centrosymmetrically related pairs of pyrimidine rings occurs along with [100] direction [centroid – centroid separation = 3.4572 (8)Å or 3.5433 (7)Å].

Related literature top

For a related structure, see: Shi et al. (2011).

Experimental top

To a solution of 4,6-dichloro-5-nitro-pyrimidine (2.08 g, 10.8 mmol), and triethylamine (13.0 mL, 0.55 mmol) in anhydrous THF (25 mL) was added a solution of N-methylbenzylamine (0.85 mL, 10.8 mmol) in anhydrous THF (15 mL) slowly. The reaction mixture was stirred at room temperature overnight. The reaction mixture was concentrated in vacuo, diluted with water, and extracted with EtOAc. The organic phase was washed with 1N HCl, brine, dried over anhydrous MgSO4, and concentrated in vacuo to yield the crude product as a solid. Purification by recrystallization from methanol provided the desired pure product, 6-chloro-N-methyl-5-nitro-N-phenylpyrimidin-4-amine (yellow solid, 1.85g, 64.7%, 130.3-131.4 °C). 1H NMR (CDCl3, 400 Hz), δ: 8.51 (s, 1H), 7.393-7.37(m, 3H), 7.17-7.15(m, 2H), 3.57 (s, 3H); 13C NMR (CDCl3, 100 Hz), δ: 156.6, 153.9, 152.4, 142.2, 129.8, 128.6, 126.3, 41.7. ES-MS: 265.0 [(M + H+)].

Refinement top

All H atoms were located from difference Fourier maps. H atoms attached to C atoms were treated as riding [C—H = 0.93–0.96 Å, Uiso(H) = 1.2Ueq(aromatic carbon) and Uiso(H) = 1.5Ueq(methyl carbon)].

Structure description top

Here, the crystal structure of 6-chloro-N-methyl-5-nitro-N-phenylpyrimidin-4-amine, the precursor of 6-chloro-N-methyl-N-phenylpyrimidine-4,5-diamine (Shi et al., 2011) is determined by X-ray single crystal diffraction.

In the structure of (I) (Fig. 1), the dihedral angle between the aromatic rings is 79.667 (81)°. Uninterrupted aromatic π-π stacking between centrosymmetrically related pairs of pyrimidine rings occurs along with [100] direction [centroid – centroid separation = 3.4572 (8)Å or 3.5433 (7)Å].

For a related structure, see: Shi et al. (2011).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound, C11H9ClN4O2, with the atom-labelling scheme. Displacement ellipsoid are shown at the 50% probability level.
[Figure 2] Fig. 2. Aromatic π-π stacking between centrosymmetrically related pairs of pyrimidine rings along 100].
6-Chloro-N-methyl-5-nitro-N-phenylpyrimidin-4-amine top
Crystal data top
C11H9ClN4O2Z = 2
Mr = 264.67F(000) = 272
Triclinic, P1Dx = 1.308 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8980 (14) ÅCell parameters from 500 reflections
b = 8.9282 (18) Åθ = 3.4–27.5°
c = 11.427 (2) ŵ = 0.28 mm1
α = 73.76 (3)°T = 293 K
β = 86.80 (3)°Block, colorless
γ = 84.21 (3)°0.44 × 0.38 × 0.13 mm
V = 672.0 (2) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2730 independent reflections
Radiation source: fine-focus sealed tube1742 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 87
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.885, Tmax = 0.964l = 1414
5925 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0827P)2 + 0.0097P]
where P = (Fo2 + 2Fc2)/3
2730 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C11H9ClN4O2γ = 84.21 (3)°
Mr = 264.67V = 672.0 (2) Å3
Triclinic, P1Z = 2
a = 6.8980 (14) ÅMo Kα radiation
b = 8.9282 (18) ŵ = 0.28 mm1
c = 11.427 (2) ÅT = 293 K
α = 73.76 (3)°0.44 × 0.38 × 0.13 mm
β = 86.80 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2730 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1742 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.964Rint = 0.030
5925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
2730 reflectionsΔρmin = 0.19 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.27001 (12)0.38397 (9)0.55435 (6)0.0897 (3)
C10.2612 (3)0.1851 (3)0.52481 (19)0.0585 (5)
C20.2496 (3)0.1772 (2)0.40780 (17)0.0483 (5)
C30.2386 (3)0.0133 (2)0.38625 (17)0.0485 (5)
C40.2470 (3)0.1014 (3)0.59315 (19)0.0655 (6)
H40.24680.18950.65990.079*
N10.2346 (3)0.1270 (2)0.48527 (16)0.0600 (5)
N20.2610 (3)0.0465 (3)0.62119 (16)0.0694 (6)
C50.2510 (3)0.1072 (2)0.16239 (18)0.0544 (5)
C60.4329 (4)0.1522 (3)0.1186 (2)0.0716 (7)
H60.54280.10630.16310.086*
C70.4528 (5)0.2692 (4)0.0051 (3)0.0954 (9)
H70.57590.30000.02270.114*
C80.2935 (6)0.3371 (4)0.0638 (2)0.1037 (11)
H80.30770.41220.13810.124*
C90.1135 (6)0.2917 (4)0.0205 (3)0.1034 (11)
H90.00430.33760.06560.124*
C100.0897 (4)0.1749 (3)0.0930 (2)0.0817 (8)
H100.03370.14450.12020.098*
C110.2102 (5)0.1969 (3)0.2719 (3)0.0965 (10)
H11A0.33380.25700.28950.145*
H11B0.17280.19480.19170.145*
H11C0.11360.24400.33070.145*
N40.2395 (3)0.3422 (2)0.31108 (16)0.0611 (5)
N30.2279 (3)0.0184 (2)0.27815 (15)0.0610 (5)
O10.0799 (3)0.4051 (2)0.27365 (17)0.0885 (6)
O20.3903 (3)0.4091 (2)0.27659 (17)0.0889 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1161 (6)0.1002 (6)0.0686 (4)0.0261 (4)0.0009 (4)0.0440 (4)
C10.0513 (12)0.0778 (15)0.0475 (11)0.0073 (9)0.0013 (9)0.0187 (10)
C20.0444 (10)0.0555 (12)0.0418 (10)0.0054 (8)0.0014 (8)0.0081 (9)
C30.0462 (11)0.0536 (12)0.0419 (10)0.0013 (8)0.0020 (8)0.0082 (9)
C40.0575 (13)0.0777 (16)0.0451 (12)0.0008 (10)0.0005 (9)0.0073 (11)
N10.0608 (11)0.0606 (11)0.0494 (10)0.0012 (8)0.0025 (8)0.0022 (8)
N20.0645 (12)0.0960 (15)0.0422 (10)0.0040 (10)0.0054 (8)0.0101 (10)
C50.0695 (14)0.0575 (12)0.0366 (10)0.0065 (9)0.0008 (9)0.0137 (9)
C60.0695 (16)0.0932 (18)0.0524 (13)0.0116 (12)0.0033 (11)0.0199 (12)
C70.103 (2)0.123 (2)0.0616 (16)0.0383 (18)0.0260 (16)0.0237 (16)
C80.158 (3)0.105 (2)0.0433 (14)0.033 (2)0.0002 (18)0.0056 (14)
C90.129 (3)0.107 (2)0.0651 (17)0.0076 (19)0.0391 (19)0.0022 (16)
C100.0740 (17)0.102 (2)0.0656 (15)0.0096 (13)0.0142 (13)0.0141 (14)
C110.170 (3)0.0617 (16)0.0635 (16)0.0234 (16)0.0113 (17)0.0244 (12)
N40.0828 (14)0.0553 (11)0.0452 (10)0.0049 (9)0.0051 (9)0.0154 (8)
N30.0842 (13)0.0542 (11)0.0436 (9)0.0103 (8)0.0035 (8)0.0115 (8)
O10.0992 (14)0.0837 (13)0.0688 (11)0.0162 (10)0.0197 (10)0.0035 (9)
O20.1063 (15)0.0742 (12)0.0829 (13)0.0353 (10)0.0259 (11)0.0125 (9)
Geometric parameters (Å, º) top
Cl1—C11.905 (2)C6—H60.9300
C1—C21.366 (3)C7—C81.375 (5)
C1—N21.408 (3)C7—H70.9300
C2—C31.560 (3)C8—C91.368 (4)
C2—N41.573 (3)C8—H80.9300
C3—N31.349 (3)C9—C101.431 (4)
C3—N11.436 (2)C9—H90.9300
C4—N11.324 (3)C10—H100.9300
C4—N21.456 (3)C11—N31.633 (3)
C4—H40.9300C11—H11A0.9600
C5—C61.380 (3)C11—H11B0.9600
C5—C101.388 (3)C11—H11C0.9600
C5—N31.488 (3)N4—O11.226 (2)
C6—C71.430 (4)N4—O21.242 (3)
C2—C1—N2119.2 (2)C6—C7—H7119.4
C2—C1—Cl1119.29 (17)C9—C8—C7118.4 (2)
N2—C1—Cl1121.46 (16)C9—C8—H8120.8
C1—C2—C3118.29 (17)C7—C8—H8120.8
C1—C2—N4113.29 (18)C8—C9—C10121.4 (3)
C3—C2—N4128.35 (16)C8—C9—H9119.3
N3—C3—N1110.90 (18)C10—C9—H9119.3
N3—C3—C2127.02 (16)C5—C10—C9120.0 (3)
N1—C3—C2122.06 (17)C5—C10—H10120.0
N1—C4—N2128.60 (19)C9—C10—H10120.0
N1—C4—H4115.7N3—C11—H11A109.5
N2—C4—H4115.7N3—C11—H11B109.5
C4—N1—C3112.86 (19)H11A—C11—H11B109.5
C1—N2—C4118.93 (18)N3—C11—H11C109.5
C6—C5—C10118.8 (2)H11A—C11—H11C109.5
C6—C5—N3121.0 (2)H11B—C11—H11C109.5
C10—C5—N3120.1 (2)O1—N4—O2120.9 (2)
C5—C6—C7120.2 (2)O1—N4—C2118.81 (18)
C5—C6—H6119.9O2—N4—C2120.25 (19)
C7—C6—H6119.9C3—N3—C5120.02 (17)
C8—C7—C6121.2 (3)C3—N3—C11120.80 (17)
C8—C7—H7119.4C5—N3—C11118.93 (17)

Experimental details

Crystal data
Chemical formulaC11H9ClN4O2
Mr264.67
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.8980 (14), 8.9282 (18), 11.427 (2)
α, β, γ (°)73.76 (3), 86.80 (3), 84.21 (3)
V3)672.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.44 × 0.38 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.885, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
5925, 2730, 1742
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.154, 1.07
No. of reflections2730
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

 

Acknowledgements

This project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (grant No. 20071108) and the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F., Zhu, L.-H., Zhang, L. & Li, Y.-F. (2011). Acta Cryst. E67, o2089.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds