organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-n-propyl 4,4′-dihy­dr­oxy-3,3′-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-benzimidazole-1,3-di­yl]bis­­(methyl­ene)}dibenzoate

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 4 August 2011; accepted 6 September 2011; online 14 September 2011)

The title compound, C29H38N2O6, was prepared as model for studying intra­molecular hydrogen-bonding inter­actions. Mol­ecules of the title compound are located on a crystallographic twofold rotation axis, which passes through the C atom linked to the two N atoms on the imidazolidine ring. The mol­ecular structure shows the existence of two intra­molecular O—H⋯N hydrogen-bonding inter­actions between the two N atoms of the imidazolidine moiety and the hy­droxy groups in the aromatic rings. The crystal structure shows the strain of ring fusion in the perhydro­benzimidazole moiety according to the endocyclic bond angles and the torsion angles, which evidence a puckering of the cyclo­hexane ring with respect to normal tetra­hedral bond angles in an ideal chair conformation.

Related literature

For a related structure, see: Rivera et al. (2010[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o931.]). For crystallographic data of n-propyl 4-hy­droxy­benzoate, see: Zhou et al. (2010[Zhou, Y., Matsadiq, G., Wu, Y., Xiao, J. & Cheng, J. (2010). Acta Cryst. E66, o485.]); Feng & Grant (2006[Feng, Y. & Grant, D. J. W. (2006). Pharm. Res. 23, 1608-1616.]). For background chemistry to this work, see: Lu et al. (2006[Lu, Y. X., Zou, J.-W., Jin, Z.-M., Wang, Y.-H., Zhang, H.-X., Jiang, Y.-J. & Yu, Q.-S. (2006). J. Phys. Chem. A, 110, 9261-9266.]); Geise et al. (1971[Geise, H. J., Buys, H. R. & Mijhoff, F. C. (1971). J. Mol. Struct. 9, 447-454.]). For the synthesis of the precursor, see: Murray-Rust & Riddell (1975[Murray-Rust, P. & Riddell, F. G. (1975). Can. J. Chem. 53, 1933-1935.]).

[Scheme 1]

Experimental

Crystal data
  • C29H38N2O6

  • Mr = 510.6

  • Monoclinic, C 2/c

  • a = 15.8047 (4) Å

  • b = 8.7762 (3) Å

  • c = 19.0108 (6) Å

  • β = 96.353 (2)°

  • V = 2620.70 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 120 K

  • 0.43 × 0.18 × 0.10 mm

Data collection
  • Agilent Gemini A Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.638, Tmax = 1

  • 18471 measured reflections

  • 2339 independent reflections

  • 1855 reflections with I > 3σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.57

  • 2339 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1 0.93 (2) 1.82 (2) 2.6810 (14) 153 (2)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Hydrogen bonding involving phenols has been the subject of extensive experimental and theoretical studies because hydrogen-bonding interactions of phenol itself can be regarded as a prototype to understand the attraction between the lone pair of the amine nitrogen atom and the phenolic hydroxyl proton. (Lu et al. 2006). Continuing our studies on the synthesis and structural analysis of Mannich bases derived from phenols, the title compound, (I), was obtained from n-propyl-4-hydroxybenzoate and (2R,7R,11S,16S)-1,8,10,17- tetraazapentacyclo[8.8.1.18,1702,7.011,16]icosane.

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. The six-membered ring exists in a chair conformation with a C2—C3—C4 [107.6 (1)°] bond angle which is slightly distorted respect to the normal tetrahedral bond angles in a ideal chair conformation [111.1°] (Geise, et al. 1971). These values suggest a constraint of the cyclohexane ring, which is minimized by an increasing of the C3—C4—C4i bond angle [113.4 (1)°]. The imidazolidine moiety has a half-chair conformation (C2) with intraanular bond angles ranging from 105.1 (1)° to 106.6 (1)° which are shorter respect the tetrahedrical normal bond angles, indicating that the heterocyclic ring is also strained. This conformation is adopted because the nitrogen lone pairs are oriented anti-axial to avoid electronic repulsions. The bond length and bond angle values in the propoxycarbonyl group are in a good agreement with the values observed in the crystal structure of n-propyl 4-hydroxybenzoate (Feng & Grant, 2006; Zhou, et al. 2010).

Intramolecular hydrogen bonds are present between the phenolic hydroxyl groups and nitrogen atoms, the N···O distance [2.6810 (14) Å] is in a good agreement with the corresponding N···O distance in the phenol derivative [2.7096 (14) Å] (Rivera, et al. 2010).

Related literature top

For a related structure, see: Rivera et al. (2010). For crystallographic data of n-propyl 4-hydroxybenzoate, see: Zhou et al. (2010); Feng & Grant (2006). For background chemistry to this work, see: Lu et al. (2006); Geise et al. (1971). For the synthesis of the precursor, see: Murray-Rust & Riddell (1975).

Experimental top

The aminal (2R,7R,11S,16S)-1,8,10,17- tetraazapentacyclo[8.8.1.18,17.02,7.011,16]icosane (276 mg, 1.00 mmol) prepared previously following described procedures (Murray-Rust & Riddell, 1975), was dissolved in dioxane (3 ml) at 70 °C with vigorous stirring. A solution of n-propyl 4-hydroxybenzoate (360 mg, 2.00 mmol) in dioxane (3 ml) was added dropwise for about 30 min, and then water (4 ml) was added. After the addition, the reaction mixture was refluxed for about 12 h. The reaction mixture was treated with chloroform by discontinuous liquid-liquid extraction (5 × 20 ml). The combined extracts were concentrated under reduced pressure until a residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 19%, m.p. = 449–450 K).Single crystals of racemic (I) were grown from a CHCl3:MeOH solution by slow evaporation of the solvent at room temperature over a period of about two weeks.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded to C atoms were kept in ideal positions with C–H distance 0.96 Å during the refinement. The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined freely. All H atoms were refined with thermal displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for methyl and hydroxyl groups and to to 1.2Ueq(C) for the CH– and CH2- groups.

Structure description top

Hydrogen bonding involving phenols has been the subject of extensive experimental and theoretical studies because hydrogen-bonding interactions of phenol itself can be regarded as a prototype to understand the attraction between the lone pair of the amine nitrogen atom and the phenolic hydroxyl proton. (Lu et al. 2006). Continuing our studies on the synthesis and structural analysis of Mannich bases derived from phenols, the title compound, (I), was obtained from n-propyl-4-hydroxybenzoate and (2R,7R,11S,16S)-1,8,10,17- tetraazapentacyclo[8.8.1.18,1702,7.011,16]icosane.

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. The six-membered ring exists in a chair conformation with a C2—C3—C4 [107.6 (1)°] bond angle which is slightly distorted respect to the normal tetrahedral bond angles in a ideal chair conformation [111.1°] (Geise, et al. 1971). These values suggest a constraint of the cyclohexane ring, which is minimized by an increasing of the C3—C4—C4i bond angle [113.4 (1)°]. The imidazolidine moiety has a half-chair conformation (C2) with intraanular bond angles ranging from 105.1 (1)° to 106.6 (1)° which are shorter respect the tetrahedrical normal bond angles, indicating that the heterocyclic ring is also strained. This conformation is adopted because the nitrogen lone pairs are oriented anti-axial to avoid electronic repulsions. The bond length and bond angle values in the propoxycarbonyl group are in a good agreement with the values observed in the crystal structure of n-propyl 4-hydroxybenzoate (Feng & Grant, 2006; Zhou, et al. 2010).

Intramolecular hydrogen bonds are present between the phenolic hydroxyl groups and nitrogen atoms, the N···O distance [2.6810 (14) Å] is in a good agreement with the corresponding N···O distance in the phenol derivative [2.7096 (14) Å] (Rivera, et al. 2010).

For a related structure, see: Rivera et al. (2010). For crystallographic data of n-propyl 4-hydroxybenzoate, see: Zhou et al. (2010); Feng & Grant (2006). For background chemistry to this work, see: Lu et al. (2006); Geise et al. (1971). For the synthesis of the precursor, see: Murray-Rust & Riddell (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of (I). Displacement ellipsoids are drawn at the 50% probability level.
Di-n-propyl 4,4'-dihydroxy-3,3'-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octahydro -1H-benzimidazole-1,3-diyl]bis(methylene)}dibenzoate top
Crystal data top
C29H38N2O6F(000) = 1096
Mr = 510.6Dx = 1.294 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -C 2ycCell parameters from 6637 reflections
a = 15.8047 (4) Åθ = 3.5–67.1°
b = 8.7762 (3) ŵ = 0.73 mm1
c = 19.0108 (6) ÅT = 120 K
β = 96.353 (2)°Plate, colourless
V = 2620.70 (14) Å30.43 × 0.18 × 0.10 mm
Z = 4
Data collection top
Agilent Gemini A Ultra
diffractometer
2339 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1855 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 10.3784 pixels mm-1θmax = 67.2°, θmin = 4.7°
Rotation method data acquisition using ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 109
Tmin = 0.638, Tmax = 1l = 2222
18471 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F > 3σ(F)] = 0.039Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F) = 0.105(Δ/σ)max = 0.010
S = 1.57Δρmax = 0.21 e Å3
2339 reflectionsΔρmin = 0.17 e Å3
172 parametersExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 1100 (300)
73 constraints
Crystal data top
C29H38N2O6V = 2620.70 (14) Å3
Mr = 510.6Z = 4
Monoclinic, C2/cCu Kα radiation
a = 15.8047 (4) ŵ = 0.73 mm1
b = 8.7762 (3) ÅT = 120 K
c = 19.0108 (6) Å0.43 × 0.18 × 0.10 mm
β = 96.353 (2)°
Data collection top
Agilent Gemini A Ultra
diffractometer
2339 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1855 reflections with I > 3σ(I)
Tmin = 0.638, Tmax = 1Rint = 0.044
18471 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0390 restraints
wR(F) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.57Δρmax = 0.21 e Å3
2339 reflectionsΔρmin = 0.17 e Å3
172 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44235 (7)0.33457 (13)0.45643 (6)0.0351 (4)
O20.34718 (6)0.50352 (12)0.48867 (5)0.0273 (3)
O30.29215 (7)0.02617 (13)0.70432 (6)0.0297 (4)
N10.44367 (5)0.16285 (11)0.70300 (4)0.0242 (4)
C10.50.06183 (13)0.750.0278 (7)
C20.48251 (9)0.31564 (17)0.71167 (8)0.0242 (5)
C30.42460 (9)0.45085 (18)0.69460 (8)0.0279 (5)
C40.47714 (10)0.59581 (18)0.71258 (8)0.0293 (5)
C50.43457 (10)0.11400 (18)0.62864 (8)0.0278 (5)
C60.38601 (9)0.03362 (18)0.61649 (7)0.0246 (4)
C70.40693 (9)0.13502 (18)0.56533 (8)0.0251 (5)
C80.36156 (9)0.26911 (18)0.55025 (7)0.0245 (5)
C90.29302 (9)0.30241 (17)0.58796 (8)0.0248 (5)
C100.27134 (9)0.20348 (18)0.63976 (8)0.0262 (5)
C110.31679 (9)0.06936 (18)0.65395 (8)0.0251 (4)
C120.38833 (9)0.36954 (18)0.49413 (8)0.0257 (5)
C130.37042 (9)0.59939 (18)0.43146 (8)0.0279 (5)
C140.31759 (10)0.74213 (19)0.42731 (8)0.0327 (5)
C150.33797 (12)0.8368 (2)0.36391 (10)0.0401 (6)
H1a0.5339050.0008140.7219440.0334*
H20.523180.3294770.6782630.029*
H3a0.404560.4503660.6450510.0335*
H3b0.3781080.446850.7230520.0335*
H4a0.4407250.6834170.7062340.0352*
H4b0.5179750.6082480.6792060.0352*
H5a0.4065220.1925250.5996220.0334*
H5b0.4899120.1032890.6128790.0334*
H70.4541930.1120660.5394650.0302*
H90.2608010.3941090.5779630.0297*
H100.2246290.2276660.6660450.0314*
H13a0.3605870.5449930.3875080.0335*
H13b0.4296130.6257460.4401210.0335*
H14a0.3305350.8002460.469930.0392*
H14b0.2583050.7155850.421740.0392*
H15a0.3029020.9263490.360180.0602*
H15b0.3968380.8660830.3702170.0602*
H15c0.3269690.777350.3214880.0602*
H30.3366 (14)0.095 (2)0.7126 (10)0.0446*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0361 (6)0.0382 (7)0.0322 (6)0.0103 (5)0.0094 (5)0.0056 (5)
O20.0295 (5)0.0255 (6)0.0271 (6)0.0032 (4)0.0043 (4)0.0048 (4)
O30.0301 (6)0.0282 (7)0.0311 (6)0.0003 (5)0.0038 (4)0.0057 (5)
N10.0276 (6)0.0206 (7)0.0232 (7)0.0008 (5)0.0025 (5)0.0003 (5)
C10.0318 (11)0.0226 (12)0.0277 (11)00.0024 (9)0
C20.0267 (7)0.0210 (8)0.0245 (8)0.0026 (6)0.0013 (6)0.0006 (6)
C30.0300 (8)0.0246 (9)0.0278 (8)0.0012 (6)0.0029 (6)0.0015 (6)
C40.0354 (8)0.0203 (8)0.0318 (9)0.0009 (6)0.0009 (7)0.0023 (6)
C50.0340 (8)0.0259 (9)0.0226 (8)0.0050 (7)0.0010 (6)0.0002 (6)
C60.0265 (7)0.0237 (8)0.0219 (7)0.0026 (6)0.0047 (6)0.0034 (6)
C70.0261 (7)0.0274 (9)0.0213 (8)0.0036 (6)0.0002 (6)0.0027 (6)
C80.0262 (7)0.0247 (8)0.0214 (7)0.0002 (6)0.0026 (6)0.0018 (6)
C90.0244 (7)0.0219 (8)0.0267 (8)0.0025 (6)0.0029 (6)0.0033 (6)
C100.0228 (7)0.0280 (9)0.0276 (8)0.0001 (6)0.0018 (6)0.0021 (6)
C110.0265 (7)0.0258 (9)0.0219 (7)0.0032 (6)0.0021 (6)0.0010 (6)
C120.0267 (7)0.0265 (9)0.0226 (8)0.0024 (6)0.0027 (6)0.0002 (6)
C130.0270 (7)0.0306 (9)0.0263 (8)0.0012 (6)0.0036 (6)0.0071 (7)
C140.0389 (9)0.0289 (9)0.0313 (9)0.0029 (7)0.0087 (7)0.0033 (7)
C150.0486 (10)0.0339 (10)0.0400 (10)0.0082 (8)0.0147 (8)0.0097 (8)
Geometric parameters (Å, º) top
O1—C121.2134 (19)C5—H5b0.96
O2—C121.3422 (19)C6—C71.385 (2)
O2—C131.4539 (19)C6—C111.405 (2)
O3—C111.3615 (19)C7—C81.391 (2)
O3—H30.93 (2)C7—H70.96
N1—C11.4835 (11)C8—C91.395 (2)
N1—C21.4763 (17)C8—C121.481 (2)
N1—C51.4689 (17)C9—C101.384 (2)
C1—H1a0.96C9—H90.96
C1—H1ai0.96C10—C111.390 (2)
C2—C2i1.500 (2)C10—H100.96
C2—C31.512 (2)C13—C141.503 (2)
C2—H20.96C13—H13a0.96
C3—C41.537 (2)C13—H13b0.96
C3—H3a0.96C14—C151.527 (3)
C3—H3b0.96C14—H14a0.96
C4—C4i1.523 (2)C14—H14b0.96
C4—H4a0.96C15—H15a0.96
C4—H4b0.96C15—H15b0.96
C5—C61.511 (2)C15—H15c0.96
C5—H5a0.96
C12—O2—C13113.86 (12)C7—C6—C11118.18 (14)
C11—O3—H3104.6 (13)C6—C7—C8122.04 (14)
C1—N1—C2105.14 (8)C6—C7—H7118.9808
C1—N1—C5113.18 (9)C8—C7—H7118.9799
C2—N1—C5111.58 (10)C7—C8—C9118.90 (14)
N1—C1—N1i106.60 (9)C7—C8—C12118.03 (13)
N1—C1—H1a109.4712C9—C8—C12123.07 (14)
N1—C1—H1ai109.4713C8—C9—C10120.12 (14)
N1i—C1—H1a109.4713C8—C9—H9119.9408
N1i—C1—H1ai109.4712C10—C9—H9119.9415
H1a—C1—H1ai112.196C9—C10—C11120.42 (14)
N1—C2—C2i102.26 (11)C9—C10—H10119.7917
N1—C2—C3117.04 (11)C11—C10—H10119.7918
N1—C2—H2109.9711O3—C11—C6121.21 (13)
C2i—C2—C3110.96 (12)O3—C11—C10118.45 (13)
C2i—C2—H2116.1607C6—C11—C10120.34 (14)
C3—C2—H2101.0977O1—C12—O2122.85 (14)
C2—C3—C4107.61 (12)O1—C12—C8123.42 (14)
C2—C3—H3a109.4708O2—C12—C8113.73 (13)
C2—C3—H3b109.4712O2—C13—C14109.68 (13)
C4—C3—H3a109.4711O2—C13—H13a109.4707
C4—C3—H3b109.4719O2—C13—H13b109.4714
H3a—C3—H3b111.2673C14—C13—H13a109.4706
C3—C4—C4i113.37 (13)C14—C13—H13b109.4711
C3—C4—H4a109.4715H13a—C13—H13b109.2656
C3—C4—H4b109.4718C13—C14—C15109.29 (14)
C4i—C4—H4a109.4713C13—C14—H14a109.4708
C4i—C4—H4b109.4702C13—C14—H14b109.4715
H4a—C4—H4b105.271C15—C14—H14a109.4706
N1—C5—C6113.04 (12)C15—C14—H14b109.4717
N1—C5—H5a109.4711H14a—C14—H14b109.6526
N1—C5—H5b109.4709C14—C15—H15a109.4714
C6—C5—H5a109.4723C14—C15—H15b109.4714
C6—C5—H5b109.471C14—C15—H15c109.4713
H5a—C5—H5b105.6475H15a—C15—H15b109.4713
C5—C6—C7120.11 (13)H15a—C15—H15c109.4713
C5—C6—C11121.66 (13)H15b—C15—H15c109.4708
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.93 (2)1.82 (2)2.6810 (14)153 (2)

Experimental details

Crystal data
Chemical formulaC29H38N2O6
Mr510.6
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)15.8047 (4), 8.7762 (3), 19.0108 (6)
β (°) 96.353 (2)
V3)2620.70 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.73
Crystal size (mm)0.43 × 0.18 × 0.10
Data collection
DiffractometerAgilent Gemini A Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.638, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
18471, 2339, 1855
Rint0.044
(sin θ/λ)max1)0.598
Refinement
R[F > 3σ(F)], wR(F), S 0.039, 0.105, 1.57
No. of reflections2339
No. of parameters172
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.93 (2)1.82 (2)2.6810 (14)153 (2)
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic. DQ acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFeng, Y. & Grant, D. J. W. (2006). Pharm. Res. 23, 1608–1616.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGeise, H. J., Buys, H. R. & Mijhoff, F. C. (1971). J. Mol. Struct. 9, 447–454.  CrossRef CAS Google Scholar
First citationLu, Y. X., Zou, J.-W., Jin, Z.-M., Wang, Y.-H., Zhang, H.-X., Jiang, Y.-J. & Yu, Q.-S. (2006). J. Phys. Chem. A, 110, 9261–9266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurray-Rust, P. & Riddell, F. G. (1975). Can. J. Chem. 53, 1933–1935.  CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o931.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhou, Y., Matsadiq, G., Wu, Y., Xiao, J. & Cheng, J. (2010). Acta Cryst. E66, o485.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds