metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(9-amino­acridinium) bis­­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)manganate(II) trihydrate

aDepartment of Chemistry, Ferdowsi University of Mashhad, 917791436 Mashhad, Iran, and bLaboratory of Chemical Crystallography and Biocrystallography, Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
*Correspondence e-mail: mirzaeesh@um.ac.ir

(Received 4 July 2011; accepted 12 September 2011; online 30 September 2011)

The asymmetric unit of the title compound, (C13H11N2)2[Mn(C7H3NO4)2]·3H2O, consists of a discrete mononuclear [Mn(2,6-pydc)2]2− anionic complex (2,6-pydc is pyridine-2,6-dicarboxyl­ate) associated with two 9-amino­acridinium counter-ions for neutralization of charge and three uncoordin­ated water mol­ecules. The MnII atom is six-coordinated by (2,6-pydc)2− anions in a tridentate fashion and is at the centre of a distorted octa­hedron formed by the MnO4N2 bonding set. In the crystal, various inter­molecular inter­actions between different moieties can be found, such as different kinds of hydrogen bonds, offset or slipped ππ [centroid–centroid distances in the range 3.3704 (12) to 3.8674 (13)Å] and C=O⋯π [3.563 Å] inter­actions, which lead to the formation of a three-dimensional supra­molecular network.

Related literature

For complexes derived from Mn(II) atoms and pyridine-2,6-dicarboxlic acid, see: Aghabozorg et al. (2010[Aghabozorg, H., Ahmadvand, S., Mirzaei, M. & Khavasi, H. R. (2010). Acta Cryst. E66, m1318-m1319.], 2011[Aghabozorg, H., Jafarbak, F., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, m435-m436.]). For similar compounds, see: Mirzaei et al. (2011[Mirzaei, M., Aghabozorg, H. & Eshtiagh-Hosseini, H. (2011). J. Iran. Chem. Soc. 8, 580-607.]); Derikvand et al. (2010[Derikvand, Z., Attar Gharamaleki, J. & Stoeckli-Evans, H. Acta Cryst. E66, m1316-m1317.]); Eshtiagh-Hosseini, Aghabozorg et al. (2010[Eshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010). Acta Cryst. E66, m882.]); Eshtiagh-Hosseini, Alfi et al. (2010[Eshtiagh-Hosseini, H., Alfi, N., Mirzaei, M. & Necas, M. (2010). Acta Cryst. E66, o2810-o2811.]); Eshtiagh-Hosseini, Gschwind et al. (2010[Eshtiagh-Hosseini, H., Gschwind, F., Alfi, N. & Mirzaei, M. (2010). Acta Cryst. E66, m826-m827.]); Eshtiagh-Hosseini, Yousefi et al. (2010[Eshtiagh-Hosseini, H., Yousefi, Z., Shafiee, M. & Mirzaei, M. (2010). J. Coord. Chem. 63, 3187-3197.]) ; Mei & Wolf (2004[Mei, X. & Wolf, C. (2004). Cryst. Growth Des. 4, 1099-1103.]); MacDonald et al. (2000[MacDonald, J. C., Dorrestein, P. C., Pilly, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692-11702.]); Aghabozorg et al. (2008[Aghabozorg, H., Derikvand, Z., Olmstead, M. M. & Attar Gharamaleki, J. (2008). Acta Cryst. C64, m372-m374.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H11N2)2[Mn(C7H3NO4)2]·3H2O

  • Mr = 829.67

  • Triclinic, [P \overline 1]

  • a = 10.8202 (4) Å

  • b = 13.5186 (5) Å

  • c = 13.9844 (5) Å

  • α = 102.351 (3)°

  • β = 103.466 (3)°

  • γ = 104.868 (3)°

  • V = 1839.42 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.55 mm−1

  • T = 293 K

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Nova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.538, Tmax = 0.718

  • 17948 measured reflections

  • 7606 independent reflections

  • 6791 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.114

  • S = 1.08

  • 7606 reflections

  • 572 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2 0.88 (2) 1.86 (2) 2.736 (2) 178 (2)
N4—H4A⋯O4i 0.85 (3) 2.22 (3) 2.994 (2) 152 (3)
N4—H4B⋯O10ii 0.93 (3) 2.01 (3) 2.884 (3) 156 (2)
N5—H5N⋯O11 0.84 (3) 1.87 (3) 2.706 (2) 171 (3)
N6—H6A⋯O6 0.90 (2) 1.92 (3) 2.801 (2) 164 (2)
N6—H6B⋯O1iii 0.89 (3) 2.20 (3) 3.029 (2) 155 (3)
O9—H9A⋯O4 0.94 (3) 1.89 (3) 2.815 (2) 171 (3)
O9—H9B⋯O4iv 0.93 (3) 1.93 (3) 2.851 (3) 172 (3)
O10—H10A⋯O3v 0.92 (2) 2.02 (2) 2.926 (2) 168 (3)
O10—H10B⋯O8 0.92 (3) 1.89 (3) 2.805 (3) 175 (4)
O11—H11A⋯O6vi 0.92 (3) 1.88 (3) 2.790 (3) 170 (4)
O11—H11B⋯O9vii 0.92 (3) 1.85 (3) 2.756 (3) 169 (2)
Symmetry codes: (i) x-1, y, z-1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y, -z+1; (v) -x+2, -y+1, -z+1; (vi) -x+1, -y+1, -z+2; (vii) x, y+1, z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek; 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acridine derivatives with two benzene rings fused to pyridine are highly fluorescent agents. These compounds are used as topical antiseptics and experimentally as mutagens, intracellular pH indicators and as MALDI matrices (Derikvand et al. 2010). Acridine and related derivatives bind to DNA and RNA due to their abilitiy to intercalate. In the viewpoint of crystal engineering, acridine and its 9-amino derivative are very interesting because of their capability for hydrogen bonding via N atom of the ring and π-π stacking since they possess three rings (Aghabozorg et al. 2010, Mei & Wolf, 2004).

In continuation of our study on proton transfer compounds and their complexes (Mirzaei et al., 2011; Eshtiagh-Hosseini, Aghabozorg et al., 2010; Eshtiagh-Hosseini, Alfi et al., 2010; Eshtiagh-Hosseini, Gschwind et al., 2010; Eshtiagh-Hosseini, Yousefi et al., 2010), here we describe the crystal structure of a new coordination compound based upon MnII atom, 2,6-pydcH2, and 9aa (abbreviation for 9-aminoacridine) fragments. The asymmetric unit of 1 comprises an anionic complex [Mn(2,6-pydc)2]2–, two monoprotonated (9aaH+), and three uncoordinated water molecules (Fig. 1). The MnII atom is six-coordinated via two tridentate (2,6-pydc)2– with polyhedron MnO4N2 which adopts a distorted octahedral geometry. Indeed, in anionic fragment two rigid (2,6-pydc)2– are almost perpendicular to each other. The geometry, bond distances and angles of title compound are comprable with similar compounds in reported litratures (Aghabozorg et al., 2008; MacDonald et al. 2000) It is interesting to point out that in the crystal structure of 1, two cationic fragments participate in different H-bonds, that is, one of them takes part in three H-bonds via NH2 group and an N atom located in the ring with anionic complex fragments and water molecule, while, the other partakes in H-bond with a water molecule and an anionic moiety via with NH2 group and with another complex via N atom of ring. Also, there is a H-bond pattern with graph set R42(8) created by two water molecules and two complex fragments. Alongside different H-bonds, π-π stacking interactions play an important role in the stability of 1. As claimed before, 9aa can establish several π-π stacking interactions, and this point is evident in this structure, as well as the intermolecular π-π interaction which occurs between the two symmetry-related anionic fragments (2,6-pydc)2–. Distances between centroids of aromatic rings range from 3.3704 (12)Å to 3.8674 (13)Å (Cg1—Cg2= 3.703 Å, Cg1=C16—C17—C18—C19—C20—C21 and Cg2= C34—C35—C36—C37—C39—C40; Cg1—Cg3= 3.515 Å, Cg3=C28—C29—C34—C35—C40—N5; Cg2—Cg3=3.370 Å) as calculated by PLATON (Spek, 2009). In addition to these intermolecular interactions, some weak interactions such as C=O···π (Cg4—O= 3.563 Å, Cg4=C8—C9—C10—C11—C12—N2), aid to construct a three-dimensional supramolecular network (Fig. 2).

Related literature top

For complexes containing a Mn(II) atom and pyridine-2,6-dicarboxlic acid, see: Aghabozorg et al. (2010, 2011). For similar compounds, see: Mirzaei et al. (2011); Derikvand et al. (2010); Eshtiagh-Hosseini, Aghabozorg et al. (2010); Eshtiagh-Hosseini, Alfi et al. (2010); Eshtiagh-Hosseini, Gschwind et al. (2010); Eshtiagh-Hosseini, Yousefi et al. (2010 ); Mei & Wolf (2004); MacDonald et al. (2000); Aghabozorg et al. (2008).

Experimental top

To an aqeous solution of pydcH2 (0.0167 g, 0.1 mmol) a solution of 9a-ac (0.02 g,0.1 mmol) in methanol was added dropwise, then a soution of MnCl2.2H2O(0.0167 g, 0.1 mmol)) in water was added and the resultant solution was heated and stirred for 3 hrs at 60 °C. The yellow crystals were obtained by slow evaporation at room temprature after 3 days.

Refinement top

The structure was refined using the full-matrix least-squares refinement included in the SHELXL-97 (Sheldrick, 2008). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms bound to N and O atoms were located from the difference Fourier map and refined as free entities; O–H bonds were restrained to 0.95 (2) Å and H–H distances to 1.50 (4) Å. Hydrogen atoms bond to carbon atoms placed according to their geometrical environment and refined using a riding model with C–H distance 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Acridine derivatives with two benzene rings fused to pyridine are highly fluorescent agents. These compounds are used as topical antiseptics and experimentally as mutagens, intracellular pH indicators and as MALDI matrices (Derikvand et al. 2010). Acridine and related derivatives bind to DNA and RNA due to their abilitiy to intercalate. In the viewpoint of crystal engineering, acridine and its 9-amino derivative are very interesting because of their capability for hydrogen bonding via N atom of the ring and π-π stacking since they possess three rings (Aghabozorg et al. 2010, Mei & Wolf, 2004).

In continuation of our study on proton transfer compounds and their complexes (Mirzaei et al., 2011; Eshtiagh-Hosseini, Aghabozorg et al., 2010; Eshtiagh-Hosseini, Alfi et al., 2010; Eshtiagh-Hosseini, Gschwind et al., 2010; Eshtiagh-Hosseini, Yousefi et al., 2010), here we describe the crystal structure of a new coordination compound based upon MnII atom, 2,6-pydcH2, and 9aa (abbreviation for 9-aminoacridine) fragments. The asymmetric unit of 1 comprises an anionic complex [Mn(2,6-pydc)2]2–, two monoprotonated (9aaH+), and three uncoordinated water molecules (Fig. 1). The MnII atom is six-coordinated via two tridentate (2,6-pydc)2– with polyhedron MnO4N2 which adopts a distorted octahedral geometry. Indeed, in anionic fragment two rigid (2,6-pydc)2– are almost perpendicular to each other. The geometry, bond distances and angles of title compound are comprable with similar compounds in reported litratures (Aghabozorg et al., 2008; MacDonald et al. 2000) It is interesting to point out that in the crystal structure of 1, two cationic fragments participate in different H-bonds, that is, one of them takes part in three H-bonds via NH2 group and an N atom located in the ring with anionic complex fragments and water molecule, while, the other partakes in H-bond with a water molecule and an anionic moiety via with NH2 group and with another complex via N atom of ring. Also, there is a H-bond pattern with graph set R42(8) created by two water molecules and two complex fragments. Alongside different H-bonds, π-π stacking interactions play an important role in the stability of 1. As claimed before, 9aa can establish several π-π stacking interactions, and this point is evident in this structure, as well as the intermolecular π-π interaction which occurs between the two symmetry-related anionic fragments (2,6-pydc)2–. Distances between centroids of aromatic rings range from 3.3704 (12)Å to 3.8674 (13)Å (Cg1—Cg2= 3.703 Å, Cg1=C16—C17—C18—C19—C20—C21 and Cg2= C34—C35—C36—C37—C39—C40; Cg1—Cg3= 3.515 Å, Cg3=C28—C29—C34—C35—C40—N5; Cg2—Cg3=3.370 Å) as calculated by PLATON (Spek, 2009). In addition to these intermolecular interactions, some weak interactions such as C=O···π (Cg4—O= 3.563 Å, Cg4=C8—C9—C10—C11—C12—N2), aid to construct a three-dimensional supramolecular network (Fig. 2).

For complexes containing a Mn(II) atom and pyridine-2,6-dicarboxlic acid, see: Aghabozorg et al. (2010, 2011). For similar compounds, see: Mirzaei et al. (2011); Derikvand et al. (2010); Eshtiagh-Hosseini, Aghabozorg et al. (2010); Eshtiagh-Hosseini, Alfi et al. (2010); Eshtiagh-Hosseini, Gschwind et al. (2010); Eshtiagh-Hosseini, Yousefi et al. (2010 ); Mei & Wolf (2004); MacDonald et al. (2000); Aghabozorg et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek; 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compoud showing extensive π···π stacking interaction between aromatic rings of (9aaH)+ ions and carbonyl···π interactions (Cg1—Cg2= 3.703 Å, Cg1=C16—C17—C18—C19—C20—C21 and Cg2= C34—C35—C36—C37—C39—C40; Cg1—Cg3= 3.515 Å, Cg3=C28—C29—C34—C35—C40—N5; Cg2—Cg3=3.370 Å; Cg4—O= 3.563 Å, Cg4=C8—C9—C10—C11—C12—N2).
Bis(9-aminoacridinium) bis(pyridine-2,6-dicarboxylato- κ3O2,N,O6)manganate(II) trihydrate top
Crystal data top
(C13H11N2)2[Mn(C7H3NO4)2]·3H2OZ = 2
Mr = 829.67F(000) = 858
Triclinic, P1Dx = 1.498 Mg m3
a = 10.8202 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 13.5186 (5) ÅCell parameters from 11391 reflections
c = 13.9844 (5) Åθ = 3.4–75.9°
α = 102.351 (3)°µ = 3.55 mm1
β = 103.466 (3)°T = 293 K
γ = 104.868 (3)°Prism, yellow
V = 1839.42 (12) Å30.20 × 0.12 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Nova
diffractometer
7606 independent reflections
Radiation source: Enhance (Cu) X-ray Source6791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.4323 pixels mm-1θmax = 76.1°, θmin = 3.4°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1716
Tmin = 0.538, Tmax = 0.718l = 1712
17948 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0654P)2 + 0.2228P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.038(Δ/σ)max < 0.001
wR(F2) = 0.114Δρmax = 0.25 e Å3
S = 1.08Δρmin = 0.31 e Å3
7606 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
572 parametersExtinction coefficient: 0.00077 (19)
9 restraints
Crystal data top
(C13H11N2)2[Mn(C7H3NO4)2]·3H2Oγ = 104.868 (3)°
Mr = 829.67V = 1839.42 (12) Å3
Triclinic, P1Z = 2
a = 10.8202 (4) ÅCu Kα radiation
b = 13.5186 (5) ŵ = 3.55 mm1
c = 13.9844 (5) ÅT = 293 K
α = 102.351 (3)°0.20 × 0.12 × 0.10 mm
β = 103.466 (3)°
Data collection top
Oxford Diffraction Xcalibur Nova
diffractometer
7606 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
6791 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 0.718Rint = 0.029
17948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0389 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.25 e Å3
7606 reflectionsΔρmin = 0.31 e Å3
572 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.64063 (3)0.25673 (2)0.40959 (2)0.04394 (10)
O10.44381 (15)0.20160 (11)0.28655 (10)0.0518 (3)
O20.26457 (17)0.05818 (15)0.19184 (12)0.0669 (4)
O30.79344 (15)0.20184 (11)0.50812 (11)0.0535 (3)
O40.84704 (14)0.06026 (11)0.53782 (11)0.0529 (3)
N10.56149 (14)0.08499 (11)0.37675 (10)0.0360 (3)
C10.43716 (17)0.03411 (14)0.31346 (11)0.0377 (3)
C20.37476 (18)0.07366 (15)0.29815 (13)0.0451 (4)
H20.28810.10840.25350.054*
C30.44423 (19)0.12868 (14)0.35074 (14)0.0447 (4)
H30.40420.20090.34220.054*
C40.57380 (18)0.07533 (13)0.41616 (12)0.0404 (3)
H40.62210.11110.45170.048*
C50.62957 (16)0.03236 (13)0.42732 (11)0.0356 (3)
C60.37496 (19)0.10379 (16)0.25923 (13)0.0444 (4)
C70.76853 (18)0.10354 (14)0.49707 (12)0.0407 (3)
O50.54528 (17)0.30295 (10)0.52945 (11)0.0543 (3)
O60.52901 (17)0.43798 (12)0.64314 (11)0.0581 (4)
O70.76616 (18)0.31403 (12)0.31869 (11)0.0609 (4)
O80.91391 (19)0.45506 (14)0.30369 (13)0.0657 (4)
N20.71790 (16)0.42813 (11)0.47040 (10)0.0416 (3)
C80.67712 (19)0.47705 (14)0.54468 (12)0.0425 (4)
C90.7249 (2)0.58709 (15)0.58508 (14)0.0528 (4)
H90.69450.62130.63540.063*
C100.8191 (3)0.64496 (16)0.54865 (17)0.0605 (5)
H100.85420.7190.57570.073*
C110.8613 (2)0.59309 (16)0.47198 (16)0.0567 (5)
H110.92510.63130.44740.068*
C120.8062 (2)0.48295 (14)0.43303 (13)0.0453 (4)
C130.5753 (2)0.40030 (14)0.57584 (12)0.0435 (4)
C140.8333 (2)0.41252 (16)0.34409 (14)0.0493 (4)
N30.14305 (15)0.10470 (12)0.02023 (11)0.0411 (3)
H3N0.181 (2)0.0906 (19)0.0761 (19)0.050 (6)*
N40.01292 (19)0.18331 (17)0.24082 (13)0.0553 (4)
H4A0.029 (3)0.141 (2)0.300 (2)0.065 (7)*
H4B0.029 (3)0.248 (2)0.236 (2)0.073 (8)*
C150.03526 (17)0.15624 (15)0.15714 (13)0.0428 (4)
C160.05018 (16)0.22265 (14)0.05743 (13)0.0397 (3)
C170.01312 (18)0.31667 (16)0.04250 (15)0.0475 (4)
H170.02320.33730.09910.057*
C180.0302 (2)0.37710 (17)0.05400 (17)0.0525 (4)
H180.00650.43910.06270.063*
C190.0832 (2)0.34669 (18)0.14030 (15)0.0539 (4)
H190.09240.38790.20560.065*
C200.12132 (19)0.25721 (16)0.12938 (14)0.0468 (4)
H200.15760.2380.1870.056*
C210.10539 (16)0.19399 (14)0.03001 (12)0.0389 (3)
C220.12958 (16)0.03901 (14)0.07291 (13)0.0414 (3)
C230.1714 (2)0.05174 (16)0.07770 (16)0.0500 (4)
H230.20690.06720.01750.06*
C240.1597 (2)0.11733 (17)0.17090 (18)0.0589 (5)
H240.18810.1770.17370.071*
C250.1055 (2)0.09545 (19)0.26169 (17)0.0628 (5)
H250.09820.14060.32460.075*
C260.0634 (2)0.00866 (19)0.25909 (15)0.0586 (5)
H260.02710.00460.32040.07*
C270.07390 (17)0.06234 (15)0.16393 (13)0.0445 (4)
N50.66357 (16)0.67352 (14)1.11671 (11)0.0465 (3)
H5N0.677 (3)0.680 (2)1.180 (2)0.073 (8)*
N60.54690 (18)0.61190 (14)0.80226 (11)0.0475 (3)
H6A0.556 (2)0.5560 (19)0.7592 (19)0.053 (6)*
H6B0.523 (3)0.661 (2)0.7753 (19)0.060 (7)*
C280.58159 (16)0.62845 (13)0.90294 (12)0.0375 (3)
C290.56236 (17)0.71798 (13)0.96725 (12)0.0393 (3)
C300.4940 (2)0.78319 (15)0.92699 (14)0.0466 (4)
H300.46110.76940.85620.056*
C310.4756 (2)0.86606 (17)0.99064 (18)0.0569 (5)
H310.42950.90790.9630.068*
C320.5257 (3)0.88850 (18)1.09755 (18)0.0627 (6)
H320.51540.94681.14030.075*
C330.5889 (2)0.82645 (17)1.13944 (15)0.0559 (5)
H330.62080.84161.21050.067*
C340.60641 (17)0.73838 (15)1.07472 (13)0.0424 (4)
C350.67653 (16)0.58457 (15)1.05882 (13)0.0424 (4)
C360.73090 (19)0.51809 (18)1.10862 (17)0.0542 (5)
H360.75850.53581.180.065*
C370.7427 (2)0.42785 (19)1.05168 (19)0.0594 (5)
H370.77660.38321.08460.071*
C380.7046 (2)0.40105 (17)0.94423 (19)0.0584 (5)
H380.71440.33950.90650.07*
C390.65279 (19)0.46540 (15)0.89438 (15)0.0476 (4)
H390.62830.44740.8230.057*
C400.63637 (16)0.55866 (14)0.95048 (13)0.0396 (3)
O90.88560 (18)0.13804 (14)0.47029 (16)0.0717 (4)
H9A0.866 (3)0.0741 (19)0.486 (3)0.096 (11)*
H9B0.971 (2)0.119 (3)0.463 (3)0.103 (12)*
O101.0899 (2)0.63986 (16)0.28914 (14)0.0766 (5)
H10A1.135 (3)0.684 (2)0.3551 (16)0.087 (10)*
H10B1.036 (3)0.580 (2)0.298 (3)0.114 (13)*
O110.6811 (2)0.69942 (17)1.31723 (11)0.0742 (5)
H11A0.618 (3)0.657 (2)1.338 (3)0.100 (11)*
H11B0.744 (3)0.750 (2)1.3740 (19)0.089 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0648 (2)0.03080 (15)0.03618 (15)0.01615 (12)0.01555 (12)0.00863 (10)
O10.0674 (8)0.0479 (7)0.0453 (7)0.0261 (6)0.0124 (6)0.0202 (6)
O20.0601 (9)0.0752 (10)0.0585 (8)0.0199 (8)0.0034 (7)0.0314 (8)
O30.0560 (8)0.0393 (7)0.0511 (7)0.0095 (6)0.0022 (6)0.0079 (5)
O40.0479 (7)0.0520 (7)0.0527 (7)0.0204 (6)0.0020 (6)0.0123 (6)
N10.0452 (7)0.0343 (6)0.0295 (6)0.0150 (5)0.0110 (5)0.0090 (5)
C10.0442 (8)0.0426 (8)0.0285 (7)0.0162 (7)0.0117 (6)0.0118 (6)
C20.0437 (9)0.0473 (9)0.0385 (8)0.0089 (7)0.0084 (7)0.0120 (7)
C30.0532 (10)0.0353 (8)0.0447 (9)0.0101 (7)0.0160 (7)0.0140 (7)
C40.0518 (9)0.0385 (8)0.0370 (8)0.0207 (7)0.0147 (7)0.0146 (6)
C50.0426 (8)0.0364 (8)0.0303 (7)0.0162 (6)0.0126 (6)0.0091 (6)
C60.0491 (9)0.0548 (10)0.0344 (7)0.0223 (8)0.0115 (7)0.0180 (7)
C70.0457 (9)0.0409 (8)0.0348 (7)0.0157 (7)0.0103 (6)0.0091 (6)
O50.0814 (10)0.0353 (6)0.0494 (7)0.0152 (6)0.0312 (7)0.0112 (5)
O60.0752 (9)0.0496 (8)0.0451 (7)0.0153 (7)0.0266 (7)0.0016 (6)
O70.0890 (11)0.0468 (7)0.0525 (8)0.0196 (7)0.0377 (8)0.0110 (6)
O80.0794 (10)0.0665 (10)0.0610 (9)0.0203 (8)0.0370 (8)0.0254 (7)
N20.0566 (8)0.0335 (7)0.0335 (6)0.0140 (6)0.0127 (6)0.0090 (5)
C80.0561 (10)0.0368 (8)0.0304 (7)0.0147 (7)0.0081 (6)0.0067 (6)
C90.0733 (13)0.0380 (9)0.0383 (8)0.0150 (8)0.0125 (8)0.0021 (7)
C100.0792 (14)0.0332 (9)0.0544 (11)0.0049 (9)0.0154 (10)0.0046 (8)
C110.0662 (12)0.0426 (10)0.0539 (11)0.0062 (9)0.0169 (9)0.0143 (8)
C120.0567 (10)0.0401 (9)0.0375 (8)0.0130 (7)0.0112 (7)0.0147 (7)
C130.0600 (10)0.0402 (9)0.0304 (7)0.0182 (7)0.0130 (7)0.0089 (6)
C140.0649 (11)0.0473 (10)0.0409 (9)0.0198 (8)0.0193 (8)0.0177 (7)
N30.0403 (7)0.0457 (8)0.0354 (7)0.0127 (6)0.0078 (5)0.0137 (6)
N40.0621 (10)0.0606 (10)0.0367 (8)0.0191 (8)0.0042 (7)0.0139 (7)
C150.0351 (8)0.0483 (9)0.0374 (8)0.0065 (7)0.0050 (6)0.0123 (7)
C160.0316 (7)0.0459 (9)0.0396 (8)0.0097 (6)0.0087 (6)0.0144 (7)
C170.0403 (8)0.0532 (10)0.0501 (9)0.0169 (7)0.0096 (7)0.0198 (8)
C180.0466 (10)0.0519 (10)0.0625 (11)0.0214 (8)0.0195 (8)0.0137 (9)
C190.0554 (11)0.0572 (11)0.0465 (9)0.0188 (9)0.0175 (8)0.0066 (8)
C200.0484 (9)0.0531 (10)0.0375 (8)0.0139 (8)0.0130 (7)0.0131 (7)
C210.0326 (7)0.0431 (8)0.0385 (8)0.0083 (6)0.0102 (6)0.0125 (7)
C220.0359 (8)0.0415 (8)0.0418 (8)0.0070 (6)0.0107 (6)0.0098 (7)
C230.0471 (9)0.0464 (10)0.0556 (10)0.0140 (8)0.0146 (8)0.0152 (8)
C240.0576 (11)0.0439 (10)0.0700 (13)0.0145 (9)0.0218 (10)0.0063 (9)
C250.0663 (13)0.0557 (12)0.0523 (11)0.0120 (10)0.0180 (9)0.0030 (9)
C260.0613 (12)0.0601 (12)0.0390 (9)0.0110 (9)0.0072 (8)0.0027 (8)
C270.0390 (8)0.0477 (9)0.0383 (8)0.0067 (7)0.0080 (6)0.0083 (7)
N50.0428 (7)0.0589 (9)0.0324 (7)0.0093 (7)0.0104 (6)0.0122 (6)
N60.0635 (10)0.0470 (8)0.0335 (7)0.0255 (7)0.0120 (6)0.0086 (6)
C280.0350 (7)0.0380 (8)0.0348 (7)0.0078 (6)0.0097 (6)0.0074 (6)
C290.0392 (8)0.0391 (8)0.0360 (8)0.0085 (6)0.0124 (6)0.0074 (6)
C300.0515 (10)0.0445 (9)0.0450 (9)0.0162 (8)0.0169 (7)0.0119 (7)
C310.0651 (12)0.0478 (10)0.0647 (12)0.0238 (9)0.0276 (10)0.0147 (9)
C320.0794 (15)0.0491 (11)0.0640 (12)0.0218 (10)0.0390 (11)0.0054 (9)
C330.0649 (12)0.0561 (11)0.0404 (9)0.0106 (9)0.0237 (8)0.0037 (8)
C340.0385 (8)0.0474 (9)0.0356 (8)0.0063 (7)0.0142 (6)0.0069 (7)
C350.0317 (7)0.0504 (9)0.0428 (8)0.0067 (6)0.0102 (6)0.0183 (7)
C360.0397 (9)0.0676 (13)0.0569 (11)0.0109 (8)0.0109 (8)0.0333 (10)
C370.0427 (9)0.0623 (12)0.0828 (14)0.0169 (9)0.0170 (9)0.0431 (11)
C380.0491 (10)0.0470 (10)0.0811 (14)0.0169 (8)0.0191 (10)0.0219 (10)
C390.0438 (9)0.0434 (9)0.0532 (10)0.0139 (7)0.0122 (7)0.0126 (8)
C400.0341 (7)0.0402 (8)0.0404 (8)0.0076 (6)0.0092 (6)0.0111 (6)
O90.0588 (9)0.0509 (9)0.0911 (12)0.0094 (7)0.0181 (8)0.0069 (8)
O100.0891 (13)0.0703 (11)0.0565 (9)0.0100 (9)0.0071 (8)0.0260 (8)
O110.0774 (11)0.0874 (12)0.0363 (7)0.0017 (9)0.0132 (7)0.0133 (7)
Geometric parameters (Å, º) top
Mn1—N22.1501 (14)C18—H180.93
Mn1—N12.1622 (14)C19—C201.365 (3)
Mn1—O72.1786 (15)C19—H190.93
Mn1—O52.2254 (13)C20—C211.413 (2)
Mn1—O12.2319 (15)C20—H200.93
Mn1—O32.2780 (14)C22—C231.406 (3)
O1—C61.263 (2)C22—C271.412 (3)
O2—C61.243 (2)C23—C241.368 (3)
O3—C71.254 (2)C23—H230.93
O4—C71.249 (2)C24—C251.395 (4)
N1—C11.333 (2)C24—H240.93
N1—C51.338 (2)C25—C261.360 (4)
C1—C21.385 (2)C25—H250.93
C1—C61.519 (2)C26—C271.425 (3)
C2—C31.387 (3)C26—H260.93
C2—H20.93N5—C341.351 (3)
C3—C41.387 (3)N5—C351.358 (3)
C3—H30.93N5—H5N0.84 (3)
C4—C51.384 (2)N6—C281.323 (2)
C4—H40.93N6—H6A0.90 (2)
C5—C71.520 (2)N6—H6B0.90 (3)
O5—C131.255 (2)C28—C401.434 (2)
O6—C131.241 (2)C28—C291.438 (2)
O7—C141.268 (3)C29—C341.408 (2)
O8—C141.233 (3)C29—C301.413 (3)
N2—C121.330 (2)C30—C311.363 (3)
N2—C81.334 (2)C30—H300.93
C8—C91.382 (3)C31—C321.402 (3)
C8—C131.520 (3)C31—H310.93
C9—C101.383 (3)C32—C331.354 (4)
C9—H90.93C32—H320.93
C10—C111.387 (3)C33—C341.416 (3)
C10—H100.93C33—H330.93
C11—C121.384 (3)C35—C361.410 (3)
C11—H110.93C35—C401.412 (2)
C12—C141.532 (3)C36—C371.360 (4)
N3—C211.360 (2)C36—H360.93
N3—C221.363 (2)C37—C381.400 (3)
N3—H3N0.88 (2)C37—H370.93
N4—C151.331 (2)C38—C391.373 (3)
N4—H4A0.85 (3)C38—H380.93
N4—H4B0.93 (3)C39—C401.412 (3)
C15—C271.426 (3)C39—H390.93
C15—C161.436 (2)O9—H9A0.933 (18)
C16—C211.408 (2)O9—H9B0.926 (18)
C16—C171.417 (3)O10—H10A0.924 (18)
C17—C181.363 (3)O10—H10B0.922 (18)
C17—H170.93O11—H11A0.923 (18)
C18—C191.402 (3)O11—H11B0.914 (18)
N2—Mn1—N1169.44 (5)C18—C17—H17119.7
N2—Mn1—O773.33 (5)C16—C17—H17119.7
N1—Mn1—O7115.96 (5)C17—C18—C19120.64 (19)
N2—Mn1—O572.69 (5)C17—C18—H18119.7
N1—Mn1—O598.33 (5)C19—C18—H18119.7
O7—Mn1—O5145.68 (5)C20—C19—C18120.60 (18)
N2—Mn1—O1112.02 (5)C20—C19—H19119.7
N1—Mn1—O172.97 (5)C18—C19—H19119.7
O7—Mn1—O197.13 (6)C19—C20—C21119.58 (18)
O5—Mn1—O191.08 (6)C19—C20—H20120.2
N2—Mn1—O3103.37 (5)C21—C20—H20120.2
N1—Mn1—O371.55 (5)N3—C21—C16120.66 (15)
O7—Mn1—O396.10 (6)N3—C21—C20118.95 (16)
O5—Mn1—O396.27 (6)C16—C21—C20120.38 (17)
O1—Mn1—O3144.44 (5)N3—C22—C23119.67 (17)
C6—O1—Mn1118.13 (11)N3—C22—C27119.93 (17)
C7—O3—Mn1118.29 (11)C23—C22—C27120.40 (17)
C1—N1—C5120.32 (14)C24—C23—C22120.0 (2)
C1—N1—Mn1118.51 (11)C24—C23—H23120
C5—N1—Mn1120.76 (11)C22—C23—H23120
N1—C1—C2121.49 (15)C23—C24—C25120.5 (2)
N1—C1—C6114.05 (15)C23—C24—H24119.7
C2—C1—C6124.43 (16)C25—C24—H24119.7
C1—C2—C3118.59 (16)C26—C25—C24120.59 (19)
C1—C2—H2120.7C26—C25—H25119.7
C3—C2—H2120.7C24—C25—H25119.7
C2—C3—C4119.62 (16)C25—C26—C27121.0 (2)
C2—C3—H3120.2C25—C26—H26119.5
C4—C3—H3120.2C27—C26—H26119.5
C5—C4—C3118.45 (15)C22—C27—C26117.47 (19)
C5—C4—H4120.8C22—C27—C15119.44 (16)
C3—C4—H4120.8C26—C27—C15123.06 (18)
N1—C5—C4121.53 (15)C34—N5—C35122.46 (15)
N1—C5—C7112.96 (14)C34—N5—H5N120 (2)
C4—C5—C7125.51 (15)C35—N5—H5N117 (2)
O2—C6—O1127.50 (17)C28—N6—H6A122.2 (15)
O2—C6—C1116.80 (17)C28—N6—H6B120.0 (16)
O1—C6—C1115.68 (15)H6A—N6—H6B117 (2)
O4—C7—O3125.91 (17)N6—C28—C40121.98 (16)
O4—C7—C5118.23 (16)N6—C28—C29119.49 (16)
O3—C7—C5115.85 (15)C40—C28—C29118.52 (15)
C13—O5—Mn1118.71 (12)C34—C29—C30118.19 (16)
C14—O7—Mn1119.60 (12)C34—C29—C28119.07 (16)
C12—N2—C8121.52 (16)C30—C29—C28122.64 (15)
C12—N2—Mn1118.88 (12)C31—C30—C29120.82 (18)
C8—N2—Mn1119.60 (12)C31—C30—H30119.6
N2—C8—C9120.87 (18)C29—C30—H30119.6
N2—C8—C13113.30 (15)C30—C31—C32120.3 (2)
C9—C8—C13125.81 (17)C30—C31—H31119.9
C8—C9—C10118.25 (19)C32—C31—H31119.9
C8—C9—H9120.9C33—C32—C31120.89 (19)
C10—C9—H9120.9C33—C32—H32119.6
C9—C10—C11120.29 (18)C31—C32—H32119.6
C9—C10—H10119.9C32—C33—C34119.79 (19)
C11—C10—H10119.9C32—C33—H33120.1
C12—C11—C10118.25 (19)C34—C33—H33120.1
C12—C11—H11120.9N5—C34—C29120.45 (16)
C10—C11—H11120.9N5—C34—C33119.60 (17)
N2—C12—C11120.78 (18)C29—C34—C33119.95 (18)
N2—C12—C14113.29 (16)N5—C35—C36118.89 (17)
C11—C12—C14125.90 (18)N5—C35—C40120.82 (16)
O6—C13—O5125.91 (18)C36—C35—C40120.29 (19)
O6—C13—C8118.40 (16)C37—C36—C35119.61 (19)
O5—C13—C8115.69 (15)C37—C36—H36120.2
O8—C14—O7126.68 (19)C35—C36—H36120.2
O8—C14—C12118.80 (18)C36—C37—C38121.07 (19)
O7—C14—C12114.51 (16)C36—C37—H37119.5
C21—N3—C22122.48 (15)C38—C37—H37119.5
C21—N3—H3N118.6 (15)C39—C38—C37120.2 (2)
C22—N3—H3N118.9 (15)C39—C38—H38119.9
C15—N4—H4A119.1 (19)C37—C38—H38119.9
C15—N4—H4B121.4 (18)C38—C39—C40120.57 (19)
H4A—N4—H4B119 (2)C38—C39—H39119.7
N4—C15—C27121.37 (17)C40—C39—H39119.7
N4—C15—C16119.93 (18)C39—C40—C35118.27 (17)
C27—C15—C16118.70 (16)C39—C40—C28123.25 (16)
C21—C16—C17118.15 (16)C35—C40—C28118.48 (16)
C21—C16—C15118.76 (16)H9A—O9—H9B105 (3)
C17—C16—C15123.09 (16)H10A—O10—H10B104 (3)
C18—C17—C16120.63 (18)H11A—O11—H11B108 (3)
N2—Mn1—O1—C6165.89 (13)Mn1—O5—C13—O6178.93 (16)
N1—Mn1—O1—C64.23 (13)Mn1—O5—C13—C80.7 (2)
O7—Mn1—O1—C6119.25 (13)N2—C8—C13—O6178.68 (17)
O5—Mn1—O1—C694.15 (13)C9—C8—C13—O60.3 (3)
O3—Mn1—O1—C68.22 (18)N2—C8—C13—O51.0 (2)
N2—Mn1—O3—C7173.32 (13)C9—C8—C13—O5179.98 (19)
N1—Mn1—O3—C72.96 (13)Mn1—O7—C14—O8175.59 (18)
O7—Mn1—O3—C7112.41 (14)Mn1—O7—C14—C125.7 (2)
O5—Mn1—O3—C799.67 (14)N2—C12—C14—O8179.84 (19)
O1—Mn1—O3—C71.07 (19)C11—C12—C14—O82.1 (3)
N2—Mn1—N1—C1112.5 (3)N2—C12—C14—O71.3 (3)
O7—Mn1—N1—C197.01 (12)C11—C12—C14—O7176.8 (2)
O5—Mn1—N1—C181.29 (12)N4—C15—C16—C21178.00 (17)
O1—Mn1—N1—C17.29 (11)C27—C15—C16—C211.5 (2)
O3—Mn1—N1—C1175.16 (12)N4—C15—C16—C171.4 (3)
N2—Mn1—N1—C560.2 (4)C27—C15—C16—C17179.12 (16)
O7—Mn1—N1—C590.30 (12)C21—C16—C17—C180.3 (3)
O5—Mn1—N1—C591.40 (12)C15—C16—C17—C18179.62 (17)
O1—Mn1—N1—C5179.98 (12)C16—C17—C18—C190.8 (3)
O3—Mn1—N1—C52.47 (11)C17—C18—C19—C201.4 (3)
C5—N1—C1—C20.1 (2)C18—C19—C20—C210.9 (3)
Mn1—N1—C1—C2172.62 (12)C22—N3—C21—C160.1 (2)
C5—N1—C1—C6178.14 (13)C22—N3—C21—C20179.29 (16)
Mn1—N1—C1—C69.13 (17)C17—C16—C21—N3179.84 (15)
N1—C1—C2—C30.3 (2)C15—C16—C21—N30.4 (2)
C6—C1—C2—C3178.37 (16)C17—C16—C21—C200.8 (2)
C1—C2—C3—C40.6 (3)C15—C16—C21—C20179.84 (16)
C2—C3—C4—C50.4 (3)C19—C20—C21—N3179.59 (17)
C1—N1—C5—C40.3 (2)C19—C20—C21—C160.2 (3)
Mn1—N1—C5—C4172.30 (11)C21—N3—C22—C23179.56 (16)
C1—N1—C5—C7179.10 (13)C21—N3—C22—C270.4 (2)
Mn1—N1—C5—C76.54 (17)N3—C22—C23—C24179.19 (18)
C3—C4—C5—N10.0 (2)C27—C22—C23—C240.8 (3)
C3—C4—C5—C7178.68 (15)C22—C23—C24—C250.5 (3)
Mn1—O1—C6—O2179.12 (17)C23—C24—C25—C260.1 (4)
Mn1—O1—C6—C11.0 (2)C24—C25—C26—C270.3 (4)
N1—C1—C6—O2173.11 (17)N3—C22—C27—C26179.45 (17)
C2—C1—C6—O25.1 (3)C23—C22—C27—C260.5 (3)
N1—C1—C6—O15.2 (2)N3—C22—C27—C151.5 (2)
C2—C1—C6—O1176.59 (16)C23—C22—C27—C15178.46 (16)
Mn1—O3—C7—O4172.80 (14)C25—C26—C27—C220.0 (3)
Mn1—O3—C7—C57.1 (2)C25—C26—C27—C15177.8 (2)
N1—C5—C7—O4171.07 (15)N4—C15—C27—C22177.46 (17)
C4—C5—C7—O410.1 (2)C16—C15—C27—C222.0 (2)
N1—C5—C7—O38.9 (2)N4—C15—C27—C260.4 (3)
C4—C5—C7—O3169.90 (16)C16—C15—C27—C26179.86 (17)
N2—Mn1—O5—C130.21 (14)N6—C28—C29—C34176.52 (16)
N1—Mn1—O5—C13174.50 (15)C40—C28—C29—C344.4 (2)
O7—Mn1—O5—C138.2 (2)N6—C28—C29—C307.2 (3)
O1—Mn1—O5—C13112.55 (15)C40—C28—C29—C30171.89 (16)
O3—Mn1—O5—C13102.30 (15)C34—C29—C30—C312.4 (3)
N2—Mn1—O7—C145.78 (16)C28—C29—C30—C31178.69 (18)
N1—Mn1—O7—C14168.81 (15)C29—C30—C31—C320.6 (3)
O5—Mn1—O7—C1414.2 (2)C30—C31—C32—C332.3 (4)
O1—Mn1—O7—C14116.70 (17)C31—C32—C33—C340.8 (3)
O3—Mn1—O7—C1496.39 (17)C35—N5—C34—C292.7 (3)
N1—Mn1—N2—C12147.6 (3)C35—N5—C34—C33176.34 (17)
O7—Mn1—N2—C124.85 (14)C30—C29—C34—N5175.17 (16)
O5—Mn1—N2—C12179.90 (15)C28—C29—C34—N51.3 (2)
O1—Mn1—N2—C1295.92 (14)C30—C29—C34—C333.8 (3)
O3—Mn1—N2—C1287.60 (14)C28—C29—C34—C33179.73 (16)
N1—Mn1—N2—C832.1 (4)C32—C33—C34—N5176.72 (19)
O7—Mn1—N2—C8175.43 (15)C32—C33—C34—C292.3 (3)
O5—Mn1—N2—C80.38 (13)C34—N5—C35—C36176.67 (16)
O1—Mn1—N2—C884.37 (14)C34—N5—C35—C403.3 (3)
O3—Mn1—N2—C892.12 (14)N5—C35—C36—C37179.03 (17)
C12—N2—C8—C90.4 (3)C40—C35—C36—C371.0 (3)
Mn1—N2—C8—C9179.87 (14)C35—C36—C37—C381.5 (3)
C12—N2—C8—C13179.48 (16)C36—C37—C38—C390.8 (3)
Mn1—N2—C8—C130.8 (2)C37—C38—C39—C400.5 (3)
N2—C8—C9—C101.9 (3)C38—C39—C40—C351.0 (3)
C13—C8—C9—C10179.18 (19)C38—C39—C40—C28179.30 (17)
C8—C9—C10—C111.4 (3)N5—C35—C40—C39179.74 (16)
C9—C10—C11—C120.5 (4)C36—C35—C40—C390.3 (2)
C8—N2—C12—C111.6 (3)N5—C35—C40—C280.0 (2)
Mn1—N2—C12—C11178.14 (15)C36—C35—C40—C28179.99 (15)
C8—N2—C12—C14176.62 (16)N6—C28—C40—C392.5 (3)
Mn1—N2—C12—C143.7 (2)C29—C28—C40—C39176.53 (16)
C10—C11—C12—N22.0 (3)N6—C28—C40—C35177.18 (16)
C10—C11—C12—C14176.0 (2)C29—C28—C40—C353.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O20.88 (2)1.86 (2)2.736 (2)178 (2)
N4—H4A···O4i0.85 (3)2.22 (3)2.994 (2)152 (3)
N4—H4B···O10ii0.93 (3)2.01 (3)2.884 (3)156 (2)
N5—H5N···O110.84 (3)1.87 (3)2.706 (2)171 (3)
N6—H6A···O60.90 (2)1.92 (3)2.801 (2)164 (2)
N6—H6B···O1iii0.89 (3)2.20 (3)3.029 (2)155 (3)
O9—H9A···O40.94 (3)1.89 (3)2.815 (2)171 (3)
O9—H9B···O4iv0.93 (3)1.93 (3)2.851 (3)172 (3)
O10—H10A···O3v0.92 (2)2.02 (2)2.926 (2)168 (3)
O10—H10B···O80.92 (3)1.89 (3)2.805 (3)175 (4)
O11—H11A···O6vi0.92 (3)1.88 (3)2.790 (3)170 (4)
O11—H11B···O9vii0.92 (3)1.85 (3)2.756 (3)169 (2)
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+2; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C13H11N2)2[Mn(C7H3NO4)2]·3H2O
Mr829.67
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.8202 (4), 13.5186 (5), 13.9844 (5)
α, β, γ (°)102.351 (3), 103.466 (3), 104.868 (3)
V3)1839.42 (12)
Z2
Radiation typeCu Kα
µ (mm1)3.55
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Nova
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.538, 0.718
No. of measured, independent and
observed [I > 2σ(I)] reflections
17948, 7606, 6791
Rint0.029
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.114, 1.08
No. of reflections7606
No. of parameters572
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek; 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O20.88 (2)1.86 (2)2.736 (2)178 (2)
N4—H4A···O4i0.85 (3)2.22 (3)2.994 (2)152 (3)
N4—H4B···O10ii0.93 (3)2.01 (3)2.884 (3)156 (2)
N5—H5N···O110.84 (3)1.87 (3)2.706 (2)171 (3)
N6—H6A···O60.90 (2)1.92 (3)2.801 (2)164 (2)
N6—H6B···O1iii0.89 (3)2.20 (3)3.029 (2)155 (3)
O9—H9A···O40.94 (3)1.89 (3)2.815 (2)171 (3)
O9—H9B···O4iv0.93 (3)1.93 (3)2.851 (3)172 (3)
O10—H10A···O3v0.92 (2)2.02 (2)2.926 (2)168 (3)
O10—H10B···O80.92 (3)1.89 (3)2.805 (3)175 (4)
O11—H11A···O6vi0.92 (3)1.88 (3)2.790 (3)170 (4)
O11—H11B···O9vii0.92 (3)1.85 (3)2.756 (3)169 (2)
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+2; (vii) x, y+1, z+1.
 

Acknowledgements

The authors wish to thank the Ferdowsi University of Mashhad for financial support of this article (grant No. 15606/.3). This research was supported by the Ministry of Science, Education and Sports of Croatia (grant No. 098–1191344-2943).

References

First citationAghabozorg, H., Ahmadvand, S., Mirzaei, M. & Khavasi, H. R. (2010). Acta Cryst. E66, m1318–m1319.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAghabozorg, H., Derikvand, Z., Olmstead, M. M. & Attar Gharamaleki, J. (2008). Acta Cryst. C64, m372–m374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Jafarbak, F., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, m435–m436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDerikvand, Z., Attar Gharamaleki, J. & Stoeckli-Evans, H. Acta Cryst. E66, m1316–m1317.  Google Scholar
First citationEshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010). Acta Cryst. E66, m882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Alfi, N., Mirzaei, M. & Necas, M. (2010). Acta Cryst. E66, o2810–o2811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Gschwind, F., Alfi, N. & Mirzaei, M. (2010). Acta Cryst. E66, m826–m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Yousefi, Z., Shafiee, M. & Mirzaei, M. (2010). J. Coord. Chem. 63, 3187–3197.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacDonald, J. C., Dorrestein, P. C., Pilly, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692–11702.  Web of Science CSD CrossRef CAS Google Scholar
First citationMei, X. & Wolf, C. (2004). Cryst. Growth Des. 4, 1099–1103.  Web of Science CSD CrossRef CAS Google Scholar
First citationMirzaei, M., Aghabozorg, H. & Eshtiagh-Hosseini, H. (2011). J. Iran. Chem. Soc. 8, 580–607.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds