organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Di­phenyl­methyl-4-[3-(4-fluoro­benzo­yl)prop­yl]piperazine-1,4-diium dichloride monohydrate

aSchool of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
*Correspondence e-mail: jingwang@home.ipe.ac.cn

(Received 29 July 2011; accepted 14 September 2011; online 30 September 2011)

In the title compound, C27H31FN2O2+·2Cl·H2O, the piperazine ring adopts a chair conformation and both N atoms are protonated. The Cl anions form strong hydrogen bonds to these protons. O/N—H⋯Cl and C—H⋯O hydrogen bonds link the anions, cations and water of hydration into a three-dimensional network.

Related literature

For a related structure, see: Zhou & Jin (1986[Zhou, G. D. & Jin, S. (1986). J. Struct. Chem. 5, 49-51.]). For the synthesis of 1-diphenyl­methyl-4-[3-(4-fluoro­benzo­yl)prop­yl]piperazine, see: Wang et al. (2003[Wang, Y. L., Chen, Z. M. & Bao, C. H. (2003). Chinese Patent CN 1654461A.]).

[Scheme 1]

Experimental

Crystal data
  • C27H31FN2O2+·2Cl·H2O

  • Mr = 507.45

  • Monoclinic, C 2/c

  • a = 39.2849 (14) Å

  • b = 7.3369 (3) Å

  • c = 19.5158 (7) Å

  • β = 107.773 (2)°

  • V = 5356.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.37 × 0.21 × 0.11 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.933, Tmax = 0.970

  • 19739 measured reflections

  • 4566 independent reflections

  • 3644 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.138

  • S = 1.03

  • 4566 reflections

  • 313 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯Cl1i 1.01 (2) 2.24 (2) 3.248 (3) 176 (2)
C6—H6A⋯O1Wii 0.93 2.55 3.397 (4) 152
C14—H14B⋯O1iii 0.97 2.38 3.148 (3) 136
N1—H1A⋯Cl2 0.91 2.09 2.990 (2) 171
O1W—H2⋯Cl2 1.01 (2) 2.20 (2) 3.207 (3) 172 (2)
N2—H2B⋯Cl1 0.91 2.18 3.070 (2) 167
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{3\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z].

Data collection: SMART (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structure of 1-diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]piperazine has been reported (Zhou & Jin, 1986). In this article we report the structure of its dihydrochloride monohydrate.

In the title compound (Fig. 1), the piperazine ring adopts a chair conformation with the piperizine-N atoms protonated. The Cl- anions form strong halogen hydrogen bonds to these protons. Two chlorine ions and one hydrone bridge piperazine cations through the O—H···Cl and N—H···Cl halogen hydrogen bonds result in a one-dimensional chain structure. Moreover, these hydrogen bonds, as well as CO···H hydrogen bonds (Table 1), link the molecular moieties into a two dimensional sheet in the b-c plane. The water of hydration further consolidates the structure via hydrogen bonds of the type O—H···C. Overall, the individual molecule packs together into a three-dimensional network with a spiral structure motif (Fig. 2).

Related literature top

For a related structure, see: Zhou & Jin (1986). For the synthesis of 1-diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]piperazine, see: Wang et al. (2003).

Experimental top

The 1-diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]piperazine base was synthesized according to a reported procedure (Wang et al., 2003). The title compound was prepared by passing dry hydrochloride gas (100 mg) through a solution of 200 mg base in ethanol (2 ml). The single-crystals of the title compound suitable for X-ray analysis were obtained by vapor diffusion in a solution of chloroform in which the compound was soluble by benzene acting as anti-solvent.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.91 Å and C—H = 0.93, 0.97 and 0.98 Å, for aryl, methylene and methyne type H-atoms, respectively, with Uiso(H) = 1.2 Ueq(C/N). H atoms of water molecule were located in difference Fourier maps and were refined freely with isotropic displacement parameters.

Structure description top

The crystal structure of 1-diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]piperazine has been reported (Zhou & Jin, 1986). In this article we report the structure of its dihydrochloride monohydrate.

In the title compound (Fig. 1), the piperazine ring adopts a chair conformation with the piperizine-N atoms protonated. The Cl- anions form strong halogen hydrogen bonds to these protons. Two chlorine ions and one hydrone bridge piperazine cations through the O—H···Cl and N—H···Cl halogen hydrogen bonds result in a one-dimensional chain structure. Moreover, these hydrogen bonds, as well as CO···H hydrogen bonds (Table 1), link the molecular moieties into a two dimensional sheet in the b-c plane. The water of hydration further consolidates the structure via hydrogen bonds of the type O—H···C. Overall, the individual molecule packs together into a three-dimensional network with a spiral structure motif (Fig. 2).

For a related structure, see: Zhou & Jin (1986). For the synthesis of 1-diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]piperazine, see: Wang et al. (2003).

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound showing hydrogen bonds with dotted lines.
1-Diphenylmethyl-4-[3-(4-fluorobenzoyl)propyl]piperazine-1,4-diium dichloride monohydrate top
Crystal data top
C27H31FN2O2+·2Cl·H2OF(000) = 2144
Mr = 507.45Dx = 1.258 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 6877 reflections
a = 39.2849 (14) Åθ = 4.6–65.2°
b = 7.3369 (3) ŵ = 0.28 mm1
c = 19.5158 (7) ÅT = 298 K
β = 107.773 (2)°Prismatic, colorless
V = 5356.6 (3) Å30.37 × 0.21 × 0.11 mm
Z = 8
Data collection top
Siemens SMART CCD area-detector
diffractometer
4566 independent reflections
Radiation source: fine-focus sealed tube3644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 24.9°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4644
Tmin = 0.933, Tmax = 0.970k = 87
19739 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0742P)2 + 3.1528P]
where P = (Fo2 + 2Fc2)/3
4566 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.37 e Å3
Crystal data top
C27H31FN2O2+·2Cl·H2OV = 5356.6 (3) Å3
Mr = 507.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 39.2849 (14) ŵ = 0.28 mm1
b = 7.3369 (3) ÅT = 298 K
c = 19.5158 (7) Å0.37 × 0.21 × 0.11 mm
β = 107.773 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4566 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3644 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.970Rint = 0.034
19739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0463 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
4566 reflectionsΔρmin = 0.37 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.40283 (5)0.3181 (3)0.13299 (11)0.1153 (7)
Cl10.113600 (17)0.81655 (8)0.10513 (4)0.0702 (2)
Cl20.231844 (18)1.53814 (9)0.16249 (4)0.0760 (2)
N10.19895 (4)1.1685 (2)0.12880 (9)0.0468 (4)
H1A0.20871.28210.13390.056*
N20.12309 (4)1.2321 (2)0.10926 (8)0.0441 (4)
H2B0.11661.11270.10410.053*
O10.31404 (6)1.0374 (3)0.04357 (12)0.0918 (7)
O1W0.17734 (9)1.6776 (4)0.24451 (15)0.1295 (9)
C10.37946 (8)0.4599 (4)0.11920 (14)0.0765 (8)
C20.38710 (7)0.6077 (5)0.08508 (15)0.0792 (8)
H2A0.40780.61170.07140.095*
C30.36369 (7)0.7509 (4)0.07114 (13)0.0674 (6)
H3A0.36880.85400.04820.081*
C40.33248 (6)0.7454 (3)0.09058 (11)0.0541 (5)
C50.32535 (7)0.5884 (3)0.12420 (12)0.0643 (6)
H5A0.30440.58070.13680.077*
C60.34905 (8)0.4448 (4)0.13884 (14)0.0771 (8)
H6A0.34450.34030.16150.092*
C70.30841 (6)0.9070 (3)0.07606 (12)0.0572 (5)
C80.27859 (7)0.9051 (4)0.10829 (17)0.0789 (8)
H8A0.28900.90030.16020.095*
H8B0.26520.79310.09360.095*
C90.25220 (6)1.0625 (3)0.09051 (14)0.0641 (6)
H9A0.26461.17830.10170.077*
H9B0.23851.06130.03990.077*
C100.22818 (6)1.0325 (3)0.13699 (13)0.0596 (6)
H10A0.21750.91260.12630.072*
H10B0.24291.03190.18690.072*
C110.18253 (5)1.1380 (3)0.18779 (11)0.0537 (5)
H11A0.20031.16190.23370.064*
H11B0.17541.01130.18730.064*
C120.15059 (5)1.2567 (3)0.18091 (11)0.0541 (5)
H12A0.14021.22640.21870.065*
H12B0.15801.38330.18680.065*
C130.14022 (5)1.2799 (3)0.05275 (11)0.0502 (5)
H13A0.14841.40530.05910.060*
H13B0.12271.26910.00550.060*
C140.17127 (5)1.1568 (3)0.05701 (11)0.0506 (5)
H14A0.16291.03210.04820.061*
H14B0.18181.19050.01990.061*
C150.08987 (5)1.3469 (3)0.10174 (11)0.0491 (5)
H15A0.09731.47480.10410.059*
C160.06201 (5)1.3197 (3)0.02871 (11)0.0519 (5)
C170.04723 (6)1.4723 (4)0.01065 (13)0.0651 (6)
H17A0.05551.58760.00630.078*
C180.02014 (7)1.4545 (5)0.07510 (15)0.0835 (9)
H18A0.01001.55800.10080.100*
C190.00813 (7)1.2854 (5)0.10126 (14)0.0836 (9)
H19A0.00991.27420.14490.100*
C200.02270 (7)1.1335 (4)0.06319 (14)0.0786 (8)
H20A0.01461.01870.08100.094*
C210.04927 (6)1.1494 (4)0.00130 (13)0.0667 (6)
H21A0.05891.04500.02700.080*
C220.07512 (5)1.3157 (3)0.16414 (11)0.0517 (5)
C230.06211 (7)1.1488 (4)0.17795 (13)0.0659 (6)
H23A0.06311.04900.14930.079*
C240.04770 (8)1.1286 (5)0.23378 (15)0.0806 (8)
H24A0.03921.01570.24270.097*
C250.04600 (8)1.2757 (5)0.27604 (15)0.0833 (9)
H25A0.03601.26290.31330.100*
C260.05902 (8)1.4419 (5)0.26328 (15)0.0822 (8)
H26A0.05791.54150.29200.099*
C270.07369 (6)1.4609 (4)0.20780 (13)0.0645 (6)
H27A0.08271.57330.19980.077*
H20.1952 (5)1.647 (4)0.2183 (13)0.080*
H10.1574 (5)1.726 (4)0.2022 (12)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1138 (14)0.1047 (15)0.1215 (14)0.0581 (12)0.0270 (12)0.0098 (11)
Cl10.0742 (4)0.0398 (4)0.0921 (5)0.0111 (3)0.0189 (3)0.0043 (3)
Cl20.0754 (4)0.0481 (4)0.1010 (5)0.0194 (3)0.0220 (3)0.0042 (3)
N10.0441 (9)0.0382 (10)0.0579 (9)0.0057 (7)0.0152 (7)0.0007 (7)
N20.0423 (8)0.0386 (9)0.0499 (9)0.0064 (7)0.0121 (7)0.0007 (7)
O10.1009 (14)0.0751 (13)0.1225 (16)0.0187 (11)0.0686 (13)0.0393 (12)
O1W0.144 (2)0.123 (2)0.125 (2)0.0220 (19)0.0457 (18)0.0110 (17)
C10.0786 (17)0.079 (2)0.0646 (15)0.0263 (15)0.0118 (13)0.0046 (13)
C20.0598 (14)0.098 (2)0.0800 (17)0.0155 (15)0.0208 (13)0.0043 (16)
C30.0631 (14)0.0712 (17)0.0712 (15)0.0020 (13)0.0254 (12)0.0036 (12)
C40.0599 (12)0.0560 (14)0.0480 (11)0.0000 (10)0.0188 (9)0.0041 (10)
C50.0777 (15)0.0558 (15)0.0665 (14)0.0032 (12)0.0326 (12)0.0030 (11)
C60.109 (2)0.0569 (16)0.0660 (15)0.0144 (15)0.0272 (15)0.0042 (12)
C70.0627 (13)0.0557 (14)0.0581 (12)0.0010 (11)0.0255 (10)0.0012 (11)
C80.0805 (17)0.0615 (17)0.111 (2)0.0126 (14)0.0531 (16)0.0169 (15)
C90.0617 (13)0.0576 (15)0.0790 (15)0.0048 (11)0.0304 (12)0.0067 (12)
C100.0559 (12)0.0500 (14)0.0749 (14)0.0084 (10)0.0229 (11)0.0085 (11)
C110.0470 (11)0.0611 (14)0.0518 (11)0.0029 (10)0.0134 (9)0.0033 (10)
C120.0461 (11)0.0627 (14)0.0508 (11)0.0054 (10)0.0108 (9)0.0042 (10)
C130.0486 (11)0.0508 (13)0.0513 (11)0.0047 (9)0.0155 (9)0.0072 (9)
C140.0520 (11)0.0502 (13)0.0511 (11)0.0057 (9)0.0179 (9)0.0006 (9)
C150.0452 (11)0.0420 (12)0.0593 (12)0.0013 (9)0.0150 (9)0.0017 (9)
C160.0440 (11)0.0548 (14)0.0586 (12)0.0001 (9)0.0182 (9)0.0064 (10)
C170.0606 (13)0.0635 (16)0.0716 (15)0.0045 (11)0.0210 (11)0.0164 (12)
C180.0712 (17)0.103 (2)0.0725 (17)0.0185 (16)0.0164 (14)0.0345 (17)
C190.0618 (15)0.116 (3)0.0626 (15)0.0045 (17)0.0036 (12)0.0000 (16)
C200.0600 (14)0.087 (2)0.0766 (16)0.0051 (14)0.0030 (13)0.0089 (15)
C210.0544 (13)0.0627 (16)0.0728 (15)0.0016 (11)0.0041 (11)0.0014 (12)
C220.0399 (10)0.0559 (14)0.0568 (12)0.0007 (9)0.0109 (9)0.0013 (10)
C230.0673 (14)0.0645 (16)0.0715 (15)0.0109 (12)0.0296 (12)0.0033 (12)
C240.0774 (17)0.090 (2)0.0803 (17)0.0155 (15)0.0334 (14)0.0072 (16)
C250.0710 (17)0.120 (3)0.0631 (15)0.0051 (17)0.0271 (13)0.0011 (16)
C260.0793 (18)0.098 (2)0.0704 (16)0.0046 (17)0.0243 (14)0.0194 (15)
C270.0610 (13)0.0642 (16)0.0665 (14)0.0005 (11)0.0167 (11)0.0079 (12)
Geometric parameters (Å, º) top
F1—C11.359 (3)C11—H11B0.9700
N1—C141.491 (3)C12—H12A0.9700
N1—C101.493 (3)C12—H12B0.9700
N1—C111.498 (3)C13—C141.500 (3)
N1—H1A0.9100C13—H13A0.9700
N2—C121.494 (3)C13—H13B0.9700
N2—C131.498 (2)C14—H14A0.9700
N2—C151.522 (3)C14—H14B0.9700
N2—H2B0.9100C15—C221.517 (3)
O1—C71.206 (3)C15—C161.522 (3)
O1W—H21.012 (16)C15—H15A0.9800
O1W—H11.013 (16)C16—C171.381 (3)
C1—C21.353 (4)C16—C211.391 (3)
C1—C61.366 (4)C17—C181.384 (4)
C2—C31.368 (4)C17—H17A0.9300
C2—H2A0.9300C18—C191.369 (4)
C3—C41.390 (3)C18—H18A0.9300
C3—H3A0.9300C19—C201.365 (4)
C4—C51.396 (3)C19—H19A0.9300
C4—C71.489 (3)C20—C211.373 (3)
C5—C61.377 (4)C20—H20A0.9300
C5—H5A0.9300C21—H21A0.9300
C6—H6A0.9300C22—C271.376 (3)
C7—C81.489 (3)C22—C231.384 (3)
C8—C91.519 (4)C23—C241.381 (4)
C8—H8A0.9700C23—H23A0.9300
C8—H8B0.9700C24—C251.372 (4)
C9—C101.511 (3)C24—H24A0.9300
C9—H9A0.9700C25—C261.374 (4)
C9—H9B0.9700C25—H25A0.9300
C10—H10A0.9700C26—C271.380 (4)
C10—H10B0.9700C26—H26A0.9300
C11—C121.499 (3)C27—H27A0.9300
C11—H11A0.9700
C14—N1—C10112.26 (17)N2—C12—H12A109.4
C14—N1—C11110.60 (15)C11—C12—H12A109.4
C10—N1—C11108.40 (16)N2—C12—H12B109.4
C14—N1—H1A108.5C11—C12—H12B109.4
C10—N1—H1A108.5H12A—C12—H12B108.0
C11—N1—H1A108.5N2—C13—C14111.04 (16)
C12—N2—C13107.56 (15)N2—C13—H13A109.4
C12—N2—C15112.16 (16)C14—C13—H13A109.4
C13—N2—C15111.36 (15)N2—C13—H13B109.4
C12—N2—H2B108.6C14—C13—H13B109.4
C13—N2—H2B108.6H13A—C13—H13B108.0
C15—N2—H2B108.6N1—C14—C13111.42 (17)
H2—O1W—H198.6 (16)N1—C14—H14A109.3
C2—C1—F1118.2 (3)C13—C14—H14A109.3
C2—C1—C6123.2 (3)N1—C14—H14B109.3
F1—C1—C6118.6 (3)C13—C14—H14B109.3
C1—C2—C3118.5 (3)H14A—C14—H14B108.0
C1—C2—H2A120.8C22—C15—C16112.97 (16)
C3—C2—H2A120.8C22—C15—N2111.43 (16)
C2—C3—C4121.2 (3)C16—C15—N2111.58 (16)
C2—C3—H3A119.4C22—C15—H15A106.8
C4—C3—H3A119.4C16—C15—H15A106.8
C3—C4—C5118.2 (2)N2—C15—H15A106.8
C3—C4—C7119.1 (2)C17—C16—C21118.3 (2)
C5—C4—C7122.6 (2)C17—C16—C15118.3 (2)
C6—C5—C4120.6 (2)C21—C16—C15123.32 (19)
C6—C5—H5A119.7C16—C17—C18120.3 (3)
C4—C5—H5A119.7C16—C17—H17A119.8
C1—C6—C5118.3 (3)C18—C17—H17A119.8
C1—C6—H6A120.9C19—C18—C17120.4 (3)
C5—C6—H6A120.9C19—C18—H18A119.8
O1—C7—C4121.6 (2)C17—C18—H18A119.8
O1—C7—C8121.6 (2)C20—C19—C18119.8 (2)
C4—C7—C8116.6 (2)C20—C19—H19A120.1
C7—C8—C9117.8 (2)C18—C19—H19A120.1
C7—C8—H8A107.9C19—C20—C21120.3 (3)
C9—C8—H8A107.9C19—C20—H20A119.8
C7—C8—H8B107.9C21—C20—H20A119.8
C9—C8—H8B107.9C20—C21—C16120.8 (2)
H8A—C8—H8B107.2C20—C21—H21A119.6
C10—C9—C8105.03 (19)C16—C21—H21A119.6
C10—C9—H9A110.7C27—C22—C23118.5 (2)
C8—C9—H9A110.7C27—C22—C15118.5 (2)
C10—C9—H9B110.7C23—C22—C15123.0 (2)
C8—C9—H9B110.7C24—C23—C22120.9 (3)
H9A—C9—H9B108.8C24—C23—H23A119.6
N1—C10—C9116.04 (19)C22—C23—H23A119.6
N1—C10—H10A108.3C25—C24—C23119.8 (3)
C9—C10—H10A108.3C25—C24—H24A120.1
N1—C10—H10B108.3C23—C24—H24A120.1
C9—C10—H10B108.3C24—C25—C26120.0 (3)
H10A—C10—H10B107.4C24—C25—H25A120.0
N1—C11—C12112.92 (17)C26—C25—H25A120.0
N1—C11—H11A109.0C25—C26—C27120.0 (3)
C12—C11—H11A109.0C25—C26—H26A120.0
N1—C11—H11B109.0C27—C26—H26A120.0
C12—C11—H11B109.0C22—C27—C26120.9 (3)
H11A—C11—H11B107.8C22—C27—H27A119.6
N2—C12—C11111.11 (17)C26—C27—H27A119.6
F1—C1—C2—C3179.9 (2)N2—C13—C14—N159.1 (2)
C6—C1—C2—C31.7 (4)C12—N2—C15—C2252.4 (2)
C1—C2—C3—C40.8 (4)C13—N2—C15—C22172.96 (17)
C2—C3—C4—C50.7 (4)C12—N2—C15—C16179.67 (17)
C2—C3—C4—C7178.3 (2)C13—N2—C15—C1659.7 (2)
C3—C4—C5—C61.3 (3)C22—C15—C16—C17103.2 (2)
C7—C4—C5—C6177.7 (2)N2—C15—C16—C17130.3 (2)
C2—C1—C6—C51.1 (4)C22—C15—C16—C2173.2 (3)
F1—C1—C6—C5179.5 (2)N2—C15—C16—C2153.3 (3)
C4—C5—C6—C10.4 (4)C21—C16—C17—C180.9 (3)
C3—C4—C7—O15.1 (4)C15—C16—C17—C18175.7 (2)
C5—C4—C7—O1176.0 (2)C16—C17—C18—C191.2 (4)
C3—C4—C7—C8170.5 (2)C17—C18—C19—C200.7 (5)
C5—C4—C7—C88.4 (3)C18—C19—C20—C210.2 (5)
O1—C7—C8—C98.1 (4)C19—C20—C21—C160.5 (4)
C4—C7—C8—C9176.2 (2)C17—C16—C21—C200.0 (4)
C7—C8—C9—C10173.9 (2)C15—C16—C21—C20176.4 (2)
C14—N1—C10—C968.0 (3)C16—C15—C22—C27115.0 (2)
C11—N1—C10—C9169.6 (2)N2—C15—C22—C27118.5 (2)
C8—C9—C10—N1178.9 (2)C16—C15—C22—C2363.2 (3)
C14—N1—C11—C1251.4 (2)N2—C15—C22—C2363.4 (3)
C10—N1—C11—C12174.83 (18)C27—C22—C23—C240.6 (4)
C13—N2—C12—C1159.0 (2)C15—C22—C23—C24177.5 (2)
C15—N2—C12—C11178.27 (17)C22—C23—C24—C250.4 (4)
N1—C11—C12—N255.8 (2)C23—C24—C25—C260.8 (4)
C12—N2—C13—C1461.0 (2)C24—C25—C26—C270.2 (4)
C15—N2—C13—C14175.72 (16)C23—C22—C27—C261.2 (4)
C10—N1—C14—C13173.75 (17)C15—C22—C27—C26177.0 (2)
C11—N1—C14—C1352.5 (2)C25—C26—C27—C220.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···Cl1i1.01 (2)2.24 (2)3.248 (3)176 (2)
C15—H15A···Cl1i0.982.593.565 (2)177
C6—H6A···O1Wii0.932.553.397 (4)152
C10—H10B···Cl2iii0.972.803.746 (3)165
C14—H14B···O1iv0.972.383.148 (3)136
N1—H1A···Cl20.912.092.990 (2)171
O1W—H2···Cl21.01 (2)2.20 (2)3.207 (3)172 (2)
N2—H2B···Cl10.912.183.070 (2)167
C12—H12B···O1W0.972.453.374 (4)160
C21—H21A···Cl10.932.783.651 (3)155
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y3/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaC27H31FN2O2+·2Cl·H2O
Mr507.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)39.2849 (14), 7.3369 (3), 19.5158 (7)
β (°) 107.773 (2)
V3)5356.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.37 × 0.21 × 0.11
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.933, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
19739, 4566, 3644
Rint0.034
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.138, 1.03
No. of reflections4566
No. of parameters313
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.37

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···Cl1i1.01 (2)2.24 (2)3.248 (3)176 (2)
C6—H6A···O1Wii0.932.553.397 (4)152
C14—H14B···O1iii0.972.383.148 (3)136
N1—H1A···Cl20.912.092.990 (2)171
O1W—H2···Cl21.01 (2)2.20 (2)3.207 (3)172 (2)
N2—H2B···Cl10.912.183.070 (2)167
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y3/2, z+1/2; (iii) x+1/2, y+5/2, z.
 

Acknowledgements

We acknowledge financial support for this work by the Hebei Province Natural Science Fund of China (C2006001035), the Science Fund (2009148) of the Education Department and the Science Fund (20090059) of the Health Department of Hebei Province of China.

References

First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, Y. L., Chen, Z. M. & Bao, C. H. (2003). Chinese Patent CN 1654461A.  Google Scholar
First citationZhou, G. D. & Jin, S. (1986). J. Struct. Chem. 5, 49–51.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds