organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(5-Chloro­thio­phen-2-yl)-3-(2,3-dimeth­­oxy­phen­yl)prop-2-en-1-one

aPhysics Department, Manipal Institute of Technology, Manipal University, Manipal 576 104, India, bDepartment of Physics, Mangalore Institute of Technology & Engineering (MITE), Badagamijar, Moodabidri, Karnataka, India, and cSolid State and Sructural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: v.upadhyaya@manipal.edu

(Received 30 July 2011; accepted 13 September 2011; online 17 September 2011)

In the title compound, C15H13ClO3S, the chloro­thio­phene and dimeth­oxy­phenyl groups are linked by a prop-2-en-1-one group. The C=C double bond exhibits an E conformation. The mol­ecule is non-planar, with a dihedral angle of 31.12 (5)° between the chloro­thio­phene and dimeth­oxy­phenyl rings. The meth­oxy group at position 3 is coplanar with the benzene ring to which it is attached, with a C—O—C—C torsion angle of −3.8 (3)°. The meth­oxy group attached at position 2 of the benzene ring is in a (+)synclinal conformation, as indicated by the C—O—C—C torsion angle of −73.6 (2)°. In the crystal, two different C—H⋯O inter­molecular inter­actions generate chains of mol­ecules extending along the b axis.

Related literature

For general background to chalcones and their biological properties, see: Choudary et al. (1999[Choudary, B. M., Lakshmi, K. M., Venkat, R. C. R., Koteswara, R. K. & Figueras, F. (1999). J. Mol. Catal. A, 146, 279-279.]); Tomazela et al. (2000[Tomazela, D. M., Pupo, M. T., Passador, E. A. P., da Silva, M. F. D. G. F., Vieira, P. C., Fernandes, J. B., Rodrigues, F. E., Oliva, G. & Pirani, J. R. (2000). Phytochemistry, 55, 643-651.]). For a related structure, see: Benmekhbi et al. (2009[Benmekhbi, L., Belhouas, R., Bouacida, S., Mosbah, S. & Bencharif, L. (2009). Acta Cryst. E65, o1472-o1473.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClO3S

  • Mr = 308.76

  • Monoclinic, P 21 /c

  • a = 11.6139 (8) Å

  • b = 8.5605 (5) Å

  • c = 14.4174 (9) Å

  • β = 99.907 (2)°

  • V = 1412.02 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.920, Tmax = 0.936

  • 9286 measured reflections

  • 3087 independent reflections

  • 2348 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.07

  • 3087 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.53 3.209 (2) 130
C15—H15A⋯O2ii 0.96 2.55 3.423 (3) 151
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Chalcones represent one of the most abundant and ubiquitous group of natural products (Tomazela, et al., 2000). In the past few years, they have been shown to possess interesting biological properties and synthetic intermediates (Choudary, et al., 1999). In the title compound (Fig. 1), the chlorothiophene and dimethoxyphenyl groups are linked by a prop-2-en-1-one group. The chlorothiophene and dimethoxyphenyl rings are non-planar with the dihedral angle 31.12 (5)°. The torsion angle C15–O3–C12–C11 is 3.7 (3)° indicating that the O3 methoxy group is coplanar with the attached benzene ring. The other methoxy group at O2 is in a + synclinal conformation as indicated by the torsion angle 73.6 (2)° for C14–O2–C13–C12. The CC double bond exhibits an E conformation (Benmekhbi, et al., 2009). The crystal structure is stabilized by two different C—H···O intermolecular interactions generating chains of molecules along the b-axis (Fig. 2).

Related literature top

For general background to chalcones and their biological properties, see: Choudary et al. (1999); Tomazela et al. (2000). For a related structure, see: Benmekhbi et al. (2009).

Experimental top

To synthesizethe the title compound, 2-acetyl-5-chlorothiophene (0.01 mol) and 2,3-dimethoxybenzaldehyde (0.01 mol) were dissolved in methanol (60 ml). Sodium hydroxide (5 ml, 20%) was then added drop wise to the solution, and it was stirred for 2 h. The contents of the flask were poured into ice-cold water, and the resulting crude solid was collected by filtration. The compound was dried and re-crystallized twice from acetone.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with C—H = 0.93 and 0.96 Å, for aryl and methyl H-atoms, respectively, with Uiso(H) = 1.2 and 1.5Ueq(C).

Structure description top

Chalcones represent one of the most abundant and ubiquitous group of natural products (Tomazela, et al., 2000). In the past few years, they have been shown to possess interesting biological properties and synthetic intermediates (Choudary, et al., 1999). In the title compound (Fig. 1), the chlorothiophene and dimethoxyphenyl groups are linked by a prop-2-en-1-one group. The chlorothiophene and dimethoxyphenyl rings are non-planar with the dihedral angle 31.12 (5)°. The torsion angle C15–O3–C12–C11 is 3.7 (3)° indicating that the O3 methoxy group is coplanar with the attached benzene ring. The other methoxy group at O2 is in a + synclinal conformation as indicated by the torsion angle 73.6 (2)° for C14–O2–C13–C12. The CC double bond exhibits an E conformation (Benmekhbi, et al., 2009). The crystal structure is stabilized by two different C—H···O intermolecular interactions generating chains of molecules along the b-axis (Fig. 2).

For general background to chalcones and their biological properties, see: Choudary et al. (1999); Tomazela et al. (2000). For a related structure, see: Benmekhbi et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded for clarity.
(2E)-1-(5-Chlorothiophen-2-yl)-3-(2,3-dimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C15H13ClO3SF(000) = 640
Mr = 308.76Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3087 reflections
a = 11.6139 (8) Åθ = 1.8–27.0°
b = 8.5605 (5) ŵ = 0.42 mm1
c = 14.4174 (9) ÅT = 296 K
β = 99.907 (2)°Block, yellow
V = 1412.02 (16) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3087 independent reflections
Radiation source: fine-focus sealed tube2348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1414
Tmin = 0.920, Tmax = 0.936k = 810
9286 measured reflectionsl = 1814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1854P]
where P = (Fo2 + 2Fc2)/3
3087 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H13ClO3SV = 1412.02 (16) Å3
Mr = 308.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6139 (8) ŵ = 0.42 mm1
b = 8.5605 (5) ÅT = 296 K
c = 14.4174 (9) Å0.20 × 0.18 × 0.16 mm
β = 99.907 (2)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3087 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2348 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.936Rint = 0.026
9286 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
3087 reflectionsΔρmin = 0.26 e Å3
183 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22862 (5)0.40719 (7)1.17836 (4)0.06157 (19)
S10.33583 (4)0.57846 (6)1.03539 (3)0.04070 (15)
O10.46583 (12)0.75106 (18)0.91191 (10)0.0540 (4)
O20.80027 (11)0.99907 (15)0.81682 (8)0.0413 (3)
O30.97557 (11)1.20940 (17)0.83929 (10)0.0509 (4)
C10.33815 (16)0.5228 (2)1.14971 (13)0.0387 (4)
C20.43004 (17)0.5799 (2)1.21037 (13)0.0451 (5)
H20.44400.56081.27480.054*
C30.50212 (16)0.6722 (2)1.16311 (13)0.0427 (5)
H30.56970.72101.19360.051*
C40.46355 (14)0.6834 (2)1.06827 (12)0.0358 (4)
C50.51284 (15)0.7641 (2)0.99432 (13)0.0384 (4)
C60.61819 (15)0.8604 (2)1.02313 (13)0.0407 (4)
H60.64420.87911.08680.049*
C70.67724 (15)0.9214 (2)0.96006 (13)0.0382 (4)
H70.65090.89490.89750.046*
C80.77860 (15)1.0250 (2)0.97828 (12)0.0357 (4)
C90.82092 (16)1.0873 (2)1.06805 (13)0.0431 (5)
H90.78571.05921.11880.052*
C100.91330 (17)1.1886 (3)1.08140 (14)0.0485 (5)
H100.94061.22801.14130.058*
C110.96713 (16)1.2336 (2)1.00634 (14)0.0466 (5)
H111.02931.30361.01610.056*
C120.92801 (15)1.1742 (2)0.91742 (13)0.0396 (4)
C130.83426 (15)1.0682 (2)0.90333 (12)0.0347 (4)
C140.73927 (19)1.0981 (3)0.74504 (15)0.0540 (6)
H14C0.66141.11590.75660.081*
H14B0.73581.04880.68480.081*
H14A0.77961.19600.74540.081*
C151.0673 (2)1.3220 (3)0.84993 (18)0.0660 (7)
H15C1.04071.41740.87420.099*
H15A1.08961.34160.78990.099*
H15B1.13341.28290.89290.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0603 (3)0.0672 (4)0.0591 (4)0.0213 (3)0.0158 (3)0.0057 (3)
S10.0417 (3)0.0445 (3)0.0344 (3)0.00324 (19)0.00221 (18)0.0015 (2)
O10.0592 (8)0.0645 (10)0.0361 (8)0.0086 (7)0.0025 (6)0.0093 (7)
O20.0537 (7)0.0392 (8)0.0328 (7)0.0012 (6)0.0124 (6)0.0022 (6)
O30.0484 (8)0.0632 (10)0.0446 (8)0.0134 (7)0.0174 (6)0.0012 (7)
C10.0436 (10)0.0360 (10)0.0382 (10)0.0011 (8)0.0122 (8)0.0004 (8)
C20.0542 (11)0.0497 (13)0.0315 (9)0.0044 (9)0.0074 (8)0.0008 (9)
C30.0438 (10)0.0453 (12)0.0374 (10)0.0059 (8)0.0026 (8)0.0015 (9)
C40.0362 (9)0.0339 (10)0.0377 (10)0.0025 (7)0.0078 (7)0.0004 (8)
C50.0405 (9)0.0382 (11)0.0370 (10)0.0060 (8)0.0084 (8)0.0046 (8)
C60.0443 (10)0.0441 (11)0.0343 (10)0.0009 (8)0.0087 (8)0.0013 (8)
C70.0438 (10)0.0370 (11)0.0349 (9)0.0048 (8)0.0101 (8)0.0029 (8)
C80.0373 (9)0.0365 (10)0.0339 (9)0.0061 (7)0.0078 (7)0.0024 (8)
C90.0453 (10)0.0518 (13)0.0333 (9)0.0036 (9)0.0100 (8)0.0032 (9)
C100.0472 (11)0.0616 (14)0.0350 (10)0.0001 (10)0.0019 (8)0.0040 (9)
C110.0388 (10)0.0536 (13)0.0462 (12)0.0048 (8)0.0042 (8)0.0020 (10)
C120.0374 (9)0.0438 (12)0.0394 (10)0.0033 (8)0.0116 (8)0.0039 (9)
C130.0381 (9)0.0337 (10)0.0332 (9)0.0049 (7)0.0083 (7)0.0010 (8)
C140.0607 (13)0.0573 (14)0.0412 (11)0.0048 (10)0.0009 (9)0.0042 (10)
C150.0583 (13)0.0776 (18)0.0665 (16)0.0211 (12)0.0230 (11)0.0056 (13)
Geometric parameters (Å, º) top
Cl1—C11.7173 (19)C7—C81.461 (3)
S1—C11.7115 (19)C7—H70.9300
S1—C41.7292 (18)C8—C131.401 (2)
O1—C51.224 (2)C8—C91.408 (3)
O2—C131.376 (2)C9—C101.367 (3)
O2—C141.428 (2)C9—H90.9300
O3—C121.371 (2)C10—C111.394 (3)
O3—C151.425 (2)C10—H100.9300
C1—C21.350 (3)C11—C121.381 (3)
C2—C31.409 (3)C11—H110.9300
C2—H20.9300C12—C131.405 (3)
C3—C41.367 (2)C14—H14C0.9600
C3—H30.9300C14—H14B0.9600
C4—C51.467 (2)C14—H14A0.9600
C5—C61.474 (3)C15—H15C0.9600
C6—C71.336 (3)C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C1—S1—C490.57 (9)C10—C9—C8120.74 (18)
C13—O2—C14115.51 (15)C10—C9—H9119.6
C12—O3—C15117.37 (17)C8—C9—H9119.6
C2—C1—S1113.76 (14)C9—C10—C11120.79 (18)
C2—C1—Cl1126.07 (15)C9—C10—H10119.6
S1—C1—Cl1120.16 (11)C11—C10—H10119.6
C1—C2—C3111.04 (17)C12—C11—C10119.92 (19)
C1—C2—H2124.5C12—C11—H11120.0
C3—C2—H2124.5C10—C11—H11120.0
C4—C3—C2113.79 (17)O3—C12—C11124.53 (17)
C4—C3—H3123.1O3—C12—C13115.79 (16)
C2—C3—H3123.1C11—C12—C13119.67 (17)
C3—C4—C5131.18 (17)O2—C13—C8119.14 (16)
C3—C4—S1110.84 (14)O2—C13—C12120.23 (16)
C5—C4—S1117.97 (13)C8—C13—C12120.53 (17)
O1—C5—C4119.86 (17)O2—C14—H14C109.5
O1—C5—C6122.29 (18)O2—C14—H14B109.5
C4—C5—C6117.85 (16)H14C—C14—H14B109.5
C7—C6—C5121.68 (17)O2—C14—H14A109.5
C7—C6—H6119.2H14C—C14—H14A109.5
C5—C6—H6119.2H14B—C14—H14A109.5
C6—C7—C8127.37 (18)O3—C15—H15C109.5
C6—C7—H7116.3O3—C15—H15A109.5
C8—C7—H7116.3H15C—C15—H15A109.5
C13—C8—C9118.32 (17)O3—C15—H15B109.5
C13—C8—C7119.08 (16)H15C—C15—H15B109.5
C9—C8—C7122.57 (17)H15A—C15—H15B109.5
C4—S1—C1—C20.09 (17)C13—C8—C9—C100.6 (3)
C4—S1—C1—Cl1179.16 (12)C7—C8—C9—C10177.48 (18)
S1—C1—C2—C30.1 (2)C8—C9—C10—C110.5 (3)
Cl1—C1—C2—C3179.14 (15)C9—C10—C11—C120.8 (3)
C1—C2—C3—C40.1 (3)C15—O3—C12—C113.8 (3)
C2—C3—C4—C5178.76 (19)C15—O3—C12—C13177.16 (18)
C2—C3—C4—S10.1 (2)C10—C11—C12—O3179.22 (18)
C1—S1—C4—C30.02 (15)C10—C11—C12—C130.2 (3)
C1—S1—C4—C5178.87 (15)C14—O2—C13—C8109.94 (19)
C3—C4—C5—O1176.0 (2)C14—O2—C13—C1273.6 (2)
S1—C4—C5—O12.6 (2)C9—C8—C13—O2174.84 (15)
C3—C4—C5—C64.6 (3)C7—C8—C13—O27.0 (2)
S1—C4—C5—C6176.79 (13)C9—C8—C13—C121.6 (3)
O1—C5—C6—C79.3 (3)C7—C8—C13—C12176.61 (16)
C4—C5—C6—C7171.31 (17)O3—C12—C13—O24.1 (3)
C5—C6—C7—C8176.47 (17)C11—C12—C13—O2175.02 (16)
C6—C7—C8—C13175.42 (18)O3—C12—C13—C8179.52 (16)
C6—C7—C8—C96.5 (3)C11—C12—C13—C81.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.533.209 (2)130
C15—H15A···O2ii0.962.553.423 (3)151
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H13ClO3S
Mr308.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.6139 (8), 8.5605 (5), 14.4174 (9)
β (°) 99.907 (2)
V3)1412.02 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.920, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
9286, 3087, 2348
Rint0.026
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.07
No. of reflections3087
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.26

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.5283.209 (2)130
C15—H15A···O2ii0.962.5493.423 (3)151
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

ANP is thankful to Manipal Institute of Technology, Manipal University.

References

First citationBenmekhbi, L., Belhouas, R., Bouacida, S., Mosbah, S. & Bencharif, L. (2009). Acta Cryst. E65, o1472–o1473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationChoudary, B. M., Lakshmi, K. M., Venkat, R. C. R., Koteswara, R. K. & Figueras, F. (1999). J. Mol. Catal. A, 146, 279–279.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomazela, D. M., Pupo, M. T., Passador, E. A. P., da Silva, M. F. D. G. F., Vieira, P. C., Fernandes, J. B., Rodrigues, F. E., Oliva, G. & Pirani, J. R. (2000). Phytochemistry, 55, 643–651.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds