organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Di­bromo­naphthalene-2,7-diyl bis­­(tri­fluoro­methane­sulfonate)

aHenan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 September 2011; accepted 15 September 2011; online 30 September 2011)

The naphthalene fused ring of the title compound, C12H4Br2F6O6S2, is slightly buckled (r.m.s. deviation = 0.036 Å) along the common C—C bond and the benzene rings are twisted by 3.2 (3)°. The two trifluoro­methyl­sulfonyl groups lie on opposite sides of the fused-ring system. The crystal structure features short inter­molecular F⋯F contacts [2.715 (4) and 2.832 (4) Å].

Related literature

For the synthesis and background chemistry, see: Shinamura et al. (2011[Shinamura, S., Osaka, I., Miyazaki, E., Nakao, A., Yamagishi, M., Takeya, J. & Takimiya, K. (2011). J. Am. Chem. Soc. 133, 5024-5033.]).

[Scheme 1]

Experimental

Crystal data
  • C12H4Br2F6O6S2

  • Mr = 582.09

  • Monoclinic, P 21 /n

  • a = 5.2413 (11) Å

  • b = 26.450 (6) Å

  • c = 12.429 (3) Å

  • β = 90.169 (3)°

  • V = 1723.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.04 mm−1

  • T = 173 K

  • 0.32 × 0.30 × 0.20 mm

Data collection
  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.573, Tmax = 1.000

  • 17398 measured reflections

  • 3933 independent reflections

  • 3662 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.094

  • S = 1.16

  • 3933 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (Scheme I), which is synthesized from commercially available 3,6-dibromonaphthalene-2,7-diol, has trifluoromethysulfonyloxy (abbreviated OTf) substituents that can be replaced by an acetylenic –CC–R radical. The product is then converted to a naphthodithiophene by treatment with sodium sulfide. Such naphthodithiophenes can be used as an organic field-effect transistors (Shinamura et al., 2011). We intend to examine these compounds for such applications; the title compound is a precursor. The naphthalene fused-ring is slightly buckled along the common carbon-carbon bond as the benzene rings are offset by 3.2 (3) °. The two trifluoromethylsulfonyl groups lie on opposite sides of the fused-ring (Fig. 1). The crystal structure features short intermolecular F···F contacts (2.715 (4) Å between F3 and inversion-related F4, and 2.832 (4) Å between F3 and inversion symmetry-related F5) that give rise to the formation of a ribbon motif.

Related literature top

For the synthesis and background chemistry, see: Shinamura et al. (2011).

Experimental top

3,6-Dibromonaphthalene-2,7-diol (3.15 g,10 mmol) was dissolved in the mixture of dichloromethane (100 ml) and triethylamine (3.04 g,30 mmol). The solution was cooled to 273 K. Trifluoromethanesulfonic acid anhydride (3.21 g, 22 mmol) dissolved in dichloromethane (20 ml) was added dropwise. The mxiture was kept cold for 12 h. The solvent was evaporated and the residue purified by column chromatography on silica gel (petroleum ether:ethyl acetate =10:1) to provide the desired product as a white solid (3.78 g, yield 65%). The procedure was that reported by Shinamura et al. (2011).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation. Omitted from the refinement because of bad disagreement between observed and calculated structure factors were reflections (0 1 1), (0 2 0) and (0 2 1).

Structure description top

The title compound (Scheme I), which is synthesized from commercially available 3,6-dibromonaphthalene-2,7-diol, has trifluoromethysulfonyloxy (abbreviated OTf) substituents that can be replaced by an acetylenic –CC–R radical. The product is then converted to a naphthodithiophene by treatment with sodium sulfide. Such naphthodithiophenes can be used as an organic field-effect transistors (Shinamura et al., 2011). We intend to examine these compounds for such applications; the title compound is a precursor. The naphthalene fused-ring is slightly buckled along the common carbon-carbon bond as the benzene rings are offset by 3.2 (3) °. The two trifluoromethylsulfonyl groups lie on opposite sides of the fused-ring (Fig. 1). The crystal structure features short intermolecular F···F contacts (2.715 (4) Å between F3 and inversion-related F4, and 2.832 (4) Å between F3 and inversion symmetry-related F5) that give rise to the formation of a ribbon motif.

For the synthesis and background chemistry, see: Shinamura et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of C12H4Br2F6O6S2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
3,6-Dibromonaphthalene-2,7-diyl bis(trifluoromethanesulfonate) top
Crystal data top
C12H4Br2F6O6S2F(000) = 1120
Mr = 582.09Dx = 2.244 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5210 reflections
a = 5.2413 (11) Åθ = 0.8–27.5°
b = 26.450 (6) ŵ = 5.04 mm1
c = 12.429 (3) ÅT = 173 K
β = 90.169 (3)°Prism, colourless
V = 1723.1 (7) Å30.32 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3933 independent reflections
Radiation source: fine-focus sealed tube3662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 66
Tmin = 0.573, Tmax = 1.000k = 3434
17398 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0349P)2 + 2.4738P]
where P = (Fo2 + 2Fc2)/3
3933 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C12H4Br2F6O6S2V = 1723.1 (7) Å3
Mr = 582.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.2413 (11) ŵ = 5.04 mm1
b = 26.450 (6) ÅT = 173 K
c = 12.429 (3) Å0.32 × 0.30 × 0.20 mm
β = 90.169 (3)°
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3933 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
3662 reflections with I > 2σ(I)
Tmin = 0.573, Tmax = 1.000Rint = 0.048
17398 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.16Δρmax = 0.79 e Å3
3933 reflectionsΔρmin = 0.45 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.38667 (8)0.159089 (15)0.15955 (3)0.03395 (12)
Br20.69892 (7)0.232466 (15)0.59710 (3)0.03228 (12)
S10.51801 (18)0.01955 (4)0.30367 (8)0.0297 (2)
S20.36288 (18)0.17543 (4)0.81831 (7)0.0286 (2)
F10.4753 (6)0.03529 (11)0.0989 (2)0.0519 (7)
F20.8431 (5)0.05488 (10)0.1624 (2)0.0486 (7)
F30.7393 (6)0.02313 (10)0.1425 (2)0.0576 (8)
F40.0166 (5)0.11242 (10)0.8258 (2)0.0501 (7)
F50.3216 (6)0.08682 (11)0.9073 (2)0.0634 (8)
F60.0909 (5)0.14491 (11)0.9781 (2)0.0506 (7)
O10.5105 (5)0.07808 (10)0.3257 (2)0.0295 (6)
O20.2705 (6)0.00101 (11)0.2966 (3)0.0435 (7)
O30.7065 (6)0.00149 (13)0.3702 (3)0.0523 (9)
O40.4608 (5)0.14368 (10)0.71859 (19)0.0296 (6)
O50.1917 (5)0.21376 (10)0.7854 (2)0.0339 (6)
O60.5748 (6)0.18540 (13)0.8852 (2)0.0453 (8)
C10.2103 (7)0.14519 (14)0.2887 (3)0.0246 (7)
C20.2856 (7)0.10442 (14)0.3545 (3)0.0243 (7)
C30.1645 (7)0.09387 (13)0.4487 (3)0.0260 (7)
H30.21680.06580.49100.031*
C40.0403 (7)0.12493 (13)0.4835 (3)0.0247 (7)
C50.1600 (7)0.11762 (14)0.5845 (3)0.0264 (8)
H50.11300.09000.62920.032*
C60.3434 (7)0.15073 (14)0.6165 (3)0.0260 (8)
C70.4289 (7)0.19063 (13)0.5502 (3)0.0247 (7)
C80.3173 (7)0.19787 (14)0.4520 (3)0.0263 (7)
H80.37420.22450.40680.032*
C90.1171 (7)0.16576 (13)0.4172 (3)0.0239 (7)
C100.0091 (7)0.17479 (14)0.3192 (3)0.0249 (7)
H100.04570.20160.27400.030*
C110.6552 (9)0.02223 (16)0.1672 (3)0.0374 (9)
C120.1767 (9)0.12624 (16)0.8865 (3)0.0376 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0434 (2)0.0326 (2)0.0258 (2)0.00171 (17)0.00934 (16)0.00457 (15)
Br20.0305 (2)0.0321 (2)0.0343 (2)0.00321 (15)0.00105 (15)0.00809 (15)
S10.0307 (5)0.0236 (5)0.0348 (5)0.0030 (4)0.0049 (4)0.0053 (4)
S20.0322 (5)0.0296 (5)0.0239 (4)0.0006 (4)0.0044 (4)0.0032 (4)
F10.0710 (19)0.0505 (17)0.0342 (14)0.0086 (14)0.0094 (13)0.0054 (12)
F20.0517 (16)0.0439 (15)0.0501 (15)0.0067 (12)0.0195 (12)0.0014 (12)
F30.072 (2)0.0351 (15)0.0652 (18)0.0132 (14)0.0185 (15)0.0114 (13)
F40.0533 (16)0.0500 (17)0.0472 (15)0.0194 (13)0.0033 (12)0.0053 (12)
F50.083 (2)0.0451 (17)0.0623 (18)0.0213 (15)0.0097 (16)0.0221 (14)
F60.0611 (17)0.0595 (18)0.0313 (13)0.0012 (14)0.0112 (12)0.0017 (12)
O10.0299 (13)0.0263 (14)0.0321 (14)0.0015 (11)0.0038 (11)0.0013 (11)
O20.0354 (16)0.0268 (15)0.068 (2)0.0047 (12)0.0101 (14)0.0043 (14)
O30.0495 (19)0.056 (2)0.0515 (19)0.0178 (16)0.0005 (15)0.0233 (16)
O40.0347 (14)0.0324 (15)0.0218 (12)0.0063 (11)0.0046 (10)0.0033 (10)
O50.0431 (16)0.0275 (14)0.0312 (14)0.0057 (12)0.0002 (12)0.0021 (11)
O60.0403 (16)0.059 (2)0.0362 (16)0.0000 (15)0.0135 (13)0.0151 (14)
C10.0309 (19)0.0239 (18)0.0191 (16)0.0057 (15)0.0018 (14)0.0001 (13)
C20.0241 (17)0.0225 (18)0.0263 (18)0.0016 (14)0.0020 (14)0.0025 (14)
C30.036 (2)0.0194 (17)0.0228 (17)0.0014 (15)0.0035 (14)0.0012 (13)
C40.0329 (19)0.0198 (17)0.0213 (17)0.0040 (15)0.0016 (14)0.0008 (13)
C50.036 (2)0.0210 (18)0.0219 (17)0.0040 (15)0.0018 (14)0.0002 (14)
C60.0307 (19)0.030 (2)0.0176 (16)0.0070 (15)0.0020 (14)0.0015 (14)
C70.0259 (17)0.0194 (17)0.0289 (18)0.0007 (14)0.0002 (14)0.0055 (14)
C80.0316 (19)0.0209 (18)0.0265 (18)0.0026 (15)0.0050 (14)0.0013 (14)
C90.0311 (19)0.0171 (17)0.0237 (17)0.0053 (14)0.0026 (14)0.0026 (13)
C100.0321 (19)0.0227 (18)0.0200 (16)0.0053 (15)0.0042 (14)0.0018 (13)
C110.044 (2)0.028 (2)0.040 (2)0.0033 (18)0.0039 (19)0.0027 (17)
C120.048 (2)0.034 (2)0.031 (2)0.0055 (19)0.0030 (18)0.0018 (17)
Geometric parameters (Å, º) top
Br1—C11.886 (3)O4—C61.421 (4)
Br2—C71.887 (3)C1—C101.367 (5)
S1—O31.405 (3)C1—C21.410 (5)
S1—O21.409 (3)C2—C31.359 (5)
S1—O11.573 (3)C3—C41.418 (5)
S1—C111.841 (4)C3—H30.9500
S2—O61.410 (3)C4—C51.415 (5)
S2—O51.414 (3)C4—C91.417 (5)
S2—O41.584 (3)C5—C61.359 (5)
S2—C121.835 (5)C5—H50.9500
F1—C111.317 (5)C6—C71.412 (5)
F2—C111.311 (5)C7—C81.366 (5)
F3—C111.314 (5)C8—C91.417 (5)
F4—C121.313 (5)C8—H80.9500
F5—C121.315 (5)C9—C101.405 (5)
F6—C121.321 (5)C10—H100.9500
O1—C21.414 (4)
O3—S1—O2122.2 (2)C4—C5—H5120.6
O3—S1—O1107.7 (2)C5—C6—C7122.4 (3)
O2—S1—O1111.60 (16)C5—C6—O4118.7 (3)
O3—S1—C11106.5 (2)C7—C6—O4118.8 (3)
O2—S1—C11108.3 (2)C8—C7—C6119.3 (3)
O1—S1—C1197.59 (16)C8—C7—Br2120.8 (3)
O6—S2—O5122.32 (19)C6—C7—Br2119.8 (3)
O6—S2—O4107.69 (17)C7—C8—C9120.2 (3)
O5—S2—O4111.13 (15)C7—C8—H8119.9
O6—S2—C12106.2 (2)C9—C8—H8119.9
O5—S2—C12107.73 (19)C10—C9—C8120.6 (3)
O4—S2—C1299.18 (17)C10—C9—C4120.0 (3)
C2—O1—S1123.3 (2)C8—C9—C4119.4 (3)
C6—O4—S2119.3 (2)C1—C10—C9120.3 (3)
C10—C1—C2119.6 (3)C1—C10—H10119.8
C10—C1—Br1120.1 (3)C9—C10—H10119.8
C2—C1—Br1120.4 (3)F3—C11—F2109.8 (4)
C3—C2—C1121.7 (3)F3—C11—F1109.2 (4)
C3—C2—O1120.2 (3)F2—C11—F1109.7 (4)
C1—C2—O1117.7 (3)F3—C11—S1108.1 (3)
C2—C3—C4119.6 (3)F2—C11—S1111.0 (3)
C2—C3—H3120.2F1—C11—S1109.0 (3)
C4—C3—H3120.2F4—C12—F5109.7 (4)
C5—C4—C9119.6 (3)F4—C12—F6109.5 (4)
C5—C4—C3121.6 (3)F5—C12—F6108.9 (3)
C9—C4—C3118.7 (3)F4—C12—S2110.0 (3)
C6—C5—C4118.9 (3)F5—C12—S2110.2 (3)
C6—C5—H5120.6F6—C12—S2108.4 (3)
O3—S1—O1—C2125.8 (3)C7—C8—C9—C10176.1 (3)
O2—S1—O1—C210.9 (3)C7—C8—C9—C42.4 (5)
C11—S1—O1—C2124.1 (3)C5—C4—C9—C10176.9 (3)
O6—S2—O4—C6146.3 (3)C3—C4—C9—C100.0 (5)
O5—S2—O4—C69.9 (3)C5—C4—C9—C81.7 (5)
C12—S2—O4—C6103.3 (3)C3—C4—C9—C8178.5 (3)
C10—C1—C2—C30.6 (6)C2—C1—C10—C92.1 (5)
Br1—C1—C2—C3179.1 (3)Br1—C1—C10—C9177.7 (3)
C10—C1—C2—O1173.5 (3)C8—C9—C10—C1176.8 (3)
Br1—C1—C2—O16.2 (4)C4—C9—C10—C11.8 (5)
S1—O1—C2—C363.9 (4)O3—S1—C11—F353.1 (4)
S1—O1—C2—C1123.0 (3)O2—S1—C11—F380.0 (3)
C1—C2—C3—C41.1 (5)O1—S1—C11—F3164.2 (3)
O1—C2—C3—C4171.6 (3)O3—S1—C11—F267.4 (4)
C2—C3—C4—C5175.4 (3)O2—S1—C11—F2159.5 (3)
C2—C3—C4—C91.4 (5)O1—S1—C11—F243.7 (3)
C9—C4—C5—C61.2 (5)O3—S1—C11—F1171.6 (3)
C3—C4—C5—C6175.5 (3)O2—S1—C11—F138.5 (3)
C4—C5—C6—C73.5 (5)O1—S1—C11—F177.3 (3)
C4—C5—C6—O4179.2 (3)O6—S2—C12—F4176.0 (3)
S2—O4—C6—C597.9 (4)O5—S2—C12—F451.3 (3)
S2—O4—C6—C784.7 (4)O4—S2—C12—F464.5 (3)
C5—C6—C7—C82.8 (6)O6—S2—C12—F555.0 (3)
O4—C6—C7—C8179.9 (3)O5—S2—C12—F5172.4 (3)
C5—C6—C7—Br2176.1 (3)O4—S2—C12—F556.6 (3)
O4—C6—C7—Br21.2 (4)O6—S2—C12—F664.2 (3)
C6—C7—C8—C90.3 (5)O5—S2—C12—F668.5 (3)
Br2—C7—C8—C9179.2 (3)O4—S2—C12—F6175.8 (3)

Experimental details

Crystal data
Chemical formulaC12H4Br2F6O6S2
Mr582.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)5.2413 (11), 26.450 (6), 12.429 (3)
β (°) 90.169 (3)
V3)1723.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.04
Crystal size (mm)0.32 × 0.30 × 0.20
Data collection
DiffractometerRigaku Saturn724+ CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.573, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17398, 3933, 3662
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.094, 1.16
No. of reflections3933
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.45

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank Henan University of Traditional Chinese Medicine and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShinamura, S., Osaka, I., Miyazaki, E., Nakao, A., Yamagishi, M., Takeya, J. & Takimiya, K. (2011). J. Am. Chem. Soc. 133, 5024–5033.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds