organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,4,6-Triiso­propyl­phen­yl)ethanone

aThe Maritimes Centre for Green Chemistry, Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia, Canada B3H 3C3
*Correspondence e-mail: jason.masuda@smu.ca

(Received 12 August 2011; accepted 19 September 2011; online 30 September 2011)

The title compound, C17H26O, is a di-ortho-alkyl substituted phenyl ethanone that exhibits a significant twisting of the ketone fragment relative to the aromatic ring [O—C—C—C torsion angle = 89.32 (17)°] due to steric pressure from the ortho-isopropyl groups. One ortho- and the para-isopropyl group exhibit orientational disorder with a refined site occupancy factor of 0.562 (3):0.438 (3).

Related literature

There are two examples in the literature of crystallo­graph­ically characterized ortho-substituted phenyl ethano­nes, see: van Koningsveld et al. (1987[Koningsveld, H. van, Scheele, J. J. & Jansen, J. C. (1987). Acta Cryst. C43, 294-296.]); Padmanabhan et al. (1986[Padmanabhan, K., Dopp, D., Venkatesan, K. & Ramamurthy, V. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 897-906.]); De Ridder & Schenk (1995[De Ridder, D. J. A. & Schenk, H. (1995). Bull. Soc. Chim. Belg. 104, 81-95.]). For the preparation, see: Delair et al. (1996[Delair, P., Kanazawa, A. M., de Azevedo, M. B. M. & Greene, A. E. (1996). Tetrahedron Asymmetry, 7, 2707-2710.]). For the use of the title mol­ecule in the preparation of 2-ethynyl-1,3,5-triisopropyl­benzene, see: Tani et al. (1963[Tani, H., Tanabe, M. & Toda, F. (1963). Chem. Ind. pp. 1589-1590.]). For some related ligands containing ortho-isopropyl groups, see: Boeré & Masuda (2002[Boeré, R. T. & Masuda, J. D. (2002). Can. J. Chem. 80, 1607-1617.]); Boeré et al. (2008[Boeré, R. T., Bond, A. M., Cronin, S., Duffy, N. W., Hazendonk, P., Masuda, J. D., Pollard, K., Roemmele, T. L., Tran, P. & Zhang, Y. (2008). New J. Chem. 32, 214-231.]); Giffin et al. (2010a[Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010a). Acta Cryst. E66, o2194.],b[Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010b). Acta Cryst. E66, o2090-o2091.], 2011[Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2011). J. Organomet. Chem. 696, 2533-2536.]).

[Scheme 1]

Experimental

Crystal data
  • C17H26O

  • Mr = 246.38

  • Monoclinic, P 21 /n

  • a = 5.8590 (12) Å

  • b = 20.248 (4) Å

  • c = 13.148 (3) Å

  • β = 92.568 (2)°

  • V = 1558.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 129 K

  • 0.45 × 0.41 × 0.35 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.978

  • 10949 measured reflections

  • 3047 independent reflections

  • 2460 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.120

  • S = 1.05

  • 3047 reflections

  • 214 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have had a long standing interest in the impact of sterically bulky ortho-alkyl groups on the conformation of ligands containing aryl rings, and in particular, those with ortho-isopropyl substituents (Boeré & Masuda, 2002; Boeré et al., 2008; Giffin et al., 2010a; Giffin, et al., 2010b; Giffin et al., 2011). The steric impact of these ortho-isopropyl groups has proven important in the stabilization of many reactive functional groups. In our continuing interest in these systems we have prepared and studied the title compound which is an intermediate to the related acetylene, 2-ethynyl-1,3,5-triisopropylbenzene (Tani et al., 1963).

There are few solid state structures of ortho-alkyl substituted ethanones reported in the literature. One example is 1-tert-Butyl-4-acetyl-3,5-dimethyl-2,6-dinitrobenzene that exhibit O—C—CAr—CAr angles in the range of 77.50° to 84.12°(Padmanabhan et al., 1986; De Ridder & Schenk, 1995). Another example is 4-tert-Butyl-2,6-dimethylacetophenone that has a O—C—CAr—CAr angle of 79.58° (van Koningsveld et al., 1987). The title compound the ketone fragment is nearly perpendicular to the aryl ring with a torsion angle of 89.32 (17)° between the ketone C=O and the aryl ring (O1—C1—C3—C4). This can be attributed to the increased steric pressure of the ortho-isopropyl groups relative to the ortho-methyl groups in the previous two examples.

One ortho- and the para-isopropyl group exhibit two-site disorder with a refined site occupancy factor of 0.562 (3):0.438 (3). A careful look at the packing of the molecule reveals no typical hydrogen bonding and lacks significant intermolecular interactions (Figure 2).

Related literature top

There are two examples in the literature of crystallographically characterized ortho-substituted phenyl ethanones, see: van Koningsveld et al. (1987); Padmanabhan et al. (1986); De Ridder & Schenk (1995). For the preparation, see: Delair et al. (1996). For the use of the title molecule in the preparation of 2-ethynyl-1,3,5-triisopropylbenzene, see: Tani et al. (1963). For some related ligands containing ortho-isopropyl groups, see: Boeré & Masuda (2002); Boeré et al. (2008); Giffin et al. (2010a,b, 2011).

Experimental top

The title compound was prepared following literature methods (Delair et al, 1996) and was crystallized as large needles from a hot methanol solution cooled to room temperature.

Refinement top

The hydrogen atoms were placed in geometrically idealized positions of 0.98Å (methyl C—H), 0.95Å (aromatic C—H) and 1.00Å (methine C—H) and constrained to ride on the parent atom with Uiso(H) = 1.2 Ueq(C) for aromatic and tertiary protons as well as Uiso(H) = 1.5 Ueq(C) for the methyl groups. Two of the three isopropyl groups were modeled with two-site disorder. The isopropyl groups containing atoms C12A, C13A, C14A and C12B, C13B, C14B as well as C15A, C16A, C17A and C15B, C16B, C17B were modeled with a refined site occupancy factor of 0.562 (3):0.438 (3). In order to obtain satisfactory thermal parameters for the disordered part of the molecule DELU commands were used on the atoms C12A, C12B, C13A, C13B, C14A, C14B and C15A, C15B, C16A, C16B, C17A, C17B respectively for each isopropyl group. Unit-cell parameters were determinedd using a θ range of 2.54 to 27.83° however, in order to obtian a reasonable level of data completeness, θ was limited to 26.00° for refinement.

Structure description top

We have had a long standing interest in the impact of sterically bulky ortho-alkyl groups on the conformation of ligands containing aryl rings, and in particular, those with ortho-isopropyl substituents (Boeré & Masuda, 2002; Boeré et al., 2008; Giffin et al., 2010a; Giffin, et al., 2010b; Giffin et al., 2011). The steric impact of these ortho-isopropyl groups has proven important in the stabilization of many reactive functional groups. In our continuing interest in these systems we have prepared and studied the title compound which is an intermediate to the related acetylene, 2-ethynyl-1,3,5-triisopropylbenzene (Tani et al., 1963).

There are few solid state structures of ortho-alkyl substituted ethanones reported in the literature. One example is 1-tert-Butyl-4-acetyl-3,5-dimethyl-2,6-dinitrobenzene that exhibit O—C—CAr—CAr angles in the range of 77.50° to 84.12°(Padmanabhan et al., 1986; De Ridder & Schenk, 1995). Another example is 4-tert-Butyl-2,6-dimethylacetophenone that has a O—C—CAr—CAr angle of 79.58° (van Koningsveld et al., 1987). The title compound the ketone fragment is nearly perpendicular to the aryl ring with a torsion angle of 89.32 (17)° between the ketone C=O and the aryl ring (O1—C1—C3—C4). This can be attributed to the increased steric pressure of the ortho-isopropyl groups relative to the ortho-methyl groups in the previous two examples.

One ortho- and the para-isopropyl group exhibit two-site disorder with a refined site occupancy factor of 0.562 (3):0.438 (3). A careful look at the packing of the molecule reveals no typical hydrogen bonding and lacks significant intermolecular interactions (Figure 2).

There are two examples in the literature of crystallographically characterized ortho-substituted phenyl ethanones, see: van Koningsveld et al. (1987); Padmanabhan et al. (1986); De Ridder & Schenk (1995). For the preparation, see: Delair et al. (1996). For the use of the title molecule in the preparation of 2-ethynyl-1,3,5-triisopropylbenzene, see: Tani et al. (1963). For some related ligands containing ortho-isopropyl groups, see: Boeré & Masuda (2002); Boeré et al. (2008); Giffin et al. (2010a,b, 2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Bruker, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of 1-(2,4,6-triisopropylphenyl)ethanone, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Hydrogen atoms have been removed for clarity.
[Figure 2] Fig. 2. A packing diagram of 1-(2,4,6-triisopropylphenyl)ethanone viewed down the a axis. The minor disordered isopropyl groups are omitted for clarity.
1-(2,4,6-Triisopropylphenyl)ethanone top
Crystal data top
C17H26OF(000) = 544
Mr = 246.38Dx = 1.051 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3864 reflections
a = 5.8590 (12) Åθ = 2.5–27.8°
b = 20.248 (4) ŵ = 0.06 mm1
c = 13.148 (3) ÅT = 129 K
β = 92.568 (2)°Block, colourless
V = 1558.2 (6) Å30.45 × 0.41 × 0.35 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3047 independent reflections
Radiation source: fine-focus sealed tube2460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 77
Tmin = 0.972, Tmax = 0.978k = 2424
10949 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.6687P]
where P = (Fo2 + 2Fc2)/3
3047 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.19 e Å3
21 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H26OV = 1558.2 (6) Å3
Mr = 246.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8590 (12) ŵ = 0.06 mm1
b = 20.248 (4) ÅT = 129 K
c = 13.148 (3) Å0.45 × 0.41 × 0.35 mm
β = 92.568 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3047 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2460 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.978Rint = 0.030
10949 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04821 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
3047 reflectionsΔρmin = 0.27 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.01390 (17)0.19352 (5)0.46376 (7)0.0360 (3)
C10.0742 (2)0.17979 (7)0.38182 (10)0.0274 (3)
C20.3278 (3)0.17911 (13)0.36357 (14)0.0645 (7)
H2A0.40110.19370.42530.097*
H2B0.37830.13420.34620.097*
H2C0.37050.20900.30730.097*
C30.0664 (2)0.16216 (7)0.29222 (10)0.0250 (3)
C40.1265 (2)0.09627 (7)0.27715 (11)0.0298 (3)
C50.2545 (2)0.08078 (8)0.19350 (11)0.0337 (4)
H5A0.29630.03610.18270.040*
C60.3226 (2)0.12825 (9)0.12577 (11)0.0340 (4)
C70.2595 (2)0.19336 (8)0.14225 (11)0.0345 (4)
H7A0.30450.22650.09600.041*
C80.1318 (2)0.21148 (7)0.22491 (10)0.0284 (3)
C90.0604 (3)0.04223 (8)0.35037 (14)0.0458 (5)
H9A0.03780.06270.40210.055*
C100.2720 (4)0.01420 (11)0.40679 (19)0.0743 (7)
H10A0.34800.04920.44710.111*
H10B0.37730.00320.35740.111*
H10C0.22680.02150.45210.111*
C110.0781 (4)0.01245 (10)0.2970 (2)0.0781 (8)
H11A0.21560.00650.26340.117*
H11B0.12220.04530.34730.117*
H11C0.01460.03370.24610.117*
C12A0.4554 (7)0.09901 (19)0.0358 (4)0.0262 (8)0.562 (3)
H12A0.48830.05120.04870.031*0.562 (3)
C13A0.3133 (6)0.1066 (2)0.0634 (3)0.0268 (7)0.562 (3)
H13A0.40340.09250.12050.040*0.562 (3)
H13B0.26930.15300.07260.040*0.562 (3)
H13C0.17560.07930.06090.040*0.562 (3)
C14A0.6817 (4)0.13736 (14)0.0294 (2)0.0299 (7)0.562 (3)
H14A0.76950.11930.02590.045*0.562 (3)
H14B0.77060.13310.09400.045*0.562 (3)
H14C0.64880.18410.01600.045*0.562 (3)
C12B0.4652 (9)0.1237 (2)0.0327 (5)0.0238 (10)0.438 (3)
H12B0.50660.16890.00900.029*0.438 (3)
C14B0.6776 (5)0.08476 (18)0.0610 (3)0.0307 (9)0.438 (3)
H14D0.77300.10980.11050.046*0.438 (3)
H14E0.76330.07660.00010.046*0.438 (3)
H14F0.63470.04250.09100.046*0.438 (3)
C13B0.3143 (10)0.0881 (3)0.0497 (4)0.0287 (14)*0.438 (3)
H13D0.40460.07910.10900.043*0.438 (3)
H13E0.18410.11630.07000.043*0.438 (3)
H13F0.25840.04650.02220.043*0.438 (3)
C15A0.0614 (13)0.2804 (4)0.2368 (7)0.0403 (10)0.562 (3)
H15A0.00940.28580.30410.048*0.562 (3)
C16A0.1203 (7)0.2960 (2)0.1501 (3)0.0578 (10)0.562 (3)
H16A0.17520.34140.15760.087*0.562 (3)
H16B0.24880.26530.15410.087*0.562 (3)
H16C0.05110.29120.08400.087*0.562 (3)
C17A0.2662 (6)0.32461 (14)0.2330 (3)0.0495 (9)0.562 (3)
H17A0.38180.31060.28470.074*0.562 (3)
H17B0.22080.37030.24620.074*0.562 (3)
H17C0.32980.32180.16540.074*0.562 (3)
C15B0.0787 (18)0.2866 (5)0.2488 (10)0.044 (2)0.438 (3)
H15B0.05080.28640.29580.053*0.438 (3)
C16B0.0019 (8)0.3298 (2)0.1582 (3)0.0445 (10)0.438 (3)
H16D0.12750.30880.12110.067*0.438 (3)
H16E0.12860.33500.11260.067*0.438 (3)
H16F0.04450.37320.18270.067*0.438 (3)
C17B0.2869 (6)0.32093 (18)0.3094 (4)0.0402 (10)0.438 (3)
H17D0.32280.29640.37230.060*0.438 (3)
H17E0.24590.36650.32600.060*0.438 (3)
H17F0.42060.32110.26710.060*0.438 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0370 (6)0.0477 (7)0.0232 (5)0.0009 (5)0.0008 (4)0.0086 (5)
C10.0263 (7)0.0320 (7)0.0240 (7)0.0024 (6)0.0019 (5)0.0061 (6)
C20.0251 (8)0.131 (2)0.0382 (10)0.0011 (10)0.0074 (7)0.0324 (11)
C30.0169 (6)0.0364 (8)0.0215 (7)0.0047 (5)0.0007 (5)0.0064 (6)
C40.0251 (7)0.0345 (8)0.0302 (8)0.0103 (6)0.0061 (6)0.0112 (6)
C50.0268 (7)0.0419 (8)0.0330 (8)0.0057 (6)0.0067 (6)0.0162 (7)
C60.0176 (6)0.0633 (10)0.0212 (7)0.0002 (6)0.0001 (5)0.0076 (7)
C70.0210 (7)0.0589 (10)0.0235 (7)0.0008 (6)0.0013 (5)0.0088 (7)
C80.0197 (6)0.0397 (7)0.0253 (7)0.0006 (5)0.0048 (5)0.0021 (6)
C90.0527 (10)0.0298 (8)0.0574 (11)0.0150 (7)0.0299 (9)0.0112 (7)
C100.0848 (16)0.0629 (14)0.0770 (16)0.0128 (12)0.0222 (13)0.0352 (12)
C110.0690 (14)0.0466 (11)0.123 (2)0.0340 (10)0.0532 (14)0.0408 (12)
C12A0.0276 (14)0.027 (2)0.0246 (13)0.0014 (14)0.0059 (10)0.002 (2)
C13A0.0273 (14)0.032 (2)0.0215 (12)0.0052 (15)0.0069 (10)0.0046 (15)
C14A0.0219 (11)0.0399 (17)0.0283 (13)0.0005 (10)0.0048 (9)0.0030 (12)
C12B0.0224 (18)0.027 (3)0.0221 (16)0.0016 (17)0.0031 (11)0.003 (3)
C14B0.0245 (15)0.038 (2)0.0303 (18)0.0031 (12)0.0035 (12)0.0010 (14)
C15A0.039 (3)0.0478 (17)0.035 (2)0.0202 (17)0.0160 (19)0.017 (2)
C16A0.059 (2)0.072 (3)0.0433 (19)0.0391 (18)0.0063 (15)0.0148 (18)
C17A0.077 (2)0.0236 (12)0.049 (2)0.0030 (13)0.0153 (17)0.0030 (14)
C15B0.036 (4)0.0340 (19)0.061 (5)0.006 (2)0.013 (3)0.011 (2)
C16B0.049 (2)0.0377 (19)0.047 (2)0.0158 (19)0.0026 (18)0.0073 (17)
C17B0.044 (2)0.0297 (17)0.047 (3)0.0006 (14)0.0028 (16)0.0076 (16)
Geometric parameters (Å, º) top
O1—C11.2060 (17)C13A—H13B0.9800
C1—C21.495 (2)C13A—H13C0.9800
C1—C31.5102 (19)C14A—H14A0.9800
C2—H2A0.9800C14A—H14B0.9800
C2—H2B0.9800C14A—H14C0.9800
C2—H2C0.9800C12B—C14B1.506 (6)
C3—C41.396 (2)C12B—C13B1.546 (8)
C3—C81.399 (2)C12B—H12B1.0000
C4—C51.3942 (19)C14B—H14D0.9800
C4—C91.519 (2)C14B—H14E0.9800
C5—C61.381 (2)C14B—H14F0.9800
C5—H5A0.9500C13B—H13D0.9800
C6—C71.389 (2)C13B—H13E0.9800
C6—C12B1.515 (7)C13B—H13F0.9800
C6—C12A1.561 (5)C15A—C17A1.500 (8)
C7—C81.396 (2)C15A—C16A1.557 (8)
C7—H7A0.9500C15A—H15A1.0000
C8—C15A1.466 (8)C16A—H16A0.9800
C8—C15B1.587 (11)C16A—H16B0.9800
C9—C111.525 (2)C16A—H16C0.9800
C9—C101.526 (3)C17A—H17A0.9800
C9—H9A1.0000C17A—H17B0.9800
C10—H10A0.9800C17A—H17C0.9800
C10—H10B0.9800C15B—C16B1.528 (11)
C10—H10C0.9800C15B—C17B1.587 (10)
C11—H11A0.9800C15B—H15B1.0000
C11—H11B0.9800C16B—H16D0.9800
C11—H11C0.9800C16B—H16E0.9800
C12A—C13A1.524 (7)C16B—H16F0.9800
C12A—C14A1.542 (5)C17B—H17D0.9800
C12A—H12A1.0000C17B—H17E0.9800
C13A—H13A0.9800C17B—H17F0.9800
O1—C1—C2121.88 (13)C12A—C14A—H14A109.5
O1—C1—C3121.65 (12)C12A—C14A—H14B109.5
C2—C1—C3116.47 (12)H14A—C14A—H14B109.5
C1—C2—H2A109.5C12A—C14A—H14C109.5
C1—C2—H2B109.5H14A—C14A—H14C109.5
H2A—C2—H2B109.5H14B—C14A—H14C109.5
C1—C2—H2C109.5C6—C12B—C14B108.1 (4)
H2A—C2—H2C109.5C6—C12B—C13B106.0 (4)
H2B—C2—H2C109.5C14B—C12B—C13B111.7 (4)
C4—C3—C8120.95 (13)C6—C12B—H12B110.3
C4—C3—C1119.11 (12)C14B—C12B—H12B110.3
C8—C3—C1119.94 (13)C13B—C12B—H12B110.3
C5—C4—C3118.35 (14)C12B—C14B—H14D109.5
C5—C4—C9119.96 (14)C12B—C14B—H14E109.5
C3—C4—C9121.68 (13)H14D—C14B—H14E109.5
C6—C5—C4122.21 (14)C12B—C14B—H14F109.5
C6—C5—H5A118.9H14D—C14B—H14F109.5
C4—C5—H5A118.9H14E—C14B—H14F109.5
C5—C6—C7118.26 (13)C12B—C13B—H13D109.5
C5—C6—C12B131.6 (2)C12B—C13B—H13E109.5
C7—C6—C12B110.1 (2)H13D—C13B—H13E109.5
C5—C6—C12A113.13 (19)C12B—C13B—H13F109.5
C7—C6—C12A128.56 (19)H13D—C13B—H13F109.5
C6—C7—C8121.78 (14)H13E—C13B—H13F109.5
C6—C7—H7A119.1C8—C15A—C17A109.6 (5)
C8—C7—H7A119.1C8—C15A—C16A107.6 (5)
C7—C8—C3118.45 (14)C17A—C15A—C16A112.1 (5)
C7—C8—C15A119.8 (3)C8—C15A—H15A109.2
C3—C8—C15A121.7 (3)C17A—C15A—H15A109.2
C7—C8—C15B121.5 (5)C16A—C15A—H15A109.2
C3—C8—C15B119.8 (5)C15A—C16A—H16A109.5
C4—C9—C11112.16 (17)C15A—C16A—H16B109.5
C4—C9—C10110.56 (13)H16A—C16A—H16B109.5
C11—C9—C10110.95 (17)C15A—C16A—H16C109.5
C4—C9—H9A107.7H16A—C16A—H16C109.5
C11—C9—H9A107.7H16B—C16A—H16C109.5
C10—C9—H9A107.7C15A—C17A—H17A109.5
C9—C10—H10A109.5C15A—C17A—H17B109.5
C9—C10—H10B109.5H17A—C17A—H17B109.5
H10A—C10—H10B109.5C15A—C17A—H17C109.5
C9—C10—H10C109.5H17A—C17A—H17C109.5
H10A—C10—H10C109.5H17B—C17A—H17C109.5
H10B—C10—H10C109.5C16B—C15B—C17B109.5 (7)
C9—C11—H11A109.5C16B—C15B—C8116.6 (8)
C9—C11—H11B109.5C17B—C15B—C8111.5 (6)
H11A—C11—H11B109.5C16B—C15B—H15B106.2
C9—C11—H11C109.5C17B—C15B—H15B106.2
H11A—C11—H11C109.5C8—C15B—H15B106.2
H11B—C11—H11C109.5C15B—C16B—H16D109.5
C13A—C12A—C14A109.9 (4)C15B—C16B—H16E109.5
C13A—C12A—C6109.8 (3)H16D—C16B—H16E109.5
C14A—C12A—C6108.0 (3)C15B—C16B—H16F109.5
C13A—C12A—H12A109.7H16D—C16B—H16F109.5
C14A—C12A—H12A109.7H16E—C16B—H16F109.5
C6—C12A—H12A109.7C15B—C17B—H17D109.5
C12A—C13A—H13A109.5C15B—C17B—H17E109.5
C12A—C13A—H13B109.5H17D—C17B—H17E109.5
H13A—C13A—H13B109.5C15B—C17B—H17F109.5
C12A—C13A—H13C109.5H17D—C17B—H17F109.5
H13A—C13A—H13C109.5H17E—C17B—H17F109.5
H13B—C13A—H13C109.5
O1—C1—C3—C489.32 (17)C5—C4—C9—C1066.0 (2)
C2—C1—C3—C490.50 (18)C3—C4—C9—C10112.65 (17)
O1—C1—C3—C891.58 (17)C5—C6—C12A—C13A112.2 (3)
C2—C1—C3—C888.60 (18)C7—C6—C12A—C13A64.9 (4)
C8—C3—C4—C50.3 (2)C12B—C6—C12A—C13A77.6 (11)
C1—C3—C4—C5179.40 (12)C5—C6—C12A—C14A128.0 (2)
C8—C3—C4—C9178.99 (13)C7—C6—C12A—C14A55.0 (4)
C1—C3—C4—C91.9 (2)C12B—C6—C12A—C14A42.2 (10)
C3—C4—C5—C60.1 (2)C5—C6—C12B—C14B48.4 (4)
C9—C4—C5—C6178.78 (14)C7—C6—C12B—C14B130.1 (3)
C4—C5—C6—C70.3 (2)C12A—C6—C12B—C14B60.5 (11)
C4—C5—C6—C12B178.1 (3)C5—C6—C12B—C13B71.5 (5)
C4—C5—C6—C12A177.6 (2)C7—C6—C12B—C13B110.1 (3)
C5—C6—C7—C80.4 (2)C12A—C6—C12B—C13B59.3 (10)
C12B—C6—C7—C8178.4 (3)C7—C8—C15A—C17A52.9 (6)
C12A—C6—C7—C8177.3 (3)C3—C8—C15A—C17A129.8 (4)
C6—C7—C8—C30.1 (2)C15B—C8—C15A—C17A53 (6)
C6—C7—C8—C15A177.5 (4)C7—C8—C15A—C16A69.2 (5)
C6—C7—C8—C15B174.6 (4)C3—C8—C15A—C16A108.1 (5)
C4—C3—C8—C70.21 (19)C15B—C8—C15A—C16A175 (7)
C1—C3—C8—C7179.30 (12)C7—C8—C15B—C16B44.8 (8)
C4—C3—C8—C15A177.1 (4)C3—C8—C15B—C16B140.5 (6)
C1—C3—C8—C15A1.9 (4)C15A—C8—C15B—C16B33 (6)
C4—C3—C8—C15B175.0 (4)C7—C8—C15B—C17B81.9 (8)
C1—C3—C8—C15B5.9 (4)C3—C8—C15B—C17B92.8 (8)
C5—C4—C9—C1158.4 (2)C15A—C8—C15B—C17B160 (7)
C3—C4—C9—C11122.94 (16)

Experimental details

Crystal data
Chemical formulaC17H26O
Mr246.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)129
a, b, c (Å)5.8590 (12), 20.248 (4), 13.148 (3)
β (°) 92.568 (2)
V3)1558.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.45 × 0.41 × 0.35
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.972, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
10949, 3047, 2460
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.120, 1.05
No. of reflections3047
No. of parameters214
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXTL (Bruker, 2008) and publCIF (Westrip, 2010).

 

Acknowledgements

JDM would like to acknowledge the Canadian Foundation for Innovation Leaders Opportunity Fund (CFI-LFO) for upgrades to the diffractometer and the Natural Science and Engineering Council of Canada (NSERC) for operating funds.

References

First citationBoeré, R. T., Bond, A. M., Cronin, S., Duffy, N. W., Hazendonk, P., Masuda, J. D., Pollard, K., Roemmele, T. L., Tran, P. & Zhang, Y. (2008). New J. Chem. 32, 214–231.  Google Scholar
First citationBoeré, R. T. & Masuda, J. D. (2002). Can. J. Chem. 80, 1607–1617.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelair, P., Kanazawa, A. M., de Azevedo, M. B. M. & Greene, A. E. (1996). Tetrahedron Asymmetry, 7, 2707–2710.  CrossRef CAS Web of Science Google Scholar
First citationDe Ridder, D. J. A. & Schenk, H. (1995). Bull. Soc. Chim. Belg. 104, 81–95.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGiffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010a). Acta Cryst. E66, o2194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGiffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010b). Acta Cryst. E66, o2090–o2091.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGiffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2011). J. Organomet. Chem. 696, 2533–2536.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoningsveld, H. van, Scheele, J. J. & Jansen, J. C. (1987). Acta Cryst. C43, 294–296.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPadmanabhan, K., Dopp, D., Venkatesan, K. & Ramamurthy, V. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 897–906.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTani, H., Tanabe, M. & Toda, F. (1963). Chem. Ind. pp. 1589–1590.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds