metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua­(μ3-2-hy­dr­oxy-5-nitro­benzoato-κ3O1:O1′:O2)rubidium]

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 5 September 2011; accepted 14 September 2011; online 17 September 2011)

In the structure of title compound, [Rb(C7H4NO5)(H2O)]n, the centrosymmetric cyclic dimeric repeating unit comprises two irregular RbO4 complex centres bridged by the carboxyl­ate groups of the 5-nitro­salicylate ligands. The coordination about each Rb atom is completed by a monodentate water mol­ecule and a phenolic O-atom donor which gives a bridging extension [Rb—O range = 3.116 (7)–3.135 (5) Å]. The polymeric structure is stabilized by inter­molecular water O—H⋯Ocarboxyl­ate hydrogen bonds and weak inter-ring ππ inter­actions [minimum ring centroid separation = 3.620 (4) Å]. An intramolecular O—H⋯O hydrogen bond between phenol and carboxylate groups is also present.

Related literature

For the structures of some Rb complexes with aromatic carb­oxy­lic acids, see: Dinnebier et al. (2002[Dinnebier, R. E., Jelonek, S., Sieler, J. & Stephens, P. W. (2002). Z. Anorg. Allg. Chem. 628, 363-368.]); Wiesbrock & Schmidbaur (2003[Wiesbrock, F. & Schmidbaur, H. (2003). Inorg. Chem. 42, 7283-7289.]); Smith et al. (2007[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2007). Polyhedron, 26, 3645-3652.]). For the structure of 5-nitro­asalicylic acid and some Lewis base salts and metal complexes of this acid, see: Kumar et al. (2003[Kumar, V. S. S., Nangia, A., Kirchner, M. T. & Boese, R. (2003). New J. Chem. 27, 224-226.]); Smith et al. (2005[Smith, G., Hortono, A. W., Wermuth, U. D., Healy, P. C., White, J. M. & Rae, A. D. (2005). Aust. J. Chem. 58, 47-52.]); Morgant et al. (2006[Morgant, G., Bouhmaida, N., Balde, L., Ghermani, N. E. & d'Angelo, J. (2006). Polyhedron, 25, 2229-2235.]).

[Scheme 1]

Experimental

Crystal data
  • [Rb(C7H4NO5)(H2O)]

  • Mr = 285.6

  • Monoclinic, P 21 /c

  • a = 11.9738 (5) Å

  • b = 12.0230 (4) Å

  • c = 6.9571 (3) Å

  • β = 105.401 (4)°

  • V = 965.59 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.14 mm−1

  • T = 200 K

  • 0.50 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.572, Tmax = 0.980

  • 6051 measured reflections

  • 1893 independent reflections

  • 1651 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.181

  • S = 1.17

  • 1893 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O12 0.97 1.61 2.468 (8) 145
O1W—H11W⋯O11i 0.89 1.90 2.794 (9) 179
O1W—H12W⋯O12ii 0.90 1.96 2.861 (9) 180
Symmetry codes: (i) x, y, z-1; (ii) -x, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The structures of the alkali metal complexes with aromatic carboxylic acids are of interest, particularly with the heavier metals Rb and Cs, because of their expanded coordination spheres and their ability to form polymeric systems. Although the structures of a series of metalII complex adducts with 5-nitrosalicylic acid (5-NSA), of the type [M(5-NSA-)(H2O)5]. (5-NSA). H2O (M = Mg, Co, Ni, Zn) have been reported (Morgant et al., 2006), no alkali metal complexes with 5-NSA are known. We obtained crystals of the title compound [Rb2(C7H4NO2)2(H2O)2]n from the reaction of 5-NSA with rubidium hydroxide and the structure is reported here.

In the structure of this complex, the cyclic centrosymmetric dimeric repeating unit (Fig. 1) comprises two irregular RbO4 complex centres bridged by the carboxylate groups of the 5-NSA ligands. The coordination about each Rb is completed by a monodentate water molecule and a phenolic O donor which gives a bridging extension [Rb—O range 3.116 (7)–3.135 (5) Å]. The nitro O atoms (O51, O52) also give a weak symmetric bidentate association with inversion–related Rb centres [Rb—O, 3.290 (7), 3.261 (8) Å], a little too long to be considered formal Rb—O bonds. The coordination about Rb in this structure is therefore simpler than is found in other polymeric rubidium carboxylate complexes, e.g. and in rubidium salicylate (RbO7) (Dinnebier et al., 2002) and rubidium anthranilate monohydrate (RbO8) (Wiesbrock & Schmidbaur, 2003) and rubidium sulfosalicylate 1.33 hydrate (RbO7) (Smith et al., 2007).

The two-dimensional polymeric structure of the title compound (Fig. 2) is stabilized by intermolecular water OH···Ocarboxyl hydrogen bonds (Table 1) and weak inter-ring ππ interactions [minimum ring centroid separation, 3.620 (4) Å]. The 5-NSA anion has the short intramolecular phenolic OH···Ocarboxyl hydrogen bond and the essentially planar conformation commonly found in this ligand (Kumar et al., 2003; Smith et al., 2005) [torsion angles: C2—C1—C11—O11, -177.1 (7)°; C4—C5—N5—O52, 172.0 (7)°].

Related literature top

For the structures of some Rb complexes with aromatic carboxylic acids, see: Dinnebier et al. (2002); Wiesbrock & Schmidbaur (2003); Smith et al. (2007). For the structure of 5-nitroasalicylic acid and some Lewis base salts and metal complexes of this acid, see: Kumar et al. (2003); Smith et al. (2005); Morgant et al. (2006).

Experimental top

The title compound was synthesized by heating together under reflux for 15 minutes, 1 mmol quantities of 5-nitrosalicylic acid and rubidium hydroxide in 50 ml of 1:9 ethanol–water. After concentration to ca 30 ml, partial room temperature evaporation of the solution gave pale yellow needle prisms from which a suitable specimen was cleaved for the X-ray analysis.

Refinement top

The water and hydroxyl H atoms were located in a difference-Fourier synthesis and their positional and isotropic displacement parameters were allowed to ride together with the ring hydrogen atoms which were included in calculated positions with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C,O).

Structure description top

The structures of the alkali metal complexes with aromatic carboxylic acids are of interest, particularly with the heavier metals Rb and Cs, because of their expanded coordination spheres and their ability to form polymeric systems. Although the structures of a series of metalII complex adducts with 5-nitrosalicylic acid (5-NSA), of the type [M(5-NSA-)(H2O)5]. (5-NSA). H2O (M = Mg, Co, Ni, Zn) have been reported (Morgant et al., 2006), no alkali metal complexes with 5-NSA are known. We obtained crystals of the title compound [Rb2(C7H4NO2)2(H2O)2]n from the reaction of 5-NSA with rubidium hydroxide and the structure is reported here.

In the structure of this complex, the cyclic centrosymmetric dimeric repeating unit (Fig. 1) comprises two irregular RbO4 complex centres bridged by the carboxylate groups of the 5-NSA ligands. The coordination about each Rb is completed by a monodentate water molecule and a phenolic O donor which gives a bridging extension [Rb—O range 3.116 (7)–3.135 (5) Å]. The nitro O atoms (O51, O52) also give a weak symmetric bidentate association with inversion–related Rb centres [Rb—O, 3.290 (7), 3.261 (8) Å], a little too long to be considered formal Rb—O bonds. The coordination about Rb in this structure is therefore simpler than is found in other polymeric rubidium carboxylate complexes, e.g. and in rubidium salicylate (RbO7) (Dinnebier et al., 2002) and rubidium anthranilate monohydrate (RbO8) (Wiesbrock & Schmidbaur, 2003) and rubidium sulfosalicylate 1.33 hydrate (RbO7) (Smith et al., 2007).

The two-dimensional polymeric structure of the title compound (Fig. 2) is stabilized by intermolecular water OH···Ocarboxyl hydrogen bonds (Table 1) and weak inter-ring ππ interactions [minimum ring centroid separation, 3.620 (4) Å]. The 5-NSA anion has the short intramolecular phenolic OH···Ocarboxyl hydrogen bond and the essentially planar conformation commonly found in this ligand (Kumar et al., 2003; Smith et al., 2005) [torsion angles: C2—C1—C11—O11, -177.1 (7)°; C4—C5—N5—O52, 172.0 (7)°].

For the structures of some Rb complexes with aromatic carboxylic acids, see: Dinnebier et al. (2002); Wiesbrock & Schmidbaur (2003); Smith et al. (2007). For the structure of 5-nitroasalicylic acid and some Lewis base salts and metal complexes of this acid, see: Kumar et al. (2003); Smith et al. (2005); Morgant et al. (2006).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the dimeric repeat unit of the title complex, with non-H atoms drawn as 40% probability ellipsoids. For symmetry codes: (i) x, y, z - 1; (ii) -x, -y, -z; (v) -x, y - 1/2, -z + 3/2.
[Figure 2] Fig. 2. A perspective view of the polymeric structure with hydrogen bonds shown as dashed lines. For symmetry codes, see Fig. 1 and Table 1.
Poly[aqua(µ-2-hydroxy-5-nitrobenzoato- κ3O1:O1':O2)rubidium] top
Crystal data top
[Rb(C7H4NO5)(H2O)]F(000) = 560
Mr = 285.60Dx = 1.965 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4363 reflections
a = 11.9738 (5) Åθ = 3.4–28.8°
b = 12.0230 (4) ŵ = 5.14 mm1
c = 6.9571 (3) ÅT = 200 K
β = 105.401 (4)°Needle, yellow
V = 965.59 (7) Å30.50 × 0.20 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1893 independent reflections
Radiation source: Enhance (Mo) X-ray source1651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1414
Tmin = 0.572, Tmax = 0.980l = 88
6051 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.1295P)2 + 0.7347P]
where P = (Fo2 + 2Fc2)/3
1893 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 1.11 e Å3
Crystal data top
[Rb(C7H4NO5)(H2O)]V = 965.59 (7) Å3
Mr = 285.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9738 (5) ŵ = 5.14 mm1
b = 12.0230 (4) ÅT = 200 K
c = 6.9571 (3) Å0.50 × 0.20 × 0.10 mm
β = 105.401 (4)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1893 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1651 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 0.980Rint = 0.027
6051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.17Δρmax = 0.81 e Å3
1893 reflectionsΔρmin = 1.11 e Å3
136 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.11224 (4)0.11709 (4)0.23072 (7)0.0208 (2)
O1W0.0713 (6)0.1033 (5)0.2300 (10)0.068 (2)
O20.1661 (5)0.3786 (4)0.5968 (10)0.056 (2)
O110.2015 (5)0.0401 (5)0.5983 (9)0.063 (2)
O120.0880 (4)0.1881 (5)0.5829 (8)0.0583 (19)
O510.6650 (5)0.2709 (6)0.5398 (9)0.070 (2)
O520.6074 (6)0.1054 (5)0.5877 (13)0.068 (3)
N50.5896 (5)0.2061 (6)0.5701 (9)0.049 (2)
C10.2840 (6)0.2186 (6)0.5897 (9)0.041 (2)
C20.2690 (6)0.3339 (6)0.5920 (10)0.043 (2)
C30.3609 (7)0.4063 (7)0.5906 (11)0.049 (3)
C40.4652 (7)0.3660 (6)0.5873 (12)0.046 (2)
C50.4801 (6)0.2488 (6)0.5818 (9)0.043 (2)
C60.3918 (6)0.1769 (6)0.5851 (10)0.042 (2)
C110.1863 (7)0.1422 (6)0.5922 (11)0.043 (2)
H20.109400.320000.589100.0670*
H30.349600.482700.591800.0580*
H40.526400.413900.588700.0560*
H60.403800.100500.584200.0500*
H11W0.113100.057800.285400.0810*
H12W0.021100.129800.341400.0810*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0199 (4)0.0188 (4)0.0234 (4)0.0022 (2)0.0050 (2)0.0002 (2)
O1W0.069 (4)0.071 (4)0.058 (4)0.022 (3)0.009 (3)0.002 (3)
O20.045 (3)0.058 (4)0.065 (4)0.005 (2)0.014 (3)0.003 (2)
O110.072 (4)0.048 (4)0.074 (4)0.007 (3)0.027 (3)0.008 (3)
O120.045 (3)0.071 (4)0.059 (3)0.002 (3)0.014 (2)0.005 (3)
O510.053 (3)0.071 (4)0.090 (4)0.007 (3)0.026 (3)0.003 (4)
O520.057 (4)0.050 (4)0.099 (5)0.012 (3)0.024 (4)0.007 (3)
N50.043 (3)0.047 (4)0.056 (4)0.002 (3)0.012 (3)0.004 (3)
C10.045 (4)0.042 (4)0.035 (3)0.000 (3)0.010 (3)0.005 (3)
C20.043 (4)0.046 (4)0.040 (4)0.005 (3)0.013 (3)0.003 (3)
C30.058 (5)0.042 (4)0.047 (4)0.005 (3)0.015 (4)0.002 (3)
C40.050 (4)0.044 (4)0.047 (4)0.009 (3)0.016 (3)0.002 (3)
C50.044 (4)0.044 (4)0.039 (3)0.004 (3)0.009 (3)0.000 (3)
C60.048 (4)0.039 (4)0.038 (3)0.000 (3)0.011 (3)0.002 (3)
C110.046 (4)0.044 (4)0.039 (4)0.003 (3)0.010 (3)0.009 (3)
Geometric parameters (Å, º) top
Rb1—O1W3.116 (7)N5—C51.430 (10)
Rb1—O113.131 (6)C1—C111.491 (11)
Rb1—O12i3.132 (5)C1—C21.399 (10)
Rb1—O2ii3.135 (5)C1—C61.393 (10)
O2—C21.353 (10)C2—C31.405 (11)
O11—C111.240 (9)C3—C41.345 (12)
O12—C111.286 (10)C4—C51.422 (10)
O51—N51.252 (9)C5—C61.371 (10)
O52—N51.230 (9)C3—H30.9300
O1W—H11W0.8900C4—H40.9300
O1W—H12W0.9000C6—H60.9300
O2—H20.9700
O1W—Rb1—O11137.27 (16)C6—C1—C11120.9 (7)
O1W—Rb1—O12i120.79 (17)C1—C2—C3120.7 (7)
O1W—Rb1—O2ii68.54 (16)O2—C2—C3118.3 (7)
O11—Rb1—O12i87.66 (15)O2—C2—C1121.0 (6)
O2ii—Rb1—O1168.78 (16)C2—C3—C4120.6 (7)
O2ii—Rb1—O12i127.80 (16)C3—C4—C5118.8 (7)
Rb1—O2ii—C2ii129.2 (4)N5—C5—C6119.8 (7)
Rb1—O11—C11123.7 (5)C4—C5—C6121.4 (7)
Rb1i—O12—C11130.8 (5)N5—C5—C4118.7 (7)
Rb1—O1W—H11W121.00C1—C6—C5119.8 (7)
Rb1—O1W—H12W139.00O11—C11—C1120.1 (7)
H11W—O1W—H12W100.00O12—C11—C1116.5 (6)
Rb1iii—O2—H2119.00O11—C11—O12123.4 (8)
C2—O2—H2110.00C2—C3—H3120.00
O51—N5—C5119.9 (7)C4—C3—H3120.00
O52—N5—C5119.0 (7)C3—C4—H4121.00
O51—N5—O52121.1 (7)C5—C4—H4121.00
C2—C1—C6118.7 (7)C1—C6—H6120.00
C2—C1—C11120.5 (7)C5—C6—H6120.00
O1W—Rb1—O11—C1132.4 (7)C2—C1—C6—C50.4 (9)
O12i—Rb1—O11—C11102.9 (6)C11—C1—C6—C5179.7 (6)
O2ii—Rb1—O11—C1129.5 (6)C2—C1—C11—O11177.1 (7)
O1W—Rb1—O12i—C11i62.5 (6)C2—C1—C11—O124.5 (10)
O11—Rb1—O12i—C11i83.8 (6)C6—C1—C11—O112.9 (10)
O1W—Rb1—O2ii—C2ii96.4 (6)C6—C1—C11—O12175.5 (6)
O11—Rb1—O2ii—C2ii81.5 (6)C11—C1—C2—O20.1 (10)
Rb1—O2ii—C2ii—C1ii159.4 (5)C11—C1—C2—C3179.7 (6)
Rb1—O2ii—C2ii—C3ii20.2 (9)C6—C1—C2—O2179.9 (6)
Rb1—O11—C11—O1273.6 (9)C6—C1—C2—C30.3 (10)
Rb1—O11—C11—C1104.7 (7)O2—C2—C3—C4179.5 (7)
Rb1i—O12—C11—O1134.3 (11)C1—C2—C3—C40.1 (11)
Rb1i—O12—C11—C1147.4 (5)C2—C3—C4—C51.1 (11)
O51—N5—C5—C48.9 (9)C3—C4—C5—N5177.5 (7)
O52—N5—C5—C4172.0 (7)C3—C4—C5—C61.7 (11)
O51—N5—C5—C6170.3 (6)N5—C5—C6—C1177.8 (6)
O52—N5—C5—C68.8 (10)C4—C5—C6—C11.4 (10)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O120.971.612.468 (8)145
O1W—H11W···O11iv0.891.902.794 (9)179
O1W—H12W···O12v0.901.962.861 (9)180
Symmetry codes: (iv) x, y, z1; (v) x, y, z.

Experimental details

Crystal data
Chemical formula[Rb(C7H4NO5)(H2O)]
Mr285.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)11.9738 (5), 12.0230 (4), 6.9571 (3)
β (°) 105.401 (4)
V3)965.59 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.14
Crystal size (mm)0.50 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.572, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
6051, 1893, 1651
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.181, 1.17
No. of reflections1893
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 1.11

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O120.971.612.468 (8)145
O1W—H11W···O11i0.891.902.794 (9)179
O1W—H12W···O12ii0.901.962.861 (9)180
Symmetry codes: (i) x, y, z1; (ii) x, y, z.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Committee, the Faculty of Science and Technology and the University Library, Queensland University of Technology and Griffith University.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDinnebier, R. E., Jelonek, S., Sieler, J. & Stephens, P. W. (2002). Z. Anorg. Allg. Chem. 628, 363–368.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKumar, V. S. S., Nangia, A., Kirchner, M. T. & Boese, R. (2003). New J. Chem. 27, 224–226.  Google Scholar
First citationMorgant, G., Bouhmaida, N., Balde, L., Ghermani, N. E. & d'Angelo, J. (2006). Polyhedron, 25, 2229–2235.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Hortono, A. W., Wermuth, U. D., Healy, P. C., White, J. M. & Rae, A. D. (2005). Aust. J. Chem. 58, 47–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2007). Polyhedron, 26, 3645–3652.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiesbrock, F. & Schmidbaur, H. (2003). Inorg. Chem. 42, 7283–7289.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds