organic compounds
1-(2,4,6-Triisopropylphenyl)ethanone
aThe Maritimes Centre for Green Chemistry, Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia, Canada B3H 3C3
*Correspondence e-mail: jason.masuda@smu.ca
The title compound, C17H26O, is a di-ortho-alkyl substituted phenyl ethanone that exhibits a significant twisting of the ketone fragment relative to the aromatic ring [O—C—C—C torsion angle = 89.32 (17)°] due to steric pressure from the ortho-isopropyl groups. One ortho- and the para-isopropyl group exhibit orientational disorder with a refined site occupancy factor of 0.562 (3):0.438 (3).
Related literature
There are two examples in the literature of crystallographically characterized ortho-substituted phenyl ethanones, see: van Koningsveld et al. (1987); Padmanabhan et al. (1986); De Ridder & Schenk (1995). For the preparation, see: Delair et al. (1996). For the use of the title molecule in the preparation of 2-ethynyl-1,3,5-triisopropylbenzene, see: Tani et al. (1963). For some related ligands containing ortho-isopropyl groups, see: Boeré & Masuda (2002); Boeré et al. (2008); Giffin et al. (2010a,b, 2011).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Bruker, 2008) and publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536811038293/nr2011sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811038293/nr2011Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811038293/nr2011Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S1600536811038293/nr2011Isup4.cml
The title compound was prepared following literature methods (Delair et al, 1996) and was crystallized as large needles from a hot methanol solution cooled to room temperature.
The hydrogen atoms were placed in geometrically idealized positions of 0.98Å (methyl C—H), 0.95Å (aromatic C—H) and 1.00Å (methine C—H) and constrained to ride on the parent atom with Uiso(H) = 1.2 Ueq(C) for aromatic and tertiary protons as well as Uiso(H) = 1.5 Ueq(C) for the methyl groups. Two of the three isopropyl groups were modeled with two-site disorder. The isopropyl groups containing atoms C12A, C13A, C14A and C12B, C13B, C14B as well as C15A, C16A, C17A and C15B, C16B, C17B were modeled with a refined site occupancy factor of 0.562 (3):0.438 (3). In order to obtain satisfactory thermal parameters for the disordered part of the molecule DELU commands were used on the atoms C12A, C12B, C13A, C13B, C14A, C14B and C15A, C15B, C16A, C16B, C17A, C17B respectively for each isopropyl group. Unit-cell parameters were determinedd using a θ range of 2.54 to 27.83° however, in order to obtian a reasonable level of data completeness, θ was limited to 26.00° for refinement.
We have had a long standing interest in the impact of sterically bulky ortho-alkyl groups on the conformation of ligands containing aryl rings, and in particular, those with ortho-isopropyl substituents (Boeré & Masuda, 2002; Boeré et al., 2008; Giffin et al., 2010a; Giffin, et al., 2010b; Giffin et al., 2011). The steric impact of these ortho-isopropyl groups has proven important in the stabilization of many reactive functional groups. In our continuing interest in these systems we have prepared and studied the title compound which is an intermediate to the related acetylene, 2-ethynyl-1,3,5-triisopropylbenzene (Tani et al., 1963).
There are few solid state structures of ortho-alkyl substituted ethanones reported in the literature. One example is 1-tert-Butyl-4-acetyl-3,5-dimethyl-2,6-dinitrobenzene that exhibit O—C—CAr—CAr angles in the range of 77.50° to 84.12°(Padmanabhan et al., 1986; De Ridder & Schenk, 1995). Another example is 4-tert-Butyl-2,6-dimethylacetophenone that has a O—C—CAr—CAr angle of 79.58° (van Koningsveld et al., 1987). The title compound the ketone fragment is nearly perpendicular to the aryl ring with a torsion angle of 89.32 (17)° between the ketone C=O and the aryl ring (O1—C1—C3—C4). This can be attributed to the increased steric pressure of the ortho-isopropyl groups relative to the ortho-methyl groups in the previous two examples.
One ortho- and the para-isopropyl group exhibit two-site disorder with a refined site occupancy factor of 0.562 (3):0.438 (3). A careful look at the packing of the molecule reveals no typical hydrogen bonding and lacks significant intermolecular interactions (Figure 2).
There are two examples in the literature of crystallographically characterized ortho-substituted phenyl ethanones, see: van Koningsveld et al. (1987); Padmanabhan et al. (1986); De Ridder & Schenk (1995). For the preparation, see: Delair et al. (1996). For the use of the title molecule in the preparation of 2-ethynyl-1,3,5-triisopropylbenzene, see: Tani et al. (1963). For some related ligands containing ortho-isopropyl groups, see: Boeré & Masuda (2002); Boeré et al. (2008); Giffin et al. (2010a,b, 2011).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Bruker, 2008) and publCIF (Westrip, 2010).C17H26O | F(000) = 544 |
Mr = 246.38 | Dx = 1.051 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3864 reflections |
a = 5.8590 (12) Å | θ = 2.5–27.8° |
b = 20.248 (4) Å | µ = 0.06 mm−1 |
c = 13.148 (3) Å | T = 129 K |
β = 92.568 (2)° | Block, colourless |
V = 1558.2 (6) Å3 | 0.45 × 0.41 × 0.35 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 3047 independent reflections |
Radiation source: fine-focus sealed tube | 2460 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
φ and ω scans | θmax = 26.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −7→7 |
Tmin = 0.972, Tmax = 0.978 | k = −24→24 |
10949 measured reflections | l = −16→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0417P)2 + 0.6687P] where P = (Fo2 + 2Fc2)/3 |
3047 reflections | (Δ/σ)max < 0.001 |
214 parameters | Δρmax = 0.19 e Å−3 |
21 restraints | Δρmin = −0.27 e Å−3 |
C17H26O | V = 1558.2 (6) Å3 |
Mr = 246.38 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.8590 (12) Å | µ = 0.06 mm−1 |
b = 20.248 (4) Å | T = 129 K |
c = 13.148 (3) Å | 0.45 × 0.41 × 0.35 mm |
β = 92.568 (2)° |
Bruker APEXII CCD diffractometer | 3047 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2460 reflections with I > 2σ(I) |
Tmin = 0.972, Tmax = 0.978 | Rint = 0.030 |
10949 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 21 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.19 e Å−3 |
3047 reflections | Δρmin = −0.27 e Å−3 |
214 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.01390 (17) | 0.19352 (5) | 0.46376 (7) | 0.0360 (3) | |
C1 | −0.0742 (2) | 0.17979 (7) | 0.38182 (10) | 0.0274 (3) | |
C2 | −0.3278 (3) | 0.17911 (13) | 0.36357 (14) | 0.0645 (7) | |
H2A | −0.4011 | 0.1937 | 0.4253 | 0.097* | |
H2B | −0.3783 | 0.1342 | 0.3462 | 0.097* | |
H2C | −0.3705 | 0.2090 | 0.3073 | 0.097* | |
C3 | 0.0664 (2) | 0.16216 (7) | 0.29222 (10) | 0.0250 (3) | |
C4 | 0.1265 (2) | 0.09627 (7) | 0.27715 (11) | 0.0298 (3) | |
C5 | 0.2545 (2) | 0.08078 (8) | 0.19350 (11) | 0.0337 (4) | |
H5A | 0.2963 | 0.0361 | 0.1827 | 0.040* | |
C6 | 0.3226 (2) | 0.12825 (9) | 0.12577 (11) | 0.0340 (4) | |
C7 | 0.2595 (2) | 0.19336 (8) | 0.14225 (11) | 0.0345 (4) | |
H7A | 0.3045 | 0.2265 | 0.0960 | 0.041* | |
C8 | 0.1318 (2) | 0.21148 (7) | 0.22491 (10) | 0.0284 (3) | |
C9 | 0.0604 (3) | 0.04223 (8) | 0.35037 (14) | 0.0458 (5) | |
H9A | −0.0378 | 0.0627 | 0.4021 | 0.055* | |
C10 | 0.2720 (4) | 0.01420 (11) | 0.40679 (19) | 0.0743 (7) | |
H10A | 0.3480 | 0.0492 | 0.4471 | 0.111* | |
H10B | 0.3773 | −0.0032 | 0.3574 | 0.111* | |
H10C | 0.2268 | −0.0215 | 0.4521 | 0.111* | |
C11 | −0.0781 (4) | −0.01245 (10) | 0.2970 (2) | 0.0781 (8) | |
H11A | −0.2156 | 0.0065 | 0.2634 | 0.117* | |
H11B | −0.1222 | −0.0453 | 0.3473 | 0.117* | |
H11C | 0.0146 | −0.0337 | 0.2461 | 0.117* | |
C12A | 0.4554 (7) | 0.09901 (19) | 0.0358 (4) | 0.0262 (8) | 0.562 (3) |
H12A | 0.4883 | 0.0512 | 0.0487 | 0.031* | 0.562 (3) |
C13A | 0.3133 (6) | 0.1066 (2) | −0.0634 (3) | 0.0268 (7) | 0.562 (3) |
H13A | 0.4034 | 0.0925 | −0.1205 | 0.040* | 0.562 (3) |
H13B | 0.2693 | 0.1530 | −0.0726 | 0.040* | 0.562 (3) |
H13C | 0.1756 | 0.0793 | −0.0609 | 0.040* | 0.562 (3) |
C14A | 0.6817 (4) | 0.13736 (14) | 0.0294 (2) | 0.0299 (7) | 0.562 (3) |
H14A | 0.7695 | 0.1193 | −0.0259 | 0.045* | 0.562 (3) |
H14B | 0.7706 | 0.1331 | 0.0940 | 0.045* | 0.562 (3) |
H14C | 0.6488 | 0.1841 | 0.0160 | 0.045* | 0.562 (3) |
C12B | 0.4652 (9) | 0.1237 (2) | 0.0327 (5) | 0.0238 (10) | 0.438 (3) |
H12B | 0.5066 | 0.1689 | 0.0090 | 0.029* | 0.438 (3) |
C14B | 0.6776 (5) | 0.08476 (18) | 0.0610 (3) | 0.0307 (9) | 0.438 (3) |
H14D | 0.7730 | 0.1098 | 0.1105 | 0.046* | 0.438 (3) |
H14E | 0.7633 | 0.0766 | −0.0001 | 0.046* | 0.438 (3) |
H14F | 0.6347 | 0.0425 | 0.0910 | 0.046* | 0.438 (3) |
C13B | 0.3143 (10) | 0.0881 (3) | −0.0497 (4) | 0.0287 (14)* | 0.438 (3) |
H13D | 0.4046 | 0.0791 | −0.1090 | 0.043* | 0.438 (3) |
H13E | 0.1841 | 0.1163 | −0.0700 | 0.043* | 0.438 (3) |
H13F | 0.2584 | 0.0465 | −0.0222 | 0.043* | 0.438 (3) |
C15A | 0.0614 (13) | 0.2804 (4) | 0.2368 (7) | 0.0403 (10) | 0.562 (3) |
H15A | −0.0094 | 0.2858 | 0.3041 | 0.048* | 0.562 (3) |
C16A | −0.1203 (7) | 0.2960 (2) | 0.1501 (3) | 0.0578 (10) | 0.562 (3) |
H16A | −0.1752 | 0.3414 | 0.1576 | 0.087* | 0.562 (3) |
H16B | −0.2488 | 0.2653 | 0.1541 | 0.087* | 0.562 (3) |
H16C | −0.0511 | 0.2912 | 0.0840 | 0.087* | 0.562 (3) |
C17A | 0.2662 (6) | 0.32461 (14) | 0.2330 (3) | 0.0495 (9) | 0.562 (3) |
H17A | 0.3818 | 0.3106 | 0.2847 | 0.074* | 0.562 (3) |
H17B | 0.2208 | 0.3703 | 0.2462 | 0.074* | 0.562 (3) |
H17C | 0.3298 | 0.3218 | 0.1654 | 0.074* | 0.562 (3) |
C15B | 0.0787 (18) | 0.2866 (5) | 0.2488 (10) | 0.044 (2) | 0.438 (3) |
H15B | −0.0508 | 0.2864 | 0.2958 | 0.053* | 0.438 (3) |
C16B | 0.0019 (8) | 0.3298 (2) | 0.1582 (3) | 0.0445 (10) | 0.438 (3) |
H16D | −0.1275 | 0.3088 | 0.1211 | 0.067* | 0.438 (3) |
H16E | 0.1286 | 0.3350 | 0.1126 | 0.067* | 0.438 (3) |
H16F | −0.0445 | 0.3732 | 0.1827 | 0.067* | 0.438 (3) |
C17B | 0.2869 (6) | 0.32093 (18) | 0.3094 (4) | 0.0402 (10) | 0.438 (3) |
H17D | 0.3228 | 0.2964 | 0.3723 | 0.060* | 0.438 (3) |
H17E | 0.2459 | 0.3665 | 0.3260 | 0.060* | 0.438 (3) |
H17F | 0.4206 | 0.3211 | 0.2671 | 0.060* | 0.438 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0370 (6) | 0.0477 (7) | 0.0232 (5) | −0.0009 (5) | −0.0008 (4) | −0.0086 (5) |
C1 | 0.0263 (7) | 0.0320 (7) | 0.0240 (7) | −0.0024 (6) | 0.0019 (5) | −0.0061 (6) |
C2 | 0.0251 (8) | 0.131 (2) | 0.0382 (10) | −0.0011 (10) | 0.0074 (7) | −0.0324 (11) |
C3 | 0.0169 (6) | 0.0364 (8) | 0.0215 (7) | −0.0047 (5) | −0.0007 (5) | −0.0064 (6) |
C4 | 0.0251 (7) | 0.0345 (8) | 0.0302 (8) | −0.0103 (6) | 0.0061 (6) | −0.0112 (6) |
C5 | 0.0268 (7) | 0.0419 (8) | 0.0330 (8) | −0.0057 (6) | 0.0067 (6) | −0.0162 (7) |
C6 | 0.0176 (6) | 0.0633 (10) | 0.0212 (7) | −0.0002 (6) | 0.0001 (5) | −0.0076 (7) |
C7 | 0.0210 (7) | 0.0589 (10) | 0.0235 (7) | 0.0008 (6) | −0.0013 (5) | 0.0088 (7) |
C8 | 0.0197 (6) | 0.0397 (7) | 0.0253 (7) | 0.0006 (5) | −0.0048 (5) | 0.0021 (6) |
C9 | 0.0527 (10) | 0.0298 (8) | 0.0574 (11) | −0.0150 (7) | 0.0299 (9) | −0.0112 (7) |
C10 | 0.0848 (16) | 0.0629 (14) | 0.0770 (16) | −0.0128 (12) | 0.0222 (13) | 0.0352 (12) |
C11 | 0.0690 (14) | 0.0466 (11) | 0.123 (2) | −0.0340 (10) | 0.0532 (14) | −0.0408 (12) |
C12A | 0.0276 (14) | 0.027 (2) | 0.0246 (13) | −0.0014 (14) | 0.0059 (10) | −0.002 (2) |
C13A | 0.0273 (14) | 0.032 (2) | 0.0215 (12) | −0.0052 (15) | 0.0069 (10) | −0.0046 (15) |
C14A | 0.0219 (11) | 0.0399 (17) | 0.0283 (13) | 0.0005 (10) | 0.0048 (9) | −0.0030 (12) |
C12B | 0.0224 (18) | 0.027 (3) | 0.0221 (16) | −0.0016 (17) | 0.0031 (11) | −0.003 (3) |
C14B | 0.0245 (15) | 0.038 (2) | 0.0303 (18) | 0.0031 (12) | 0.0035 (12) | −0.0010 (14) |
C15A | 0.039 (3) | 0.0478 (17) | 0.035 (2) | 0.0202 (17) | 0.0160 (19) | 0.017 (2) |
C16A | 0.059 (2) | 0.072 (3) | 0.0433 (19) | 0.0391 (18) | 0.0063 (15) | 0.0148 (18) |
C17A | 0.077 (2) | 0.0236 (12) | 0.049 (2) | 0.0030 (13) | 0.0153 (17) | −0.0030 (14) |
C15B | 0.036 (4) | 0.0340 (19) | 0.061 (5) | 0.006 (2) | −0.013 (3) | 0.011 (2) |
C16B | 0.049 (2) | 0.0377 (19) | 0.047 (2) | 0.0158 (19) | 0.0026 (18) | 0.0073 (17) |
C17B | 0.044 (2) | 0.0297 (17) | 0.047 (3) | −0.0006 (14) | 0.0028 (16) | −0.0076 (16) |
O1—C1 | 1.2060 (17) | C13A—H13B | 0.9800 |
C1—C2 | 1.495 (2) | C13A—H13C | 0.9800 |
C1—C3 | 1.5102 (19) | C14A—H14A | 0.9800 |
C2—H2A | 0.9800 | C14A—H14B | 0.9800 |
C2—H2B | 0.9800 | C14A—H14C | 0.9800 |
C2—H2C | 0.9800 | C12B—C14B | 1.506 (6) |
C3—C4 | 1.396 (2) | C12B—C13B | 1.546 (8) |
C3—C8 | 1.399 (2) | C12B—H12B | 1.0000 |
C4—C5 | 1.3942 (19) | C14B—H14D | 0.9800 |
C4—C9 | 1.519 (2) | C14B—H14E | 0.9800 |
C5—C6 | 1.381 (2) | C14B—H14F | 0.9800 |
C5—H5A | 0.9500 | C13B—H13D | 0.9800 |
C6—C7 | 1.389 (2) | C13B—H13E | 0.9800 |
C6—C12B | 1.515 (7) | C13B—H13F | 0.9800 |
C6—C12A | 1.561 (5) | C15A—C17A | 1.500 (8) |
C7—C8 | 1.396 (2) | C15A—C16A | 1.557 (8) |
C7—H7A | 0.9500 | C15A—H15A | 1.0000 |
C8—C15A | 1.466 (8) | C16A—H16A | 0.9800 |
C8—C15B | 1.587 (11) | C16A—H16B | 0.9800 |
C9—C11 | 1.525 (2) | C16A—H16C | 0.9800 |
C9—C10 | 1.526 (3) | C17A—H17A | 0.9800 |
C9—H9A | 1.0000 | C17A—H17B | 0.9800 |
C10—H10A | 0.9800 | C17A—H17C | 0.9800 |
C10—H10B | 0.9800 | C15B—C16B | 1.528 (11) |
C10—H10C | 0.9800 | C15B—C17B | 1.587 (10) |
C11—H11A | 0.9800 | C15B—H15B | 1.0000 |
C11—H11B | 0.9800 | C16B—H16D | 0.9800 |
C11—H11C | 0.9800 | C16B—H16E | 0.9800 |
C12A—C13A | 1.524 (7) | C16B—H16F | 0.9800 |
C12A—C14A | 1.542 (5) | C17B—H17D | 0.9800 |
C12A—H12A | 1.0000 | C17B—H17E | 0.9800 |
C13A—H13A | 0.9800 | C17B—H17F | 0.9800 |
O1—C1—C2 | 121.88 (13) | C12A—C14A—H14A | 109.5 |
O1—C1—C3 | 121.65 (12) | C12A—C14A—H14B | 109.5 |
C2—C1—C3 | 116.47 (12) | H14A—C14A—H14B | 109.5 |
C1—C2—H2A | 109.5 | C12A—C14A—H14C | 109.5 |
C1—C2—H2B | 109.5 | H14A—C14A—H14C | 109.5 |
H2A—C2—H2B | 109.5 | H14B—C14A—H14C | 109.5 |
C1—C2—H2C | 109.5 | C6—C12B—C14B | 108.1 (4) |
H2A—C2—H2C | 109.5 | C6—C12B—C13B | 106.0 (4) |
H2B—C2—H2C | 109.5 | C14B—C12B—C13B | 111.7 (4) |
C4—C3—C8 | 120.95 (13) | C6—C12B—H12B | 110.3 |
C4—C3—C1 | 119.11 (12) | C14B—C12B—H12B | 110.3 |
C8—C3—C1 | 119.94 (13) | C13B—C12B—H12B | 110.3 |
C5—C4—C3 | 118.35 (14) | C12B—C14B—H14D | 109.5 |
C5—C4—C9 | 119.96 (14) | C12B—C14B—H14E | 109.5 |
C3—C4—C9 | 121.68 (13) | H14D—C14B—H14E | 109.5 |
C6—C5—C4 | 122.21 (14) | C12B—C14B—H14F | 109.5 |
C6—C5—H5A | 118.9 | H14D—C14B—H14F | 109.5 |
C4—C5—H5A | 118.9 | H14E—C14B—H14F | 109.5 |
C5—C6—C7 | 118.26 (13) | C12B—C13B—H13D | 109.5 |
C5—C6—C12B | 131.6 (2) | C12B—C13B—H13E | 109.5 |
C7—C6—C12B | 110.1 (2) | H13D—C13B—H13E | 109.5 |
C5—C6—C12A | 113.13 (19) | C12B—C13B—H13F | 109.5 |
C7—C6—C12A | 128.56 (19) | H13D—C13B—H13F | 109.5 |
C6—C7—C8 | 121.78 (14) | H13E—C13B—H13F | 109.5 |
C6—C7—H7A | 119.1 | C8—C15A—C17A | 109.6 (5) |
C8—C7—H7A | 119.1 | C8—C15A—C16A | 107.6 (5) |
C7—C8—C3 | 118.45 (14) | C17A—C15A—C16A | 112.1 (5) |
C7—C8—C15A | 119.8 (3) | C8—C15A—H15A | 109.2 |
C3—C8—C15A | 121.7 (3) | C17A—C15A—H15A | 109.2 |
C7—C8—C15B | 121.5 (5) | C16A—C15A—H15A | 109.2 |
C3—C8—C15B | 119.8 (5) | C15A—C16A—H16A | 109.5 |
C4—C9—C11 | 112.16 (17) | C15A—C16A—H16B | 109.5 |
C4—C9—C10 | 110.56 (13) | H16A—C16A—H16B | 109.5 |
C11—C9—C10 | 110.95 (17) | C15A—C16A—H16C | 109.5 |
C4—C9—H9A | 107.7 | H16A—C16A—H16C | 109.5 |
C11—C9—H9A | 107.7 | H16B—C16A—H16C | 109.5 |
C10—C9—H9A | 107.7 | C15A—C17A—H17A | 109.5 |
C9—C10—H10A | 109.5 | C15A—C17A—H17B | 109.5 |
C9—C10—H10B | 109.5 | H17A—C17A—H17B | 109.5 |
H10A—C10—H10B | 109.5 | C15A—C17A—H17C | 109.5 |
C9—C10—H10C | 109.5 | H17A—C17A—H17C | 109.5 |
H10A—C10—H10C | 109.5 | H17B—C17A—H17C | 109.5 |
H10B—C10—H10C | 109.5 | C16B—C15B—C17B | 109.5 (7) |
C9—C11—H11A | 109.5 | C16B—C15B—C8 | 116.6 (8) |
C9—C11—H11B | 109.5 | C17B—C15B—C8 | 111.5 (6) |
H11A—C11—H11B | 109.5 | C16B—C15B—H15B | 106.2 |
C9—C11—H11C | 109.5 | C17B—C15B—H15B | 106.2 |
H11A—C11—H11C | 109.5 | C8—C15B—H15B | 106.2 |
H11B—C11—H11C | 109.5 | C15B—C16B—H16D | 109.5 |
C13A—C12A—C14A | 109.9 (4) | C15B—C16B—H16E | 109.5 |
C13A—C12A—C6 | 109.8 (3) | H16D—C16B—H16E | 109.5 |
C14A—C12A—C6 | 108.0 (3) | C15B—C16B—H16F | 109.5 |
C13A—C12A—H12A | 109.7 | H16D—C16B—H16F | 109.5 |
C14A—C12A—H12A | 109.7 | H16E—C16B—H16F | 109.5 |
C6—C12A—H12A | 109.7 | C15B—C17B—H17D | 109.5 |
C12A—C13A—H13A | 109.5 | C15B—C17B—H17E | 109.5 |
C12A—C13A—H13B | 109.5 | H17D—C17B—H17E | 109.5 |
H13A—C13A—H13B | 109.5 | C15B—C17B—H17F | 109.5 |
C12A—C13A—H13C | 109.5 | H17D—C17B—H17F | 109.5 |
H13A—C13A—H13C | 109.5 | H17E—C17B—H17F | 109.5 |
H13B—C13A—H13C | 109.5 | ||
O1—C1—C3—C4 | 89.32 (17) | C5—C4—C9—C10 | 66.0 (2) |
C2—C1—C3—C4 | −90.50 (18) | C3—C4—C9—C10 | −112.65 (17) |
O1—C1—C3—C8 | −91.58 (17) | C5—C6—C12A—C13A | 112.2 (3) |
C2—C1—C3—C8 | 88.60 (18) | C7—C6—C12A—C13A | −64.9 (4) |
C8—C3—C4—C5 | 0.3 (2) | C12B—C6—C12A—C13A | −77.6 (11) |
C1—C3—C4—C5 | 179.40 (12) | C5—C6—C12A—C14A | −128.0 (2) |
C8—C3—C4—C9 | 178.99 (13) | C7—C6—C12A—C14A | 55.0 (4) |
C1—C3—C4—C9 | −1.9 (2) | C12B—C6—C12A—C14A | 42.2 (10) |
C3—C4—C5—C6 | −0.1 (2) | C5—C6—C12B—C14B | −48.4 (4) |
C9—C4—C5—C6 | −178.78 (14) | C7—C6—C12B—C14B | 130.1 (3) |
C4—C5—C6—C7 | −0.3 (2) | C12A—C6—C12B—C14B | −60.5 (11) |
C4—C5—C6—C12B | 178.1 (3) | C5—C6—C12B—C13B | 71.5 (5) |
C4—C5—C6—C12A | −177.6 (2) | C7—C6—C12B—C13B | −110.1 (3) |
C5—C6—C7—C8 | 0.4 (2) | C12A—C6—C12B—C13B | 59.3 (10) |
C12B—C6—C7—C8 | −178.4 (3) | C7—C8—C15A—C17A | −52.9 (6) |
C12A—C6—C7—C8 | 177.3 (3) | C3—C8—C15A—C17A | 129.8 (4) |
C6—C7—C8—C3 | −0.1 (2) | C15B—C8—C15A—C17A | 53 (6) |
C6—C7—C8—C15A | −177.5 (4) | C7—C8—C15A—C16A | 69.2 (5) |
C6—C7—C8—C15B | 174.6 (4) | C3—C8—C15A—C16A | −108.1 (5) |
C4—C3—C8—C7 | −0.21 (19) | C15B—C8—C15A—C16A | 175 (7) |
C1—C3—C8—C7 | −179.30 (12) | C7—C8—C15B—C16B | 44.8 (8) |
C4—C3—C8—C15A | 177.1 (4) | C3—C8—C15B—C16B | −140.5 (6) |
C1—C3—C8—C15A | −1.9 (4) | C15A—C8—C15B—C16B | −33 (6) |
C4—C3—C8—C15B | −175.0 (4) | C7—C8—C15B—C17B | −81.9 (8) |
C1—C3—C8—C15B | 5.9 (4) | C3—C8—C15B—C17B | 92.8 (8) |
C5—C4—C9—C11 | −58.4 (2) | C15A—C8—C15B—C17B | −160 (7) |
C3—C4—C9—C11 | 122.94 (16) |
Experimental details
Crystal data | |
Chemical formula | C17H26O |
Mr | 246.38 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 129 |
a, b, c (Å) | 5.8590 (12), 20.248 (4), 13.148 (3) |
β (°) | 92.568 (2) |
V (Å3) | 1558.2 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.06 |
Crystal size (mm) | 0.45 × 0.41 × 0.35 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.972, 0.978 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10949, 3047, 2460 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.120, 1.05 |
No. of reflections | 3047 |
No. of parameters | 214 |
No. of restraints | 21 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.27 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXTL (Bruker, 2008) and publCIF (Westrip, 2010).
Acknowledgements
JDM would like to acknowledge the Canadian Foundation for Innovation Leaders Opportunity Fund (CFI-LFO) for upgrades to the diffractometer and the Natural Science and Engineering Council of Canada (NSERC) for operating funds.
References
Boeré, R. T., Bond, A. M., Cronin, S., Duffy, N. W., Hazendonk, P., Masuda, J. D., Pollard, K., Roemmele, T. L., Tran, P. & Zhang, Y. (2008). New J. Chem. 32, 214–231. Google Scholar
Boeré, R. T. & Masuda, J. D. (2002). Can. J. Chem. 80, 1607–1617. Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Delair, P., Kanazawa, A. M., de Azevedo, M. B. M. & Greene, A. E. (1996). Tetrahedron Asymmetry, 7, 2707–2710. CrossRef CAS Web of Science Google Scholar
De Ridder, D. J. A. & Schenk, H. (1995). Bull. Soc. Chim. Belg. 104, 81–95. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010a). Acta Cryst. E66, o2194. Web of Science CSD CrossRef IUCr Journals Google Scholar
Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010b). Acta Cryst. E66, o2090–o2091. Web of Science CSD CrossRef IUCr Journals Google Scholar
Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2011). J. Organomet. Chem. 696, 2533–2536. Web of Science CSD CrossRef CAS Google Scholar
Koningsveld, H. van, Scheele, J. J. & Jansen, J. C. (1987). Acta Cryst. C43, 294–296. CSD CrossRef Web of Science IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Padmanabhan, K., Dopp, D., Venkatesan, K. & Ramamurthy, V. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 897–906. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tani, H., Tanabe, M. & Toda, F. (1963). Chem. Ind. pp. 1589–1590. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We have had a long standing interest in the impact of sterically bulky ortho-alkyl groups on the conformation of ligands containing aryl rings, and in particular, those with ortho-isopropyl substituents (Boeré & Masuda, 2002; Boeré et al., 2008; Giffin et al., 2010a; Giffin, et al., 2010b; Giffin et al., 2011). The steric impact of these ortho-isopropyl groups has proven important in the stabilization of many reactive functional groups. In our continuing interest in these systems we have prepared and studied the title compound which is an intermediate to the related acetylene, 2-ethynyl-1,3,5-triisopropylbenzene (Tani et al., 1963).
There are few solid state structures of ortho-alkyl substituted ethanones reported in the literature. One example is 1-tert-Butyl-4-acetyl-3,5-dimethyl-2,6-dinitrobenzene that exhibit O—C—CAr—CAr angles in the range of 77.50° to 84.12°(Padmanabhan et al., 1986; De Ridder & Schenk, 1995). Another example is 4-tert-Butyl-2,6-dimethylacetophenone that has a O—C—CAr—CAr angle of 79.58° (van Koningsveld et al., 1987). The title compound the ketone fragment is nearly perpendicular to the aryl ring with a torsion angle of 89.32 (17)° between the ketone C=O and the aryl ring (O1—C1—C3—C4). This can be attributed to the increased steric pressure of the ortho-isopropyl groups relative to the ortho-methyl groups in the previous two examples.
One ortho- and the para-isopropyl group exhibit two-site disorder with a refined site occupancy factor of 0.562 (3):0.438 (3). A careful look at the packing of the molecule reveals no typical hydrogen bonding and lacks significant intermolecular interactions (Figure 2).