organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 3-(4-ethyl­phen­yl)-2-{2-[(E)-(hy­dr­oxy­imino)­meth­yl]phen­­oxy­meth­yl}acrylate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 2 September 2011; accepted 19 September 2011; online 30 September 2011)

In the title compound, C20H21NO4, the two benzene rings are almost perpendicular to each other, making a dihedral angle of 86.1 (7)°. The hy­droxy­ethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane of the hy­droxy­ethanimine [C=N—OH] group being 0.011 (1) Å for the O atom. An intra­molecular C—H⋯O hydrogen bond occurs. The mol­ecules are linked into cyclic centrosymmetric R22(6) dimers via O—H⋯N hydrogen bonds. Inter­molecular C—H⋯O hydrogen bonds link the mol­ecules, forming a C(8) chain along the a axis. The crystal packing is further stabilized by C—H⋯π inter­actions.

Related literature

For structures of other acrylate derivatives, see: Zhang et al. (2009[Zhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.]); Wang et al. (2011[Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.]); SakthiMurugesan et al. (2011[SakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754.]). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003[Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-168.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21NO4

  • Mr = 339.38

  • Triclinic, [P \overline 1]

  • a = 9.0053 (2) Å

  • b = 9.3655 (3) Å

  • c = 12.1793 (3) Å

  • α = 75.299 (1)°

  • β = 74.756 (1)°

  • γ = 64.891 (1)°

  • V = 885.43 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.983

  • 24628 measured reflections

  • 6955 independent reflections

  • 4453 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.189

  • S = 1.02

  • 6955 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.15 2.8568 (15) 145
C14—H14⋯O2 0.93 2.51 3.3002 (16) 143
C15—H15⋯O4ii 0.93 2.50 3.3524 (16) 152
C5—H5⋯Cg2iii 0.93 2.94 3.7756 (14) 150
Symmetry codes: (i) -x-1, -y+2, -z+1; (ii) x-1, y, z; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, 2-cyanoacrylates have been extensively used as agrochemicals because of their unique mechanism of action and good environmental profiles (Zhang et al., 2009). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles in (Fig. 1) agree with those observed in other acrylate derivatives (Wang et al., 2011). The whole molecule is not planar as the dihedral angle between the two aryl rings is 86.1 (7)°, it shows that both the rings are almost perpendicular to each other. The oxime group having the CN forming an E configuration. The hydroxyethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane of the hydroxyethanimine [CN—OH] group is 0.011 (1)Å for the O1 atom.

The enoate group assumes an extended conformation as can be seen from torsion angles C9—C10—O3—C11 [178.1 (1) °] and C12—C9—C10—O3 [171.6 (1) °]. The atom C15 in the molecule (x,y,z) donate one proton to atom O4 of the molecule at (-1 + x,y,z) forming a C(8) chain along a axis. The hydroxyethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R22(6) (Figure 2). In addition to van der Waals interaction, the crystal packing is stabilized by C–H..O, O–H···N and C–H···π interactions.

Related literature top

For structures of other acrylate derivatives, see: Zhang et al. (2009); Wang et al. (2011); SakthiMurugesan et al. (2011). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003).

Experimental top

To a stirred solution of (E)-methyl 2-((2-formylphenoxy)methyl) -3-(4-ethylphenyl)acrylate (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and the crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 x 15 ml). The combined organic layer was washed with brine (2 x 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (E)-methyl3- (4-ethylphenyl)-2-((2-((E)-(hydroxyimino)methyl)phenoxy)methyl)acrylate as a colourless solid. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Structure description top

Recently, 2-cyanoacrylates have been extensively used as agrochemicals because of their unique mechanism of action and good environmental profiles (Zhang et al., 2009). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles in (Fig. 1) agree with those observed in other acrylate derivatives (Wang et al., 2011). The whole molecule is not planar as the dihedral angle between the two aryl rings is 86.1 (7)°, it shows that both the rings are almost perpendicular to each other. The oxime group having the CN forming an E configuration. The hydroxyethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane of the hydroxyethanimine [CN—OH] group is 0.011 (1)Å for the O1 atom.

The enoate group assumes an extended conformation as can be seen from torsion angles C9—C10—O3—C11 [178.1 (1) °] and C12—C9—C10—O3 [171.6 (1) °]. The atom C15 in the molecule (x,y,z) donate one proton to atom O4 of the molecule at (-1 + x,y,z) forming a C(8) chain along a axis. The hydroxyethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R22(6) (Figure 2). In addition to van der Waals interaction, the crystal packing is stabilized by C–H..O, O–H···N and C–H···π interactions.

For structures of other acrylate derivatives, see: Zhang et al. (2009); Wang et al. (2011); SakthiMurugesan et al. (2011). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The crystal structure showing the centrosymmetric hydrogen bond motif R22(6). H atoms not involved in the motif have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-1 - x, 2 - y, 1 - z). Dashed lines indicate the hydrogen bonds.
(E)-Methyl 3-(4-ethylphenyl)-2-{2-[(E)-(hydroxyimino)methyl] phenoxymethyl}acrylate top
Crystal data top
C20H21NO4Z = 2
Mr = 339.38F(000) = 360
Triclinic, P1Dx = 1.273 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0053 (2) ÅCell parameters from 6955 reflections
b = 9.3655 (3) Åθ = 1.8–33.6°
c = 12.1793 (3) ŵ = 0.09 mm1
α = 75.299 (1)°T = 293 K
β = 74.756 (1)°Block, white
γ = 64.891 (1)°0.25 × 0.22 × 0.19 mm
V = 885.43 (4) Å3
Data collection top
Bruker APEXII CCD area detector
diffractometer
6955 independent reflections
Radiation source: fine-focus sealed tube4453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scansθmax = 33.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.978, Tmax = 0.983k = 1414
24628 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1052P)2 + 0.0753P]
where P = (Fo2 + 2Fc2)/3
6955 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H21NO4γ = 64.891 (1)°
Mr = 339.38V = 885.43 (4) Å3
Triclinic, P1Z = 2
a = 9.0053 (2) ÅMo Kα radiation
b = 9.3655 (3) ŵ = 0.09 mm1
c = 12.1793 (3) ÅT = 293 K
α = 75.299 (1)°0.25 × 0.22 × 0.19 mm
β = 74.756 (1)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
6955 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4453 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.023
24628 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
6955 reflectionsΔρmin = 0.29 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16884 (13)0.61894 (13)0.41644 (9)0.0372 (2)
C20.25120 (16)0.53924 (17)0.50619 (11)0.0506 (3)
H20.32200.59160.56690.061*
C30.23045 (18)0.38465 (18)0.50735 (13)0.0587 (4)
H30.28770.33370.56770.070*
C40.12419 (17)0.30617 (16)0.41841 (13)0.0533 (3)
H40.11000.20170.41900.064*
C50.03793 (15)0.38050 (15)0.32794 (11)0.0444 (3)
H50.03340.32630.26820.053*
C60.05852 (12)0.53598 (13)0.32705 (9)0.0354 (2)
C70.19037 (14)0.78288 (14)0.41442 (10)0.0411 (2)
H70.10360.81700.37840.049*
C80.13999 (13)0.54048 (14)0.15190 (10)0.0404 (2)
H8A0.08410.52070.10270.048*
H8B0.21790.43870.18390.048*
C90.23062 (13)0.64543 (14)0.08369 (9)0.0376 (2)
C100.39509 (14)0.61395 (15)0.11024 (10)0.0420 (3)
C110.58541 (18)0.4676 (2)0.23780 (14)0.0680 (4)
H11A0.66960.46110.16970.102*
H11B0.61460.36630.28800.102*
H11C0.57730.54830.27690.102*
C120.17940 (13)0.76549 (14)0.00239 (10)0.0400 (2)
H120.25230.81760.03580.048*
C130.02946 (14)0.82890 (14)0.05290 (10)0.0389 (2)
C140.11884 (15)0.80690 (17)0.00057 (11)0.0474 (3)
H140.12720.74860.07340.057*
C150.25321 (16)0.87026 (18)0.05692 (12)0.0516 (3)
H150.34950.85180.02050.062*
C160.24822 (16)0.96077 (15)0.16646 (11)0.0459 (3)
C170.10288 (17)0.98621 (16)0.21751 (11)0.0492 (3)
H170.09661.04790.29030.059*
C180.03252 (15)0.92197 (15)0.16260 (11)0.0468 (3)
H180.12840.94100.19940.056*
C190.3973 (2)1.0316 (2)0.22612 (15)0.0637 (4)
H19A0.48291.11840.18810.076*
H19B0.36461.07660.30510.076*
C200.4694 (3)0.9162 (3)0.2271 (2)0.0898 (7)
H20A0.39020.83660.27260.135*
H20B0.56910.97160.25970.135*
H20C0.49540.86560.14960.135*
N10.32728 (13)0.87907 (12)0.46171 (9)0.0449 (2)
O10.32289 (13)1.02929 (12)0.45450 (10)0.0588 (3)
H10.41681.09240.47640.088*
O20.01993 (10)0.62061 (9)0.24319 (7)0.0415 (2)
O30.42776 (12)0.50810 (14)0.20593 (8)0.0585 (3)
O40.49093 (12)0.67314 (14)0.05241 (10)0.0682 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0339 (4)0.0404 (5)0.0323 (5)0.0132 (4)0.0039 (4)0.0013 (4)
C20.0490 (6)0.0528 (7)0.0386 (6)0.0196 (5)0.0047 (5)0.0010 (5)
C30.0605 (8)0.0540 (8)0.0535 (8)0.0303 (6)0.0014 (6)0.0081 (6)
C40.0555 (7)0.0415 (6)0.0603 (8)0.0233 (5)0.0075 (6)0.0018 (6)
C50.0447 (6)0.0403 (6)0.0466 (6)0.0179 (5)0.0036 (5)0.0063 (5)
C60.0327 (4)0.0379 (5)0.0325 (5)0.0136 (4)0.0053 (4)0.0010 (4)
C70.0406 (5)0.0453 (6)0.0345 (5)0.0171 (4)0.0008 (4)0.0064 (4)
C80.0390 (5)0.0399 (6)0.0396 (6)0.0159 (4)0.0031 (4)0.0110 (4)
C90.0359 (5)0.0424 (6)0.0343 (5)0.0167 (4)0.0024 (4)0.0119 (4)
C100.0379 (5)0.0475 (6)0.0390 (6)0.0158 (5)0.0017 (4)0.0107 (5)
C110.0469 (7)0.0909 (12)0.0560 (9)0.0153 (7)0.0158 (6)0.0077 (8)
C120.0379 (5)0.0447 (6)0.0386 (6)0.0193 (4)0.0002 (4)0.0090 (4)
C130.0404 (5)0.0404 (6)0.0371 (5)0.0178 (4)0.0027 (4)0.0085 (4)
C140.0444 (6)0.0608 (7)0.0360 (6)0.0254 (5)0.0049 (4)0.0009 (5)
C150.0445 (6)0.0660 (8)0.0458 (7)0.0289 (6)0.0081 (5)0.0021 (6)
C160.0494 (6)0.0448 (6)0.0456 (6)0.0199 (5)0.0126 (5)0.0032 (5)
C170.0578 (7)0.0466 (7)0.0417 (6)0.0251 (6)0.0094 (5)0.0052 (5)
C180.0466 (6)0.0471 (7)0.0460 (6)0.0244 (5)0.0041 (5)0.0008 (5)
C190.0647 (9)0.0652 (9)0.0617 (9)0.0253 (7)0.0287 (7)0.0077 (7)
C200.0947 (13)0.1082 (15)0.0893 (13)0.0635 (12)0.0580 (11)0.0331 (11)
N10.0464 (5)0.0425 (5)0.0423 (5)0.0165 (4)0.0006 (4)0.0104 (4)
O10.0607 (6)0.0479 (5)0.0677 (7)0.0234 (4)0.0043 (5)0.0207 (5)
O20.0445 (4)0.0389 (4)0.0361 (4)0.0188 (3)0.0074 (3)0.0080 (3)
O30.0459 (5)0.0795 (7)0.0437 (5)0.0238 (5)0.0092 (4)0.0013 (5)
O40.0510 (5)0.0811 (7)0.0752 (7)0.0386 (5)0.0171 (5)0.0124 (6)
Geometric parameters (Å, º) top
C1—C21.3898 (15)C11—H11B0.9600
C1—C61.4076 (15)C11—H11C0.9600
C1—C71.4582 (17)C12—C131.4579 (16)
C2—C31.376 (2)C12—H120.9300
C2—H20.9300C13—C141.3969 (15)
C3—C41.375 (2)C13—C181.3984 (16)
C3—H30.9300C14—C151.3812 (18)
C4—C51.3862 (17)C14—H140.9300
C4—H40.9300C15—C161.3883 (18)
C5—C61.3851 (16)C15—H150.9300
C5—H50.9300C16—C171.3848 (18)
C6—O21.3621 (12)C16—C191.5112 (19)
C7—N11.2692 (15)C17—C181.3777 (19)
C7—H70.9300C17—H170.9300
C8—O21.4392 (13)C18—H180.9300
C8—C91.4940 (15)C19—C201.482 (2)
C8—H8A0.9700C19—H19A0.9700
C8—H8B0.9700C19—H19B0.9700
C9—C121.3387 (17)C20—H20A0.9600
C9—C101.4893 (16)C20—H20B0.9600
C10—O41.1985 (14)C20—H20C0.9600
C10—O31.3320 (16)N1—O11.4039 (14)
C11—O31.4380 (17)O1—H10.8200
C11—H11A0.9600
C2—C1—C6118.34 (11)H11B—C11—H11C109.5
C2—C1—C7121.91 (10)C9—C12—C13131.31 (10)
C6—C1—C7119.73 (9)C9—C12—H12114.3
C3—C2—C1121.56 (12)C13—C12—H12114.3
C3—C2—H2119.2C14—C13—C18116.77 (11)
C1—C2—H2119.2C14—C13—C12125.70 (11)
C4—C3—C2119.34 (12)C18—C13—C12117.53 (10)
C4—C3—H3120.3C15—C14—C13121.07 (11)
C2—C3—H3120.3C15—C14—H14119.5
C3—C4—C5120.98 (12)C13—C14—H14119.5
C3—C4—H4119.5C14—C15—C16121.71 (11)
C5—C4—H4119.5C14—C15—H15119.1
C6—C5—C4119.63 (12)C16—C15—H15119.1
C6—C5—H5120.2C17—C16—C15117.40 (12)
C4—C5—H5120.2C17—C16—C19121.52 (12)
O2—C6—C5124.79 (10)C15—C16—C19121.07 (12)
O2—C6—C1115.07 (10)C18—C17—C16121.33 (12)
C5—C6—C1120.13 (10)C18—C17—H17119.3
N1—C7—C1120.10 (10)C16—C17—H17119.3
N1—C7—H7120.0C17—C18—C13121.68 (11)
C1—C7—H7120.0C17—C18—H18119.2
O2—C8—C9108.04 (9)C13—C18—H18119.2
O2—C8—H8A110.1C20—C19—C16114.28 (13)
C9—C8—H8A110.1C20—C19—H19A108.7
O2—C8—H8B110.1C16—C19—H19A108.7
C9—C8—H8B110.1C20—C19—H19B108.7
H8A—C8—H8B108.4C16—C19—H19B108.7
C12—C9—C10115.74 (10)H19A—C19—H19B107.6
C12—C9—C8125.94 (11)C19—C20—H20A109.5
C10—C9—C8118.30 (10)C19—C20—H20B109.5
O4—C10—O3122.56 (11)H20A—C20—H20B109.5
O4—C10—C9125.05 (12)C19—C20—H20C109.5
O3—C10—C9112.38 (10)H20A—C20—H20C109.5
O3—C11—H11A109.5H20B—C20—H20C109.5
O3—C11—H11B109.5C7—N1—O1111.99 (10)
H11A—C11—H11B109.5N1—O1—H1109.5
O3—C11—H11C109.5C6—O2—C8117.90 (9)
H11A—C11—H11C109.5C10—O3—C11116.58 (11)
C6—C1—C2—C31.8 (2)C9—C12—C13—C1419.8 (2)
C7—C1—C2—C3179.87 (13)C9—C12—C13—C18161.25 (12)
C1—C2—C3—C40.8 (2)C18—C13—C14—C152.05 (19)
C2—C3—C4—C50.0 (2)C12—C13—C14—C15178.95 (13)
C3—C4—C5—C60.2 (2)C13—C14—C15—C161.3 (2)
C4—C5—C6—O2179.74 (12)C14—C15—C16—C170.3 (2)
C4—C5—C6—C11.19 (18)C14—C15—C16—C19178.94 (14)
C2—C1—C6—O2178.86 (11)C15—C16—C17—C181.1 (2)
C7—C1—C6—O20.51 (15)C19—C16—C17—C18179.70 (13)
C2—C1—C6—C51.98 (17)C16—C17—C18—C130.3 (2)
C7—C1—C6—C5179.66 (11)C14—C13—C18—C171.29 (19)
C2—C1—C7—N130.13 (18)C12—C13—C18—C17179.63 (12)
C6—C1—C7—N1151.58 (11)C17—C16—C19—C20131.30 (18)
O2—C8—C9—C1284.39 (14)C15—C16—C19—C2050.1 (2)
O2—C8—C9—C1097.11 (11)C1—C7—N1—O1177.99 (10)
C12—C9—C10—O49.75 (18)C5—C6—O2—C83.60 (16)
C8—C9—C10—O4168.90 (12)C1—C6—O2—C8177.30 (9)
C12—C9—C10—O3171.59 (10)C9—C8—O2—C6169.80 (9)
C8—C9—C10—O39.75 (15)O4—C10—O3—C110.3 (2)
C10—C9—C12—C13179.15 (11)C9—C10—O3—C11178.95 (12)
C8—C9—C12—C130.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.152.8568 (15)145
C8—H8B···O30.972.342.7146 (18)102
C12—H12···O40.932.372.7742 (18)106
C14—H14···O20.932.513.3002 (16)143
C15—H15···O4ii0.932.503.3524 (16)152
C5—H5···Cg2iii0.932.943.7756 (14)150
Symmetry codes: (i) x1, y+2, z+1; (ii) x1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H21NO4
Mr339.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.0053 (2), 9.3655 (3), 12.1793 (3)
α, β, γ (°)75.299 (1), 74.756 (1), 64.891 (1)
V3)885.43 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
24628, 6955, 4453
Rint0.023
(sin θ/λ)max1)0.779
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.189, 1.02
No. of reflections6955
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.152.8568 (15)144.6
C14—H14···O20.932.513.3002 (16)143
C15—H15···O4ii0.932.503.3524 (16)151.9
C5—H5···Cg2iii0.932.943.7756 (14)150
Symmetry codes: (i) x1, y+2, z+1; (ii) x1, y, z; (iii) x, y+1, z.
 

Acknowledgements

EG and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationChaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds