organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-3,4-di­hydro­isoquinolin-2-ium thio­cyanate hemihydrate

aCollege of Science, Northwest Agriculture and Forest University, Yangling 712100, People's Republic of China
*Correspondence e-mail: zhoulechem@yahoo.com.cn

(Received 15 September 2011; accepted 20 September 2011; online 30 September 2011)

In the title hemihydrated salt, C15H13BrN+·NCS·0.5H2O, the two benzene rings are aligned at a dihedral angle of 46.9 (1)°. The six-membered heterocycle of the dihydro­isoquinoline unit adopts a half-chair conformation. The water mol­ecule and thio­cyanate ion are linked by O—H⋯N hydrogen bonds, generating a four-membered ring motif. In addition, C—H⋯O and C—H⋯S inter­actions link the components into a chain along the c axis. ππ inter­actions [centroid–centroid distance = 3.974 (2) Å] link the chains into sheets and further ππ [centroid–centroid distance = 3.746 (2) Å] and C—H⋯π inter­actions give rise to a three-dimensional nework.

Related literature

For the synthesis of the title compound, see: Ishii et al. (1985[Ishii, H., Ichikawa, Y. I. & Kawanabe, E. (1985). Chem. Pharm. Bull. 33, 4139-4151.]). For the biological activity of tetra­hydro­isoquinoline derivatives, see: Abe et al. (2005[Abe, K., Saitoh, T., Horiguchi, Y., Utsunomiya, I. & Taguchi, K. (2005). Biol. Pharm. Bull. 28, 1355-1362.]); Kamal et al. (2011[Kamal, A. M., Radwan, S. M. & Zaki, R. M. (2011). Eur. J. Med. Chem. 46, 567-578.]); Lane et al. (2006[Lane, J. W., Estevez, A., Mortara, K., Callan, O., Spencer, J. R. & Williams, R. M. (2006). Bioorg. Med. Chem. Lett. 16, 3180-3183.]); Liu et al. (2009)[Liu, X. H., Zhu, J., Zhou, A. N., Song, B. A., Zhu, H. L., Bai, L. S., Bhadury, P. S. & Pan, C. X. (2009). Bioorg. Med. Chem. 17, 1207-1213.]; Storch et al. (2002)[Storch, A., Ott, S., Hwang, Y. I., Ortmann, R., Hein, A., Frenzel, S., Matsubara, K., Ohta, S., Wolf, H. U. & Schwarz, J. (2002). Biochem. Pharmacol. 63, 909-920.]; Jang et al. (2009)[Jang, B. C., Park, J. G., Song, D. K., Baek, W. K., Yoo, S. K., Jung, K. H., Park, G. Y., Lee, T. Y. & Suh, S. I. (2009). Toxicol. in Vitro, 23, 281-287.].

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN+·NCS·0.5H2O

  • Mr = 354.26

  • Triclinic, [P \overline 1]

  • a = 9.0211 (12) Å

  • b = 9.2685 (12) Å

  • c = 10.7284 (14) Å

  • α = 81.174 (2)°

  • β = 66.699 (1)°

  • γ = 68.368 (1)°

  • V = 765.81 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 296 K

  • 0.50 × 0.41 × 0.37 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.333, Tmax = 0.422

  • 5705 measured reflections

  • 2824 independent reflections

  • 2262 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.100

  • S = 1.04

  • 2824 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯N2 0.85 1.83 2.642 (8) 159
O1—H2W⋯N2i 0.85 2.04 2.879 (9) 171
C5—H5⋯O1ii 0.93 2.60 3.133 (8) 117
C9—H9⋯S1 0.93 2.81 3.709 (3) 162
C12—H12⋯O1i 0.93 2.57 3.438 (8) 156
C14—H14⋯Cg2iii 0.93 2.87 3.447 (4) 121
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetrahydroisoquinoline derivatives have recently attracted a lot of interest according to their outstanding bioactivity (Abe et al., 2005; Storch et al., 2002, Jang et al., 2009; Lane et al., 2006; Kamal et al., 2011; Liu et al., 2009). Considering the importance of these compounds, we prepared some tetrahydroisoquinoline derivatives. The title compound is an unexpected salt.

In the title hemihydrated salt, C16H14BrN2O0.5S, the two benzene rings are aligned at 46.9 (1)°. The six-membered heterocycle of the dihydroisoquinoline unit adopts a half-chair conformation. The lattice water and thiocyanate ion are linked by O—H···N hydrogen bonds to generateing four-membered ring motifs. Additionally, C—H···O and C—H···S interactions link the ions into a chain along c axis; ππ interactions link the chains into sheets, and other ππ and C—H···π interactions give rise to a three-dimension nework structure. The Cg2···Cg2 (1 - x, 2 - y, -z) distance is 3.974 (2) Å. The Cg3···Cg3 (2 - x, 1 - y, 1 - z) distance is 3.7457 (18) Å.

Related literature top

For the synthesis of the title compound, see: Ishii et al. (1985). For the biological activity of tetrahydroisoquinoline derivatives, see: Abe et al. (2005); Kamal et al. (2011); Lane et al. (2006); Liu et al. (2009); Storch et al. (2002); Jang et al. (2009).

Experimental top

The title compound was synthesized according to the literature procedure (Ishii et al., 1985), and the single crystals were obtained from its solution of dichloromethane-petroleum ether by slow evaporation at room temperature.

Refinement top

The positions and isotropic displacement parameters of the water H atoms, H1W and H2W, were placed geometrically. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93(aromatic CH) or 0.97 Å (methylene CH2), with Uiso(H) = 1.2Ueq(C). The water molecule is of 0.5 occupany as it is close to a center of inversion.

Structure description top

Tetrahydroisoquinoline derivatives have recently attracted a lot of interest according to their outstanding bioactivity (Abe et al., 2005; Storch et al., 2002, Jang et al., 2009; Lane et al., 2006; Kamal et al., 2011; Liu et al., 2009). Considering the importance of these compounds, we prepared some tetrahydroisoquinoline derivatives. The title compound is an unexpected salt.

In the title hemihydrated salt, C16H14BrN2O0.5S, the two benzene rings are aligned at 46.9 (1)°. The six-membered heterocycle of the dihydroisoquinoline unit adopts a half-chair conformation. The lattice water and thiocyanate ion are linked by O—H···N hydrogen bonds to generateing four-membered ring motifs. Additionally, C—H···O and C—H···S interactions link the ions into a chain along c axis; ππ interactions link the chains into sheets, and other ππ and C—H···π interactions give rise to a three-dimension nework structure. The Cg2···Cg2 (1 - x, 2 - y, -z) distance is 3.974 (2) Å. The Cg3···Cg3 (2 - x, 1 - y, 1 - z) distance is 3.7457 (18) Å.

For the synthesis of the title compound, see: Ishii et al. (1985). For the biological activity of tetrahydroisoquinoline derivatives, see: Abe et al. (2005); Kamal et al. (2011); Lane et al. (2006); Liu et al. (2009); Storch et al. (2002); Jang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing (30% probability displacement ellipsoids) of a single molecule of the title compound.
[Figure 2] Fig. 2. The three-dimension structure of the title compound.
2-(4-Bromophenyl)-3,4-dihydroisoquinolin-2-ium thiocyanate hemihydrate top
Crystal data top
C15H13BrN+·CNS·0.5H2OZ = 2
Mr = 354.26F(000) = 358
Triclinic, P1Dx = 1.536 Mg m3
a = 9.0211 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2685 (12) ÅCell parameters from 2388 reflections
c = 10.7284 (14) Åθ = 2.6–25.5°
α = 81.174 (2)°µ = 2.82 mm1
β = 66.699 (1)°T = 296 K
γ = 68.368 (1)°Block, yellow
V = 765.81 (17) Å30.50 × 0.41 × 0.37 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2824 independent reflections
Radiation source: fine-focus sealed tube2262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
phi and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.333, Tmax = 0.422k = 1111
5705 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.2978P]
where P = (Fo2 + 2Fc2)/3
2824 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C15H13BrN+·CNS·0.5H2Oγ = 68.368 (1)°
Mr = 354.26V = 765.81 (17) Å3
Triclinic, P1Z = 2
a = 9.0211 (12) ÅMo Kα radiation
b = 9.2685 (12) ŵ = 2.82 mm1
c = 10.7284 (14) ÅT = 296 K
α = 81.174 (2)°0.50 × 0.41 × 0.37 mm
β = 66.699 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2824 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2262 reflections with I > 2σ(I)
Tmin = 0.333, Tmax = 0.422Rint = 0.015
5705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.04Δρmax = 0.54 e Å3
2824 reflectionsΔρmin = 0.53 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.93320 (15)0.24168 (14)0.06970 (15)0.0945 (4)
N20.8517 (6)0.1537 (4)0.3422 (5)0.0945 (12)
C160.8864 (5)0.1895 (4)0.2255 (6)0.0872 (15)
O10.8821 (10)0.0376 (8)0.5473 (7)0.116 (2)0.50
H1W0.90000.01720.47520.174*0.50
H2W0.95260.06710.58780.174*0.50
C10.6164 (4)0.7282 (3)0.1329 (3)0.0490 (7)
C20.5976 (4)0.6630 (4)0.0343 (3)0.0606 (8)
H20.67830.56950.00520.073*
C30.4598 (5)0.7367 (5)0.0051 (3)0.0662 (9)
H30.44700.69300.07110.079*
C40.3401 (4)0.8761 (4)0.0538 (4)0.0632 (9)
H40.24740.92600.02670.076*
C50.3568 (4)0.9415 (4)0.1519 (4)0.0598 (8)
H50.27511.03500.19080.072*
C60.4943 (4)0.8696 (3)0.1936 (3)0.0515 (7)
C70.5176 (4)0.9260 (4)0.3058 (4)0.0660 (9)
H7A0.46581.03820.31040.079*
H7B0.45800.88360.39130.079*
C80.7013 (5)0.8819 (4)0.2877 (4)0.0629 (9)
H8A0.75380.94620.21690.076*
H8B0.70810.90130.37130.076*
C90.7584 (4)0.6529 (3)0.1743 (3)0.0491 (7)
H90.82710.55220.14450.059*
C100.9469 (4)0.6359 (3)0.2869 (3)0.0449 (6)
C110.9916 (4)0.4784 (3)0.3128 (3)0.0494 (7)
H110.92400.42450.31020.059*
C121.1367 (4)0.4012 (3)0.3427 (3)0.0527 (7)
H121.16870.29470.35910.063*
C131.2341 (4)0.4834 (4)0.3479 (3)0.0507 (7)
C141.1875 (4)0.6411 (4)0.3261 (3)0.0606 (8)
H141.25280.69530.33240.073*
C151.0429 (4)0.7188 (4)0.2946 (3)0.0581 (8)
H151.01080.82540.27870.070*
N10.7980 (3)0.7159 (3)0.2511 (2)0.0453 (5)
Br11.43677 (4)0.37833 (4)0.38559 (4)0.06978 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0726 (7)0.0938 (8)0.1153 (9)0.0129 (6)0.0337 (6)0.0381 (7)
N20.128 (3)0.070 (2)0.126 (3)0.049 (2)0.083 (3)0.028 (2)
C160.077 (3)0.0439 (19)0.169 (5)0.0073 (17)0.079 (3)0.017 (3)
O10.129 (6)0.122 (5)0.094 (4)0.048 (5)0.043 (4)0.025 (4)
C10.0478 (16)0.0527 (16)0.0527 (17)0.0200 (13)0.0231 (13)0.0025 (13)
C20.0553 (18)0.071 (2)0.0596 (19)0.0198 (16)0.0237 (16)0.0079 (16)
C30.063 (2)0.093 (3)0.0567 (19)0.035 (2)0.0304 (17)0.0040 (18)
C40.0551 (19)0.075 (2)0.070 (2)0.0301 (18)0.0341 (17)0.0235 (18)
C50.0534 (18)0.0529 (17)0.075 (2)0.0188 (14)0.0284 (16)0.0091 (16)
C60.0513 (17)0.0452 (16)0.0610 (18)0.0181 (13)0.0249 (14)0.0068 (13)
C70.063 (2)0.0480 (17)0.089 (3)0.0078 (15)0.0378 (19)0.0109 (17)
C80.072 (2)0.0457 (17)0.081 (2)0.0122 (15)0.0429 (19)0.0071 (15)
C90.0499 (16)0.0464 (16)0.0522 (17)0.0148 (13)0.0202 (14)0.0041 (13)
C100.0473 (15)0.0500 (16)0.0427 (15)0.0196 (13)0.0201 (12)0.0019 (12)
C110.0534 (16)0.0449 (16)0.0541 (17)0.0156 (13)0.0229 (14)0.0059 (13)
C120.0562 (18)0.0475 (16)0.0515 (17)0.0120 (14)0.0203 (14)0.0055 (13)
C130.0446 (15)0.0642 (19)0.0420 (15)0.0158 (14)0.0181 (13)0.0023 (13)
C140.064 (2)0.069 (2)0.069 (2)0.0383 (17)0.0360 (17)0.0174 (16)
C150.066 (2)0.0523 (17)0.071 (2)0.0303 (15)0.0380 (17)0.0173 (15)
N10.0501 (13)0.0415 (12)0.0505 (13)0.0173 (10)0.0235 (11)0.0005 (10)
Br10.0550 (2)0.0851 (3)0.0708 (3)0.01661 (17)0.03359 (17)0.00511 (18)
Geometric parameters (Å, º) top
S1—C161.597 (6)C7—H7B0.9700
N2—C161.189 (6)C8—N11.486 (4)
N2—O12.642 (8)C8—H8A0.9700
O1—H1W0.8500C8—H8B0.9700
O1—H2W0.8500C9—N11.297 (4)
C1—C21.388 (4)C9—H90.9300
C1—C61.409 (4)C10—C111.379 (4)
C1—C91.422 (4)C10—C151.384 (4)
C2—C31.376 (5)C10—N11.444 (3)
C2—H20.9300C11—C121.379 (4)
C3—C41.385 (5)C11—H110.9300
C3—H30.9300C12—C131.379 (4)
C4—C51.374 (5)C12—H120.9300
C4—H40.9300C13—C141.373 (4)
C5—C61.386 (4)C13—Br11.899 (3)
C5—H50.9300C14—C151.384 (4)
C6—C71.497 (5)C14—H140.9300
C7—C81.490 (5)C15—H150.9300
C7—H7A0.9700
C16—N2—O1154.6 (4)N1—C8—H8A109.2
N2—C16—S1178.6 (4)C7—C8—H8A109.2
N2—O1—H1W14.7N1—C8—H8B109.2
N2—O1—H2W134.1C7—C8—H8B109.2
H1W—O1—H2W120.7H8A—C8—H8B107.9
C2—C1—C6120.3 (3)N1—C9—C1124.0 (3)
C2—C1—C9120.5 (3)N1—C9—H9118.0
C6—C1—C9119.2 (3)C1—C9—H9118.0
C3—C2—C1120.1 (3)C11—C10—C15120.9 (3)
C3—C2—H2120.0C11—C10—N1119.8 (2)
C1—C2—H2120.0C15—C10—N1119.4 (2)
C2—C3—C4119.7 (3)C12—C11—C10119.8 (3)
C2—C3—H3120.1C12—C11—H11120.1
C4—C3—H3120.1C10—C11—H11120.1
C5—C4—C3120.8 (3)C11—C12—C13119.3 (3)
C5—C4—H4119.6C11—C12—H12120.4
C3—C4—H4119.6C13—C12—H12120.4
C4—C5—C6120.6 (3)C14—C13—C12121.2 (3)
C4—C5—H5119.7C14—C13—Br1118.9 (2)
C6—C5—H5119.7C12—C13—Br1119.9 (2)
C5—C6—C1118.5 (3)C13—C14—C15119.7 (3)
C5—C6—C7124.6 (3)C13—C14—H14120.2
C1—C6—C7116.8 (3)C15—C14—H14120.2
C8—C7—C6113.0 (3)C10—C15—C14119.2 (3)
C8—C7—H7A109.0C10—C15—H15120.4
C6—C7—H7A109.0C14—C15—H15120.4
C8—C7—H7B109.0C9—N1—C10121.8 (2)
C6—C7—H7B109.0C9—N1—C8118.7 (2)
H7A—C7—H7B107.8C10—N1—C8118.9 (2)
N1—C8—C7111.9 (3)
O1—N2—C16—S1134 (17)N1—C10—C11—C12177.9 (3)
C6—C1—C2—C30.3 (5)C10—C11—C12—C130.8 (4)
C9—C1—C2—C3179.9 (3)C11—C12—C13—C141.0 (5)
C1—C2—C3—C40.1 (5)C11—C12—C13—Br1178.8 (2)
C2—C3—C4—C50.4 (5)C12—C13—C14—C151.8 (5)
C3—C4—C5—C60.3 (5)Br1—C13—C14—C15178.1 (3)
C4—C5—C6—C10.1 (5)C11—C10—C15—C141.3 (5)
C4—C5—C6—C7175.8 (3)N1—C10—C15—C14178.6 (3)
C2—C1—C6—C50.4 (4)C13—C14—C15—C100.6 (5)
C9—C1—C6—C5179.9 (3)C1—C9—N1—C10178.1 (3)
C2—C1—C6—C7175.8 (3)C1—C9—N1—C86.4 (4)
C9—C1—C6—C73.8 (4)C11—C10—N1—C937.9 (4)
C5—C6—C7—C8151.8 (3)C15—C10—N1—C9142.1 (3)
C1—C6—C7—C832.3 (4)C11—C10—N1—C8150.5 (3)
C6—C7—C8—N146.7 (4)C15—C10—N1—C829.6 (4)
C2—C1—C9—N1170.0 (3)C7—C8—N1—C935.1 (4)
C6—C1—C9—N110.3 (4)C7—C8—N1—C10152.9 (3)
C15—C10—C11—C122.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1W···N20.851.832.642 (8)159
O1—H2W···N2i0.852.042.879 (9)171
C5—H5···O1ii0.932.603.133 (8)117
C9—H9···S10.932.813.709 (3)162
C12—H12···O1i0.932.573.438 (8)156
C14—H14···Cg2iii0.932.873.447 (4)121
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H13BrN+·CNS·0.5H2O
Mr354.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.0211 (12), 9.2685 (12), 10.7284 (14)
α, β, γ (°)81.174 (2), 66.699 (1), 68.368 (1)
V3)765.81 (17)
Z2
Radiation typeMo Kα
µ (mm1)2.82
Crystal size (mm)0.50 × 0.41 × 0.37
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.333, 0.422
No. of measured, independent and
observed [I > 2σ(I)] reflections
5705, 2824, 2262
Rint0.015
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.100, 1.04
No. of reflections2824
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.53

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1W···N20.851.832.642 (8)158.5
O1—H2W···N2i0.852.042.879 (9)171.3
C5—H5···O1ii0.932.603.133 (8)117
C9—H9···S10.932.813.709 (3)162
C12—H12···O1i0.932.573.438 (8)156
C14—H14···Cg2iii0.932.873.447 (4)121
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSF; Nos. 31172365, 30771454, 31000865).

References

First citationAbe, K., Saitoh, T., Horiguchi, Y., Utsunomiya, I. & Taguchi, K. (2005). Biol. Pharm. Bull. 28, 1355–1362.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIshii, H., Ichikawa, Y. I. & Kawanabe, E. (1985). Chem. Pharm. Bull. 33, 4139–4151.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJang, B. C., Park, J. G., Song, D. K., Baek, W. K., Yoo, S. K., Jung, K. H., Park, G. Y., Lee, T. Y. & Suh, S. I. (2009). Toxicol. in Vitro, 23, 281–287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKamal, A. M., Radwan, S. M. & Zaki, R. M. (2011). Eur. J. Med. Chem. 46, 567–578.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLane, J. W., Estevez, A., Mortara, K., Callan, O., Spencer, J. R. & Williams, R. M. (2006). Bioorg. Med. Chem. Lett. 16, 3180–3183.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X. H., Zhu, J., Zhou, A. N., Song, B. A., Zhu, H. L., Bai, L. S., Bhadury, P. S. & Pan, C. X. (2009). Bioorg. Med. Chem. 17, 1207–1213.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStorch, A., Ott, S., Hwang, Y. I., Ortmann, R., Hein, A., Frenzel, S., Matsubara, K., Ohta, S., Wolf, H. U. & Schwarz, J. (2002). Biochem. Pharmacol. 63, 909–920.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds