organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1-Benzo­furan-2-yl)-2-(phenyl­sulfon­yl)ethanone

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 September 2011; accepted 14 September 2011; online 17 September 2011)

The overall mol­ecular conformation of the title compound, C16H12O4S, is elongated, the dihedral angle formed between the benzofuran (r.m.s. deviation = 0.018 Å) and benzene rings being 24.81 (6)°. Both sulfonyl O atoms lie to one side of the S-bound benzene ring, and the carbonyl and furan O atoms are syn to each other. Supra­molecular arrays parallel to (101) sustained by C—H⋯O contacts feature in the crystal packing.

Related literature

For the biological activity of sulfones, see: Garuti et al. (2002[Garuti, L., Roberti, M. & De Clercq, E. (2002). Bioorg. Med. Chem. Lett. 12, 2707-2710.]), and of benzofuran, see: Abdel-Aziz & Mekawey (2009[Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985-3997.]). For previous work on the chemistry and biological activity of benzofurans, see: Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601-605.]); Abdel-Aziz et al. (2009[Abdel-Aziz, H. A., Mekawey, A. A. I. & Dawood, K. M. (2009). Eur. J. Med. Chem. 44, 3637-3644.], 2011[Abdel-Aziz, H. A., Bari, A. & Ng, S. W. (2011). Acta Cryst. E67, o696.]). For the synthesis, see: Takahashi et al. (1986[Takahashi, M., Mamiya, T. & Wakao, M. (1986). J. Heterocycl. Chem. 23, 77-80.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O4S

  • Mr = 300.32

  • Monoclinic, P 21 /n

  • a = 10.7560 (2) Å

  • b = 4.7855 (1) Å

  • c = 26.1838 (5) Å

  • β = 91.024 (2)°

  • V = 1347.54 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.27 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.598, Tmax = 1.000

  • 4617 measured reflections

  • 2650 independent reflections

  • 2495 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.04

  • 2650 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.55 3.1808 (19) 124
C7—H7a⋯O2ii 0.99 2.57 3.5383 (17) 165
C7—H7b⋯O1i 0.99 2.47 3.3746 (17) 152
C15—H15⋯O3iii 0.95 2.47 3.2742 (17) 142
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z; (iii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The investigation of the title compound, (I), a composite of sulphone and benzofuran groups, was motivated by the known biological activity of each component (Garuti et al., 2002; Abdel-Aziz & Mekawey, 2009) and represents a continuation of on-going biological and structural studies in this area (Abdel-Wahab et al., 2009; Abdel-Aziz et al., 2009; Abdel-Aziz et al., 2011).

With respect to the S-bound benzene ring in (I), Fig. 1, the two sulfonyl-O atoms lie to one side and the methylene group to the other. The benzofuran group is planar (r.m.s. deviation = 0.018 Å) and is splayed out with respect to the rest of the molecule. The dihedral angle between the S-bound benzene and benzofuran rings is 24.81 (6) ° so that overall the molecule has a flattened shape. The carbonyl- and benzofuran-O atoms are syn to each other.

The crystal packing is dominated by C—H···O interactions, Table 1, involving all but the benzofuran-O4 atom. These lead to the formation of supramolecular arrays parallel to (101), Fig. 2. There are no specific interactions between the layers, Fig. 3.

Related literature top

For the biological activity of sulfones, see: Garuti et al. (2002), and of benzofuran, see: Abdel-Aziz & Mekawey (2009). For previous work on the chemistry and biological activity of benzofurans, see: Abdel-Wahab et al. (2009); Abdel-Aziz et al. (2009, 2011). For the synthesis, see: Takahashi et al. (1986).

Experimental top

The title compound was prepared according to the reported method (Takahashi et al., 1986). The yellow crystals were isolated from a mixture of EtOH/DMF (v/v = 3/1) by slow evaporation at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

The investigation of the title compound, (I), a composite of sulphone and benzofuran groups, was motivated by the known biological activity of each component (Garuti et al., 2002; Abdel-Aziz & Mekawey, 2009) and represents a continuation of on-going biological and structural studies in this area (Abdel-Wahab et al., 2009; Abdel-Aziz et al., 2009; Abdel-Aziz et al., 2011).

With respect to the S-bound benzene ring in (I), Fig. 1, the two sulfonyl-O atoms lie to one side and the methylene group to the other. The benzofuran group is planar (r.m.s. deviation = 0.018 Å) and is splayed out with respect to the rest of the molecule. The dihedral angle between the S-bound benzene and benzofuran rings is 24.81 (6) ° so that overall the molecule has a flattened shape. The carbonyl- and benzofuran-O atoms are syn to each other.

The crystal packing is dominated by C—H···O interactions, Table 1, involving all but the benzofuran-O4 atom. These lead to the formation of supramolecular arrays parallel to (101), Fig. 2. There are no specific interactions between the layers, Fig. 3.

For the biological activity of sulfones, see: Garuti et al. (2002), and of benzofuran, see: Abdel-Aziz & Mekawey (2009). For previous work on the chemistry and biological activity of benzofurans, see: Abdel-Wahab et al. (2009); Abdel-Aziz et al. (2009, 2011). For the synthesis, see: Takahashi et al. (1986).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular array parallel to (101) in (I) mediated by C—H···O contacts shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents of (I) highlighting the stacking of layers; the C—H···O contacts are shown as orange dashed lines.
1-(1-Benzofuran-2-yl)-2-(phenylsulfonyl)ethanone top
Crystal data top
C16H12O4SF(000) = 624
Mr = 300.32Dx = 1.480 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 3182 reflections
a = 10.7560 (2) Åθ = 3.4–74.0°
b = 4.7855 (1) ŵ = 2.27 mm1
c = 26.1838 (5) ÅT = 100 K
β = 91.024 (2)°Prism, yellow
V = 1347.54 (5) Å30.35 × 0.15 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2650 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2495 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 10.4 pixels mm-1θmax = 74.2°, θmin = 3.4°
ω scansh = 1213
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 53
Tmin = 0.598, Tmax = 1.000l = 3132
4617 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.6486P]
where P = (Fo2 + 2Fc2)/3
2650 reflections(Δ/σ)max = 0.002
190 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C16H12O4SV = 1347.54 (5) Å3
Mr = 300.32Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.7560 (2) ŵ = 2.27 mm1
b = 4.7855 (1) ÅT = 100 K
c = 26.1838 (5) Å0.35 × 0.15 × 0.15 mm
β = 91.024 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2650 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2495 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 1.000Rint = 0.016
4617 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
2650 reflectionsΔρmin = 0.47 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53618 (3)0.14747 (7)0.735119 (11)0.01251 (11)
O10.63911 (9)0.0313 (2)0.74882 (4)0.0174 (2)
O20.42375 (9)0.0193 (2)0.71500 (4)0.0178 (2)
O30.64086 (10)0.0614 (2)0.62454 (4)0.0228 (2)
O40.46617 (9)0.2296 (2)0.55532 (4)0.0173 (2)
C10.49885 (13)0.3575 (3)0.78787 (5)0.0137 (3)
C20.59334 (13)0.4305 (3)0.82217 (5)0.0163 (3)
H20.67540.36130.81820.020*
C30.56524 (14)0.6072 (3)0.86253 (6)0.0201 (3)
H30.62840.65940.88650.024*
C40.44511 (14)0.7074 (3)0.86776 (5)0.0218 (3)
H40.42660.82930.89520.026*
C50.35163 (14)0.6309 (3)0.83320 (6)0.0225 (3)
H50.26960.70000.83730.027*
C60.37766 (13)0.4545 (3)0.79284 (5)0.0183 (3)
H60.31420.40080.76910.022*
C70.58626 (13)0.3948 (3)0.68830 (5)0.0156 (3)
H7A0.53390.56480.68940.019*
H7B0.67370.44940.69530.019*
C80.57443 (13)0.2571 (3)0.63613 (5)0.0159 (3)
C90.47739 (13)0.3641 (3)0.60172 (5)0.0152 (3)
C100.39035 (13)0.5678 (3)0.60687 (5)0.0166 (3)
H100.38060.68870.63530.020*
C110.31615 (13)0.5640 (3)0.56082 (5)0.0166 (3)
C120.21147 (14)0.7095 (3)0.54235 (6)0.0218 (3)
H120.17460.85360.56190.026*
C130.16361 (15)0.6368 (3)0.49482 (6)0.0242 (3)
H130.09190.73050.48180.029*
C140.21907 (15)0.4270 (3)0.46533 (6)0.0231 (3)
H140.18430.38410.43270.028*
C150.32250 (15)0.2813 (3)0.48237 (5)0.0205 (3)
H150.36040.14020.46240.025*
C160.36750 (13)0.3544 (3)0.53055 (5)0.0163 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01469 (18)0.01156 (19)0.01124 (17)0.00044 (11)0.00085 (12)0.00152 (11)
O10.0191 (5)0.0154 (5)0.0178 (5)0.0036 (4)0.0021 (4)0.0012 (4)
O20.0177 (5)0.0180 (5)0.0176 (5)0.0042 (4)0.0018 (4)0.0033 (4)
O30.0220 (5)0.0289 (6)0.0174 (5)0.0066 (5)0.0021 (4)0.0065 (4)
O40.0208 (5)0.0204 (5)0.0106 (4)0.0017 (4)0.0017 (4)0.0029 (4)
C10.0182 (7)0.0128 (7)0.0101 (6)0.0001 (5)0.0012 (5)0.0002 (5)
C20.0163 (6)0.0180 (7)0.0145 (6)0.0002 (5)0.0001 (5)0.0007 (5)
C30.0223 (7)0.0234 (8)0.0146 (7)0.0032 (6)0.0009 (5)0.0032 (6)
C40.0267 (8)0.0233 (8)0.0154 (7)0.0009 (6)0.0048 (6)0.0052 (6)
C50.0193 (7)0.0267 (8)0.0215 (7)0.0046 (6)0.0030 (6)0.0032 (6)
C60.0178 (7)0.0209 (8)0.0161 (7)0.0009 (6)0.0010 (5)0.0000 (6)
C70.0201 (7)0.0150 (7)0.0118 (6)0.0028 (5)0.0012 (5)0.0009 (5)
C80.0168 (6)0.0187 (7)0.0123 (6)0.0034 (5)0.0007 (5)0.0015 (5)
C90.0192 (7)0.0169 (7)0.0096 (6)0.0041 (5)0.0002 (5)0.0013 (5)
C100.0221 (7)0.0159 (7)0.0117 (6)0.0023 (6)0.0018 (5)0.0000 (5)
C110.0218 (7)0.0155 (7)0.0125 (6)0.0031 (6)0.0011 (5)0.0018 (5)
C120.0263 (8)0.0209 (7)0.0183 (7)0.0029 (6)0.0007 (6)0.0028 (6)
C130.0256 (8)0.0257 (9)0.0211 (7)0.0003 (6)0.0047 (6)0.0076 (6)
C140.0307 (8)0.0235 (8)0.0149 (7)0.0059 (7)0.0061 (6)0.0031 (6)
C150.0282 (8)0.0196 (7)0.0135 (7)0.0024 (6)0.0012 (6)0.0008 (6)
C160.0188 (7)0.0170 (7)0.0132 (6)0.0028 (5)0.0004 (5)0.0027 (5)
Geometric parameters (Å, º) top
S1—O11.4394 (10)C7—C81.5201 (18)
S1—O21.4468 (10)C7—H7A0.9900
S1—C11.7603 (14)C7—H7B0.9900
S1—C71.7936 (15)C8—C91.460 (2)
O3—C81.2193 (18)C9—C101.360 (2)
O4—C161.3708 (17)C10—C111.4343 (19)
O4—C91.3781 (16)C10—H100.9500
C1—C21.3891 (19)C11—C161.398 (2)
C1—C61.3919 (19)C11—C121.403 (2)
C2—C31.391 (2)C12—C131.383 (2)
C2—H20.9500C12—H120.9500
C3—C41.387 (2)C13—C141.406 (2)
C3—H30.9500C13—H130.9500
C4—C51.390 (2)C14—C151.380 (2)
C4—H40.9500C14—H140.9500
C5—C61.385 (2)C15—C161.388 (2)
C5—H50.9500C15—H150.9500
C6—H60.9500
O1—S1—O2118.23 (6)S1—C7—H7B110.1
O1—S1—C1109.21 (6)H7A—C7—H7B108.4
O2—S1—C1109.08 (6)O3—C8—C9122.11 (13)
O1—S1—C7108.87 (6)O3—C8—C7121.11 (13)
O2—S1—C7106.87 (6)C9—C8—C7116.75 (12)
C1—S1—C7103.59 (7)C10—C9—O4111.88 (12)
C16—O4—C9105.58 (11)C10—C9—C8132.54 (13)
C2—C1—C6122.09 (13)O4—C9—C8115.52 (12)
C2—C1—S1118.46 (11)C9—C10—C11106.31 (13)
C6—C1—S1119.40 (11)C9—C10—H10126.8
C1—C2—C3118.55 (13)C11—C10—H10126.8
C1—C2—H2120.7C16—C11—C12118.92 (13)
C3—C2—H2120.7C16—C11—C10105.45 (13)
C4—C3—C2120.04 (14)C12—C11—C10135.62 (14)
C4—C3—H3120.0C13—C12—C11117.97 (15)
C2—C3—H3120.0C13—C12—H12121.0
C5—C4—C3120.60 (14)C11—C12—H12121.0
C5—C4—H4119.7C12—C13—C14121.27 (15)
C3—C4—H4119.7C12—C13—H13119.4
C4—C5—C6120.23 (14)C14—C13—H13119.4
C4—C5—H5119.9C15—C14—C13122.05 (14)
C6—C5—H5119.9C15—C14—H14119.0
C5—C6—C1118.49 (13)C13—C14—H14119.0
C5—C6—H6120.8C14—C15—C16115.62 (14)
C1—C6—H6120.8C14—C15—H15122.2
C8—C7—S1107.86 (10)C16—C15—H15122.2
C8—C7—H7A110.1O4—C16—C15125.07 (13)
S1—C7—H7A110.1O4—C16—C11110.78 (12)
C8—C7—H7B110.1C15—C16—C11124.14 (14)
O1—S1—C1—C229.99 (13)O3—C8—C9—C10176.92 (15)
O2—S1—C1—C2160.57 (11)C7—C8—C9—C101.0 (2)
C7—S1—C1—C285.89 (12)O3—C8—C9—O40.1 (2)
O1—S1—C1—C6152.63 (12)C7—C8—C9—O4178.03 (11)
O2—S1—C1—C622.06 (14)O4—C9—C10—C110.70 (16)
C7—S1—C1—C691.48 (13)C8—C9—C10—C11176.42 (15)
C6—C1—C2—C30.3 (2)C9—C10—C11—C160.87 (16)
S1—C1—C2—C3177.00 (11)C9—C10—C11—C12177.66 (16)
C1—C2—C3—C40.2 (2)C16—C11—C12—C130.3 (2)
C2—C3—C4—C50.5 (2)C10—C11—C12—C13178.10 (16)
C3—C4—C5—C60.3 (3)C11—C12—C13—C141.1 (2)
C4—C5—C6—C10.2 (2)C12—C13—C14—C150.8 (2)
C2—C1—C6—C50.5 (2)C13—C14—C15—C160.4 (2)
S1—C1—C6—C5176.78 (12)C9—O4—C16—C15179.32 (14)
O1—S1—C7—C884.82 (11)C9—O4—C16—C110.36 (15)
O2—S1—C7—C843.93 (11)C14—C15—C16—O4177.59 (13)
C1—S1—C7—C8159.05 (10)C14—C15—C16—C111.2 (2)
S1—C7—C8—O367.61 (16)C12—C11—C16—O4178.05 (13)
S1—C7—C8—C9110.33 (12)C10—C11—C16—O40.77 (16)
C16—O4—C9—C100.23 (15)C12—C11—C16—C150.9 (2)
C16—O4—C9—C8177.42 (12)C10—C11—C16—C15179.74 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.553.1808 (19)124
C7—H7a···O2ii0.992.573.5383 (17)165
C7—H7b···O1i0.992.473.3746 (17)152
C15—H15···O3iii0.952.473.2742 (17)142
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H12O4S
Mr300.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.7560 (2), 4.7855 (1), 26.1838 (5)
β (°) 91.024 (2)
V3)1347.54 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.27
Crystal size (mm)0.35 × 0.15 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.598, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4617, 2650, 2495
Rint0.016
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.04
No. of reflections2650
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.47

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.553.1808 (19)124
C7—H7a···O2ii0.992.573.5383 (17)165
C7—H7b···O1i0.992.473.3746 (17)152
C15—H15···O3iii0.952.473.2742 (17)142
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x+1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: hatem_741@yahoo.com.

Acknowledgements

The authors thank King Saud University and the University of Malaya for supporting this study.

References

First citationAbdel-Aziz, H. A., Bari, A. & Ng, S. W. (2011). Acta Cryst. E67, o696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985–3997.  Google Scholar
First citationAbdel-Aziz, H. A., Mekawey, A. A. I. & Dawood, K. M. (2009). Eur. J. Med. Chem. 44, 3637–3644.  Web of Science PubMed CAS Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.  CAS Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGaruti, L., Roberti, M. & De Clercq, E. (2002). Bioorg. Med. Chem. Lett. 12, 2707–2710.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, M., Mamiya, T. & Wakao, M. (1986). J. Heterocycl. Chem. 23, 77–80.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds