organic compounds
2-(4-Bromophenyl)-3,4-dihydroisoquinolin-2-ium thiocyanate hemihydrate
aCollege of Science, Northwest Agriculture and Forest University, Yangling 712100, People's Republic of China
*Correspondence e-mail: zhoulechem@yahoo.com.cn
In the title hemihydrated salt, C15H13BrN+·NCS−·0.5H2O, the two benzene rings are aligned at a dihedral angle of 46.9 (1)°. The six-membered heterocycle of the dihydroisoquinoline unit adopts a half-chair conformation. The water molecule and thiocyanate ion are linked by O—H⋯N hydrogen bonds, generating a four-membered ring motif. In addition, C—H⋯O and C—H⋯S interactions link the components into a chain along the c axis. π–π interactions [centroid–centroid distance = 3.974 (2) Å] link the chains into sheets and further π—π [centroid–centroid distance = 3.746 (2) Å] and C—H⋯π interactions give rise to a three-dimensional nework.
Related literature
For the synthesis of the title compound, see: Ishii et al. (1985). For the biological activity of tetrahydroisoquinoline derivatives, see: Abe et al. (2005); Kamal et al. (2011); Lane et al. (2006); Liu et al. (2009); Storch et al. (2002); Jang et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536811038542/ng5230sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811038542/ng5230Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811038542/ng5230Isup3.cml
The title compound was synthesized according to the literature procedure (Ishii et al., 1985), and the single crystals were obtained from its solution of dichloromethane-petroleum ether by slow evaporation at room temperature.
The positions and isotropic displacement parameters of the water H atoms, H1W and H2W, were placed geometrically. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93(aromatic CH) or 0.97 Å (methylene CH2), with Uiso(H) = 1.2Ueq(C). The water molecule is of 0.5 occupany as it is close to a center of inversion.
Tetrahydroisoquinoline derivatives have recently attracted a lot of interest according to their outstanding bioactivity (Abe et al., 2005; Storch et al., 2002, Jang et al., 2009; Lane et al., 2006; Kamal et al., 2011; Liu et al., 2009). Considering the importance of these compounds, we prepared some tetrahydroisoquinoline derivatives. The title compound is an unexpected salt.
In the title hemihydrated salt, C16H14BrN2O0.5S, the two benzene rings are aligned at 46.9 (1)°. The six-membered heterocycle of the dihydroisoquinoline unit adopts a half-chair conformation. The lattice water and thiocyanate ion are linked by O—H···N hydrogen bonds to generateing four-membered ring motifs. Additionally, C—H···O and C—H···S interactions link the ions into a chain along c axis; π—π interactions link the chains into sheets, and other π—π and C—H···π interactions give rise to a three-dimension nework structure. The Cg2···Cg2 (1 - x, 2 - y, -z) distance is 3.974 (2) Å. The Cg3···Cg3 (2 - x, 1 - y, 1 - z) distance is 3.7457 (18) Å.
For the synthesis of the title compound, see: Ishii et al. (1985). For the biological activity of tetrahydroisoquinoline derivatives, see: Abe et al. (2005); Kamal et al. (2011); Lane et al. (2006); Liu et al. (2009); Storch et al. (2002); Jang et al. (2009).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. An ORTEP drawing (30% probability displacement ellipsoids) of a single molecule of the title compound. | |
Fig. 2. The three-dimension structure of the title compound. |
C15H13BrN+·CNS−·0.5H2O | Z = 2 |
Mr = 354.26 | F(000) = 358 |
Triclinic, P1 | Dx = 1.536 Mg m−3 |
a = 9.0211 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2685 (12) Å | Cell parameters from 2388 reflections |
c = 10.7284 (14) Å | θ = 2.6–25.5° |
α = 81.174 (2)° | µ = 2.82 mm−1 |
β = 66.699 (1)° | T = 296 K |
γ = 68.368 (1)° | Block, yellow |
V = 765.81 (17) Å3 | 0.50 × 0.41 × 0.37 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2824 independent reflections |
Radiation source: fine-focus sealed tube | 2262 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
phi and ω scans | θmax = 25.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.333, Tmax = 0.422 | k = −11→11 |
5705 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0542P)2 + 0.2978P] where P = (Fo2 + 2Fc2)/3 |
2824 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.53 e Å−3 |
C15H13BrN+·CNS−·0.5H2O | γ = 68.368 (1)° |
Mr = 354.26 | V = 765.81 (17) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.0211 (12) Å | Mo Kα radiation |
b = 9.2685 (12) Å | µ = 2.82 mm−1 |
c = 10.7284 (14) Å | T = 296 K |
α = 81.174 (2)° | 0.50 × 0.41 × 0.37 mm |
β = 66.699 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2824 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2262 reflections with I > 2σ(I) |
Tmin = 0.333, Tmax = 0.422 | Rint = 0.015 |
5705 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.54 e Å−3 |
2824 reflections | Δρmin = −0.53 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.93320 (15) | 0.24168 (14) | 0.06970 (15) | 0.0945 (4) | |
N2 | 0.8517 (6) | 0.1537 (4) | 0.3422 (5) | 0.0945 (12) | |
C16 | 0.8864 (5) | 0.1895 (4) | 0.2255 (6) | 0.0872 (15) | |
O1 | 0.8821 (10) | −0.0376 (8) | 0.5473 (7) | 0.116 (2) | 0.50 |
H1W | 0.9000 | 0.0172 | 0.4752 | 0.174* | 0.50 |
H2W | 0.9526 | −0.0671 | 0.5878 | 0.174* | 0.50 |
C1 | 0.6164 (4) | 0.7282 (3) | 0.1329 (3) | 0.0490 (7) | |
C2 | 0.5976 (4) | 0.6630 (4) | 0.0343 (3) | 0.0606 (8) | |
H2 | 0.6783 | 0.5695 | −0.0052 | 0.073* | |
C3 | 0.4598 (5) | 0.7367 (5) | −0.0051 (3) | 0.0662 (9) | |
H3 | 0.4470 | 0.6930 | −0.0711 | 0.079* | |
C4 | 0.3401 (4) | 0.8761 (4) | 0.0538 (4) | 0.0632 (9) | |
H4 | 0.2474 | 0.9260 | 0.0267 | 0.076* | |
C5 | 0.3568 (4) | 0.9415 (4) | 0.1519 (4) | 0.0598 (8) | |
H5 | 0.2751 | 1.0350 | 0.1908 | 0.072* | |
C6 | 0.4943 (4) | 0.8696 (3) | 0.1936 (3) | 0.0515 (7) | |
C7 | 0.5176 (4) | 0.9260 (4) | 0.3058 (4) | 0.0660 (9) | |
H7A | 0.4658 | 1.0382 | 0.3104 | 0.079* | |
H7B | 0.4580 | 0.8836 | 0.3913 | 0.079* | |
C8 | 0.7013 (5) | 0.8819 (4) | 0.2877 (4) | 0.0629 (9) | |
H8A | 0.7538 | 0.9462 | 0.2169 | 0.076* | |
H8B | 0.7081 | 0.9013 | 0.3713 | 0.076* | |
C9 | 0.7584 (4) | 0.6529 (3) | 0.1743 (3) | 0.0491 (7) | |
H9 | 0.8271 | 0.5522 | 0.1445 | 0.059* | |
C10 | 0.9469 (4) | 0.6359 (3) | 0.2869 (3) | 0.0449 (6) | |
C11 | 0.9916 (4) | 0.4784 (3) | 0.3128 (3) | 0.0494 (7) | |
H11 | 0.9240 | 0.4245 | 0.3102 | 0.059* | |
C12 | 1.1367 (4) | 0.4012 (3) | 0.3427 (3) | 0.0527 (7) | |
H12 | 1.1687 | 0.2947 | 0.3591 | 0.063* | |
C13 | 1.2341 (4) | 0.4834 (4) | 0.3479 (3) | 0.0507 (7) | |
C14 | 1.1875 (4) | 0.6411 (4) | 0.3261 (3) | 0.0606 (8) | |
H14 | 1.2528 | 0.6953 | 0.3324 | 0.073* | |
C15 | 1.0429 (4) | 0.7188 (4) | 0.2946 (3) | 0.0581 (8) | |
H15 | 1.0108 | 0.8254 | 0.2787 | 0.070* | |
N1 | 0.7980 (3) | 0.7159 (3) | 0.2511 (2) | 0.0453 (5) | |
Br1 | 1.43677 (4) | 0.37833 (4) | 0.38559 (4) | 0.06978 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0726 (7) | 0.0938 (8) | 0.1153 (9) | −0.0129 (6) | −0.0337 (6) | −0.0381 (7) |
N2 | 0.128 (3) | 0.070 (2) | 0.126 (3) | −0.049 (2) | −0.083 (3) | 0.028 (2) |
C16 | 0.077 (3) | 0.0439 (19) | 0.169 (5) | −0.0073 (17) | −0.079 (3) | −0.017 (3) |
O1 | 0.129 (6) | 0.122 (5) | 0.094 (4) | −0.048 (5) | −0.043 (4) | 0.025 (4) |
C1 | 0.0478 (16) | 0.0527 (16) | 0.0527 (17) | −0.0200 (13) | −0.0231 (13) | 0.0025 (13) |
C2 | 0.0553 (18) | 0.071 (2) | 0.0596 (19) | −0.0198 (16) | −0.0237 (16) | −0.0079 (16) |
C3 | 0.063 (2) | 0.093 (3) | 0.0567 (19) | −0.035 (2) | −0.0304 (17) | 0.0040 (18) |
C4 | 0.0551 (19) | 0.075 (2) | 0.070 (2) | −0.0301 (18) | −0.0341 (17) | 0.0235 (18) |
C5 | 0.0534 (18) | 0.0529 (17) | 0.075 (2) | −0.0188 (14) | −0.0284 (16) | 0.0091 (16) |
C6 | 0.0513 (17) | 0.0452 (16) | 0.0610 (18) | −0.0181 (13) | −0.0249 (14) | 0.0068 (13) |
C7 | 0.063 (2) | 0.0480 (17) | 0.089 (3) | −0.0078 (15) | −0.0378 (19) | −0.0109 (17) |
C8 | 0.072 (2) | 0.0457 (17) | 0.081 (2) | −0.0122 (15) | −0.0429 (19) | −0.0071 (15) |
C9 | 0.0499 (16) | 0.0464 (16) | 0.0522 (17) | −0.0148 (13) | −0.0202 (14) | −0.0041 (13) |
C10 | 0.0473 (15) | 0.0500 (16) | 0.0427 (15) | −0.0196 (13) | −0.0201 (12) | 0.0019 (12) |
C11 | 0.0534 (16) | 0.0449 (16) | 0.0541 (17) | −0.0156 (13) | −0.0229 (14) | −0.0059 (13) |
C12 | 0.0562 (18) | 0.0475 (16) | 0.0515 (17) | −0.0120 (14) | −0.0203 (14) | −0.0055 (13) |
C13 | 0.0446 (15) | 0.0642 (19) | 0.0420 (15) | −0.0158 (14) | −0.0181 (13) | 0.0023 (13) |
C14 | 0.064 (2) | 0.069 (2) | 0.069 (2) | −0.0383 (17) | −0.0360 (17) | 0.0174 (16) |
C15 | 0.066 (2) | 0.0523 (17) | 0.071 (2) | −0.0303 (15) | −0.0380 (17) | 0.0173 (15) |
N1 | 0.0501 (13) | 0.0415 (12) | 0.0505 (13) | −0.0173 (10) | −0.0235 (11) | 0.0005 (10) |
Br1 | 0.0550 (2) | 0.0851 (3) | 0.0708 (3) | −0.01661 (17) | −0.03359 (17) | 0.00511 (18) |
S1—C16 | 1.597 (6) | C7—H7B | 0.9700 |
N2—C16 | 1.189 (6) | C8—N1 | 1.486 (4) |
N2—O1 | 2.642 (8) | C8—H8A | 0.9700 |
O1—H1W | 0.8500 | C8—H8B | 0.9700 |
O1—H2W | 0.8500 | C9—N1 | 1.297 (4) |
C1—C2 | 1.388 (4) | C9—H9 | 0.9300 |
C1—C6 | 1.409 (4) | C10—C11 | 1.379 (4) |
C1—C9 | 1.422 (4) | C10—C15 | 1.384 (4) |
C2—C3 | 1.376 (5) | C10—N1 | 1.444 (3) |
C2—H2 | 0.9300 | C11—C12 | 1.379 (4) |
C3—C4 | 1.385 (5) | C11—H11 | 0.9300 |
C3—H3 | 0.9300 | C12—C13 | 1.379 (4) |
C4—C5 | 1.374 (5) | C12—H12 | 0.9300 |
C4—H4 | 0.9300 | C13—C14 | 1.373 (4) |
C5—C6 | 1.386 (4) | C13—Br1 | 1.899 (3) |
C5—H5 | 0.9300 | C14—C15 | 1.384 (4) |
C6—C7 | 1.497 (5) | C14—H14 | 0.9300 |
C7—C8 | 1.490 (5) | C15—H15 | 0.9300 |
C7—H7A | 0.9700 | ||
C16—N2—O1 | 154.6 (4) | N1—C8—H8A | 109.2 |
N2—C16—S1 | 178.6 (4) | C7—C8—H8A | 109.2 |
N2—O1—H1W | 14.7 | N1—C8—H8B | 109.2 |
N2—O1—H2W | 134.1 | C7—C8—H8B | 109.2 |
H1W—O1—H2W | 120.7 | H8A—C8—H8B | 107.9 |
C2—C1—C6 | 120.3 (3) | N1—C9—C1 | 124.0 (3) |
C2—C1—C9 | 120.5 (3) | N1—C9—H9 | 118.0 |
C6—C1—C9 | 119.2 (3) | C1—C9—H9 | 118.0 |
C3—C2—C1 | 120.1 (3) | C11—C10—C15 | 120.9 (3) |
C3—C2—H2 | 120.0 | C11—C10—N1 | 119.8 (2) |
C1—C2—H2 | 120.0 | C15—C10—N1 | 119.4 (2) |
C2—C3—C4 | 119.7 (3) | C12—C11—C10 | 119.8 (3) |
C2—C3—H3 | 120.1 | C12—C11—H11 | 120.1 |
C4—C3—H3 | 120.1 | C10—C11—H11 | 120.1 |
C5—C4—C3 | 120.8 (3) | C11—C12—C13 | 119.3 (3) |
C5—C4—H4 | 119.6 | C11—C12—H12 | 120.4 |
C3—C4—H4 | 119.6 | C13—C12—H12 | 120.4 |
C4—C5—C6 | 120.6 (3) | C14—C13—C12 | 121.2 (3) |
C4—C5—H5 | 119.7 | C14—C13—Br1 | 118.9 (2) |
C6—C5—H5 | 119.7 | C12—C13—Br1 | 119.9 (2) |
C5—C6—C1 | 118.5 (3) | C13—C14—C15 | 119.7 (3) |
C5—C6—C7 | 124.6 (3) | C13—C14—H14 | 120.2 |
C1—C6—C7 | 116.8 (3) | C15—C14—H14 | 120.2 |
C8—C7—C6 | 113.0 (3) | C10—C15—C14 | 119.2 (3) |
C8—C7—H7A | 109.0 | C10—C15—H15 | 120.4 |
C6—C7—H7A | 109.0 | C14—C15—H15 | 120.4 |
C8—C7—H7B | 109.0 | C9—N1—C10 | 121.8 (2) |
C6—C7—H7B | 109.0 | C9—N1—C8 | 118.7 (2) |
H7A—C7—H7B | 107.8 | C10—N1—C8 | 118.9 (2) |
N1—C8—C7 | 111.9 (3) | ||
O1—N2—C16—S1 | −134 (17) | N1—C10—C11—C12 | 177.9 (3) |
C6—C1—C2—C3 | 0.3 (5) | C10—C11—C12—C13 | 0.8 (4) |
C9—C1—C2—C3 | 179.9 (3) | C11—C12—C13—C14 | 1.0 (5) |
C1—C2—C3—C4 | 0.1 (5) | C11—C12—C13—Br1 | −178.8 (2) |
C2—C3—C4—C5 | −0.4 (5) | C12—C13—C14—C15 | −1.8 (5) |
C3—C4—C5—C6 | 0.3 (5) | Br1—C13—C14—C15 | 178.1 (3) |
C4—C5—C6—C1 | 0.1 (5) | C11—C10—C15—C14 | 1.3 (5) |
C4—C5—C6—C7 | −175.8 (3) | N1—C10—C15—C14 | −178.6 (3) |
C2—C1—C6—C5 | −0.4 (4) | C13—C14—C15—C10 | 0.6 (5) |
C9—C1—C6—C5 | 179.9 (3) | C1—C9—N1—C10 | −178.1 (3) |
C2—C1—C6—C7 | 175.8 (3) | C1—C9—N1—C8 | −6.4 (4) |
C9—C1—C6—C7 | −3.8 (4) | C11—C10—N1—C9 | −37.9 (4) |
C5—C6—C7—C8 | −151.8 (3) | C15—C10—N1—C9 | 142.1 (3) |
C1—C6—C7—C8 | 32.3 (4) | C11—C10—N1—C8 | 150.5 (3) |
C6—C7—C8—N1 | −46.7 (4) | C15—C10—N1—C8 | −29.6 (4) |
C2—C1—C9—N1 | 170.0 (3) | C7—C8—N1—C9 | 35.1 (4) |
C6—C1—C9—N1 | −10.3 (4) | C7—C8—N1—C10 | −152.9 (3) |
C15—C10—C11—C12 | −2.0 (4) |
Cg2 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···N2 | 0.85 | 1.83 | 2.642 (8) | 159 |
O1—H2W···N2i | 0.85 | 2.04 | 2.879 (9) | 171 |
C5—H5···O1ii | 0.93 | 2.60 | 3.133 (8) | 117 |
C9—H9···S1 | 0.93 | 2.81 | 3.709 (3) | 162 |
C12—H12···O1i | 0.93 | 2.57 | 3.438 (8) | 156 |
C14—H14···Cg2iii | 0.93 | 2.87 | 3.447 (4) | 121 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C15H13BrN+·CNS−·0.5H2O |
Mr | 354.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 9.0211 (12), 9.2685 (12), 10.7284 (14) |
α, β, γ (°) | 81.174 (2), 66.699 (1), 68.368 (1) |
V (Å3) | 765.81 (17) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.82 |
Crystal size (mm) | 0.50 × 0.41 × 0.37 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.333, 0.422 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5705, 2824, 2262 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.100, 1.04 |
No. of reflections | 2824 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.54, −0.53 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cg2 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···N2 | 0.85 | 1.83 | 2.642 (8) | 158.5 |
O1—H2W···N2i | 0.85 | 2.04 | 2.879 (9) | 171.3 |
C5—H5···O1ii | 0.93 | 2.60 | 3.133 (8) | 117 |
C9—H9···S1 | 0.93 | 2.81 | 3.709 (3) | 162 |
C12—H12···O1i | 0.93 | 2.57 | 3.438 (8) | 156 |
C14—H14···Cg2iii | 0.93 | 2.87 | 3.447 (4) | 121 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (NNSF; Nos. 31172365, 30771454, 31000865).
References
Abe, K., Saitoh, T., Horiguchi, Y., Utsunomiya, I. & Taguchi, K. (2005). Biol. Pharm. Bull. 28, 1355–1362. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ishii, H., Ichikawa, Y. I. & Kawanabe, E. (1985). Chem. Pharm. Bull. 33, 4139–4151. CrossRef CAS PubMed Web of Science Google Scholar
Jang, B. C., Park, J. G., Song, D. K., Baek, W. K., Yoo, S. K., Jung, K. H., Park, G. Y., Lee, T. Y. & Suh, S. I. (2009). Toxicol. in Vitro, 23, 281–287. Web of Science CrossRef PubMed CAS Google Scholar
Kamal, A. M., Radwan, S. M. & Zaki, R. M. (2011). Eur. J. Med. Chem. 46, 567–578. Web of Science CrossRef CAS PubMed Google Scholar
Lane, J. W., Estevez, A., Mortara, K., Callan, O., Spencer, J. R. & Williams, R. M. (2006). Bioorg. Med. Chem. Lett. 16, 3180–3183. Web of Science CrossRef PubMed CAS Google Scholar
Liu, X. H., Zhu, J., Zhou, A. N., Song, B. A., Zhu, H. L., Bai, L. S., Bhadury, P. S. & Pan, C. X. (2009). Bioorg. Med. Chem. 17, 1207–1213. Web of Science CrossRef PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Storch, A., Ott, S., Hwang, Y. I., Ortmann, R., Hein, A., Frenzel, S., Matsubara, K., Ohta, S., Wolf, H. U. & Schwarz, J. (2002). Biochem. Pharmacol. 63, 909–920. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tetrahydroisoquinoline derivatives have recently attracted a lot of interest according to their outstanding bioactivity (Abe et al., 2005; Storch et al., 2002, Jang et al., 2009; Lane et al., 2006; Kamal et al., 2011; Liu et al., 2009). Considering the importance of these compounds, we prepared some tetrahydroisoquinoline derivatives. The title compound is an unexpected salt.
In the title hemihydrated salt, C16H14BrN2O0.5S, the two benzene rings are aligned at 46.9 (1)°. The six-membered heterocycle of the dihydroisoquinoline unit adopts a half-chair conformation. The lattice water and thiocyanate ion are linked by O—H···N hydrogen bonds to generateing four-membered ring motifs. Additionally, C—H···O and C—H···S interactions link the ions into a chain along c axis; π—π interactions link the chains into sheets, and other π—π and C—H···π interactions give rise to a three-dimension nework structure. The Cg2···Cg2 (1 - x, 2 - y, -z) distance is 3.974 (2) Å. The Cg3···Cg3 (2 - x, 1 - y, 1 - z) distance is 3.7457 (18) Å.