organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(Z)-8-(4-Chloro­phen­oxy)-3-(2,4-di­fluoro­phenyl)-4-oxa­octa-2-en-2-yl]-1H-1,2,4-triazol-4-ium nitrate

aCollege of Pharmaceutical Science, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China, and bJiangsu Engineering Technology Research Center of Polypeptide Pharmaceuticals, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guoguangchen@163.com

(Received 7 September 2011; accepted 21 September 2011; online 30 September 2011)

In the title compound C21H21ClF2N3O2+·NO3, the triazole ring makes dihedral angles of 40.7 (3) and 30.2 (4)° with the 4-chloro­pheny and 2,4-difluoro­phenyl rings, respectively. The cation adopts a Z-configuration about the C=C double bond which links the triazole ring to the 4-chloro­phen­oxy unit via a but­yloxy chain. In the crystal, the cations and the anions are linked by N—H⋯O, C—H⋯O and C—H⋯F hydrogen bonding.

Related literature

For the anti­fungal activity of related compounds, see: Jeu et al. (2003[Jeu, L., Piacenti, F. J., Lyakhovetskiy, A. G. & Fung, H. B. (2003). Clin. Ther. 25, 1321-1381.]). For details of the synthesis, see: Ludwig & Kurt (1985[Ludwig, Z. & Kurt, T. (1985). US Patent Appl. US4554356.]). For a related structure, see: Kurt et al. (1987[Kurt, T., Ludwing, Z., Max, H. P., Martin, E. & Max, D. (1987). Helv. Chim. Acta 70, 441-444.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21ClF2N3O2+·NO3

  • Mr = 482.87

  • Monoclinic, P 21 /c

  • a = 7.9580 (16) Å

  • b = 31.635 (6) Å

  • c = 9.1850 (18) Å

  • β = 97.29 (3)°

  • V = 2293.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.936, Tmax = 0.978

  • 4521 measured reflections

  • 4216 independent reflections

  • 1952 reflections with I > 2σ(I)

  • Rint = 0.092

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.140

  • S = 1.00

  • 4216 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O5 0.86 1.80 2.659 (4) 174
C9—H9A⋯F1i 0.96 2.53 3.371 (5) 146
C10—H10A⋯O4ii 0.93 2.28 3.033 (5) 137
C1—H1A⋯O3iii 0.93 2.57 3.434 (5) 155
C11—H11A⋯O5iii 0.93 2.25 3.180 (5) 174
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triazole derivatives such as voriconazole ((2R,3S)-2-(2,4-difluorophenyl) -3-(5-fluoropyrimidin-4-yl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol) and posaconazole (4-(4-(4-(4-(((3R,5R)-5-(2,4-difluorophenyl)-5-(1,2,4- triazol-1-ylmethyl)oxolan-3-yl)methoxy)phenyl)piperazin-1-yl)phenyl)- 2-((2S,3S)-2-hydroxypentan-3-yl)-1,2,4-triazol-3-one) are safe and effective antifungal agents. (Jeu et al., 2003) As part of our studies on the synthesis of new triazole derivatives, the crystal structure of the title compound, having similar structure with omoconazol (Kurt et al., 1987), was determined.

In the title compound (Fig. 1), the cation adopts a Z conformation about the CC double bond. In the crystal structure the anions and cations are connected via N—H···O, C—H···O and C—H···F hydrogen bonding (Table 1 and Fig. 2).

Related literature top

For the antifungal activity of related compounds, see: Jeu et al. (2003). For details of the synthesis, see: Ludwig & Kurt (1985). For a related structure, see: Kurt et al. (1987).

Experimental top

1-(2,4-Difluorophenyl)-2-(1,2,4-triazol)-1-y1)propan-1-one (3.0 g, 0.01 mol) 10 g of a 50% aqueous sodium hydroxide, toluene (15 ml) and 1.5 ml of a 40% aqueous solution of tetrabutyl ammonium hydroxide were mixed and heated to 323 K under vigorous stirring. 1-Bromo-4-(4-chlorophenoxy)-butane (2.6 g, 0.01 mol) dissolved in 10 ml toluene, was instilled into the stirred and warmed solution in the course of 10 h. The mixture was subsequently stirred for another 20 h at 323 K. The reaction mixture was mixed with as much water and chloroform so that the aqueous phase becomes lighter than the organic phase. Thereafter, the organic and aqueous phases were separated. The organic phase was dried with sodium sulfate. The solvents were distilled under reduced pressure. The remaining residue was a dark oil that was diluted with 10 ml 2-propanol and then adjusted to a pH-value of 2 by 30% aqueous nitric acid. The resulting nitric acid solution was then cooled in the refrigerator. The impure precipitated product herein was subsequently crystallized from a 1:1 mixture of ethyl acetate and ethanol. The purified product was analytically identified as an approximately pure Z-isomer of the title compound. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. Details on the synthesis can be found in the literature (Ludwig & Kurt, 1985).

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and with N—H = 0.86 Å for triazole H atom, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 (or 1.5 for methyl groups) times Ueq(C).

Structure description top

Triazole derivatives such as voriconazole ((2R,3S)-2-(2,4-difluorophenyl) -3-(5-fluoropyrimidin-4-yl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol) and posaconazole (4-(4-(4-(4-(((3R,5R)-5-(2,4-difluorophenyl)-5-(1,2,4- triazol-1-ylmethyl)oxolan-3-yl)methoxy)phenyl)piperazin-1-yl)phenyl)- 2-((2S,3S)-2-hydroxypentan-3-yl)-1,2,4-triazol-3-one) are safe and effective antifungal agents. (Jeu et al., 2003) As part of our studies on the synthesis of new triazole derivatives, the crystal structure of the title compound, having similar structure with omoconazol (Kurt et al., 1987), was determined.

In the title compound (Fig. 1), the cation adopts a Z conformation about the CC double bond. In the crystal structure the anions and cations are connected via N—H···O, C—H···O and C—H···F hydrogen bonding (Table 1 and Fig. 2).

For the antifungal activity of related compounds, see: Jeu et al. (2003). For details of the synthesis, see: Ludwig & Kurt (1985). For a related structure, see: Kurt et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability levels.
[Figure 2] Fig. 2. The packing diagram of the title compound. Hydron bonds are shown as dashed lines.
1-[(Z)-8-(4-Chlorophenoxy)-3-(2,4-difluorophenyl)-4-oxaocta- 2-en-2-yl]-1H-1,2,4-triazol-4-ium nitrate top
Crystal data top
C21H21ClF2N3O2+·NO3F(000) = 1000
Mr = 482.87Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.9580 (16) Åθ = 9–12°
b = 31.635 (6) ŵ = 0.22 mm1
c = 9.1850 (18) ÅT = 293 K
β = 97.29 (3)°Block, yellow
V = 2293.6 (8) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1952 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.092
Graphite monochromatorθmax = 25.4°, θmin = 1.3°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 038
Tmin = 0.936, Tmax = 0.978l = 1110
4521 measured reflections3 standard reflections every 200 reflections
4216 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.048P)2]
where P = (Fo2 + 2Fc2)/3
4216 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C21H21ClF2N3O2+·NO3V = 2293.6 (8) Å3
Mr = 482.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9580 (16) ŵ = 0.22 mm1
b = 31.635 (6) ÅT = 293 K
c = 9.1850 (18) Å0.30 × 0.10 × 0.10 mm
β = 97.29 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1952 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.092
Tmin = 0.936, Tmax = 0.9783 standard reflections every 200 reflections
4521 measured reflections intensity decay: 1%
4216 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
4216 reflectionsΔρmin = 0.24 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1.06795 (17)0.98117 (4)0.78129 (14)0.0884 (4)
O10.5208 (3)0.66925 (8)0.7812 (2)0.0537 (7)
N10.4023 (4)0.64572 (10)0.5034 (3)0.0492 (8)
F10.6286 (3)0.51310 (8)1.2146 (3)0.0929 (9)
C10.4331 (5)0.59449 (12)0.9814 (4)0.0600 (11)
H1A0.33890.61210.97570.072*
O20.8631 (4)0.80660 (8)0.8732 (3)0.0665 (8)
F20.7867 (3)0.57220 (8)0.7858 (3)0.0912 (9)
N20.4433 (5)0.63841 (11)0.3638 (3)0.0667 (10)
C20.4625 (6)0.56669 (14)1.0964 (4)0.0680 (13)
H2B0.39040.56561.16840.082*
N30.3111 (4)0.69903 (10)0.3756 (3)0.0534 (9)
H3A0.26570.72290.34850.064*
C30.5993 (7)0.54084 (13)1.1027 (4)0.0622 (12)
C40.7106 (6)0.54183 (13)0.9996 (4)0.0668 (12)
H4A0.80450.52411.00540.080*
C50.6748 (6)0.57053 (13)0.8877 (4)0.0569 (11)
C60.5399 (5)0.59716 (12)0.8733 (4)0.0463 (10)
C70.5057 (5)0.62726 (12)0.7499 (4)0.0444 (9)
C80.4462 (5)0.61470 (11)0.6153 (4)0.0498 (10)
C90.4189 (6)0.57050 (13)0.5668 (4)0.0864 (16)
H9A0.45070.55180.64800.130*
H9B0.48670.56450.48990.130*
H9C0.30140.56640.53070.130*
C100.3847 (6)0.67162 (14)0.2922 (4)0.0652 (12)
H10A0.39280.67600.19320.078*
C110.3222 (5)0.68190 (12)0.5088 (4)0.0506 (10)
H11A0.28110.69340.59050.061*
C120.6628 (5)0.68174 (11)0.8866 (4)0.0484 (10)
H12A0.76790.67210.85460.058*
H12B0.65270.66910.98130.058*
C130.6635 (5)0.72830 (11)0.8991 (4)0.0528 (10)
H13A0.55840.73740.93250.063*
H13B0.66810.74050.80280.063*
C140.8110 (5)0.74505 (12)1.0040 (4)0.0503 (10)
H14A0.80130.73421.10140.060*
H14B0.91520.73390.97460.060*
C150.8246 (5)0.79196 (12)1.0125 (4)0.0542 (10)
H15A0.71860.80411.03420.065*
H15B0.91350.80021.08950.065*
C160.9051 (5)0.84798 (12)0.8603 (4)0.0526 (10)
C170.9642 (5)0.85865 (13)0.7305 (4)0.0591 (11)
H17A0.97100.83800.65930.071*
C181.0133 (5)0.89934 (14)0.7049 (4)0.0617 (11)
H18A1.05380.90620.61720.074*
C191.0020 (5)0.93006 (13)0.8108 (5)0.0617 (11)
C200.9427 (6)0.91986 (14)0.9391 (5)0.0724 (13)
H20A0.93550.94051.01000.087*
C210.8929 (5)0.87874 (13)0.9644 (4)0.0667 (12)
H21A0.85140.87201.05170.080*
N40.1836 (4)0.79947 (13)0.3777 (4)0.0604 (9)
O30.1244 (4)0.83434 (11)0.3510 (4)0.0941 (11)
O40.2476 (4)0.78801 (11)0.5018 (3)0.0883 (11)
O50.1781 (3)0.77208 (8)0.2747 (3)0.0588 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.1080 (10)0.0611 (8)0.0955 (9)0.0204 (7)0.0108 (7)0.0053 (7)
O10.0688 (19)0.0470 (16)0.0404 (14)0.0018 (13)0.0116 (13)0.0013 (12)
N10.066 (2)0.046 (2)0.0340 (17)0.0003 (17)0.0015 (15)0.0002 (15)
F10.126 (2)0.0812 (19)0.0663 (16)0.0072 (17)0.0075 (15)0.0369 (14)
C10.075 (3)0.054 (3)0.052 (2)0.003 (2)0.011 (2)0.010 (2)
O20.102 (2)0.0489 (18)0.0517 (17)0.0183 (16)0.0205 (15)0.0070 (14)
F20.090 (2)0.106 (2)0.0833 (18)0.0335 (17)0.0354 (16)0.0291 (15)
N20.095 (3)0.072 (3)0.0321 (18)0.014 (2)0.0053 (18)0.0024 (17)
C20.094 (4)0.066 (3)0.047 (3)0.008 (3)0.021 (2)0.011 (2)
N30.067 (2)0.051 (2)0.0388 (18)0.0046 (18)0.0070 (16)0.0064 (16)
C30.098 (4)0.045 (3)0.040 (2)0.009 (3)0.006 (2)0.0116 (19)
C40.082 (3)0.061 (3)0.054 (3)0.016 (2)0.004 (2)0.007 (2)
C50.077 (3)0.056 (3)0.039 (2)0.001 (2)0.011 (2)0.001 (2)
C60.058 (3)0.045 (2)0.034 (2)0.002 (2)0.0029 (19)0.0002 (17)
C70.051 (2)0.039 (2)0.041 (2)0.0049 (18)0.0012 (17)0.0023 (17)
C80.069 (3)0.040 (2)0.038 (2)0.001 (2)0.0001 (19)0.0038 (18)
C90.132 (5)0.057 (3)0.062 (3)0.017 (3)0.022 (3)0.003 (2)
C100.093 (4)0.066 (3)0.035 (2)0.001 (3)0.000 (2)0.001 (2)
C110.059 (3)0.054 (3)0.036 (2)0.007 (2)0.0015 (18)0.0002 (19)
C120.049 (2)0.051 (2)0.043 (2)0.002 (2)0.0027 (18)0.0036 (18)
C130.063 (3)0.047 (3)0.047 (2)0.006 (2)0.0001 (19)0.0017 (19)
C140.045 (2)0.057 (3)0.048 (2)0.001 (2)0.0024 (19)0.0049 (19)
C150.057 (3)0.056 (3)0.048 (2)0.003 (2)0.0002 (19)0.008 (2)
C160.057 (3)0.050 (3)0.051 (2)0.008 (2)0.010 (2)0.000 (2)
C170.067 (3)0.054 (3)0.056 (3)0.002 (2)0.005 (2)0.008 (2)
C180.063 (3)0.066 (3)0.057 (3)0.004 (2)0.010 (2)0.003 (2)
C190.069 (3)0.050 (3)0.066 (3)0.011 (2)0.006 (2)0.001 (2)
C200.093 (4)0.052 (3)0.075 (3)0.014 (3)0.022 (3)0.020 (2)
C210.087 (3)0.059 (3)0.059 (3)0.024 (2)0.030 (2)0.018 (2)
N40.055 (2)0.075 (3)0.053 (2)0.007 (2)0.0119 (18)0.002 (2)
O30.089 (3)0.062 (2)0.132 (3)0.011 (2)0.014 (2)0.007 (2)
O40.097 (2)0.130 (3)0.0366 (17)0.010 (2)0.0009 (16)0.0060 (18)
O50.077 (2)0.0595 (18)0.0377 (14)0.0015 (15)0.0004 (13)0.0056 (14)
Geometric parameters (Å, º) top
Cl—C191.732 (4)C9—H9C0.9600
O1—C71.361 (4)C10—H10A0.9300
O1—C121.447 (4)C11—H11A0.9300
N1—C111.314 (4)C12—C131.477 (4)
N1—N21.383 (4)C12—H12A0.9700
N1—C81.432 (4)C12—H12B0.9700
F1—C31.349 (4)C13—C141.517 (5)
C1—C21.371 (5)C13—H13A0.9700
C1—C61.389 (5)C13—H13B0.9700
C1—H1A0.9300C14—C151.489 (5)
O2—C161.360 (4)C14—H14A0.9700
O2—C151.430 (4)C14—H14B0.9700
F2—C51.372 (4)C15—H15A0.9700
N2—C101.295 (5)C15—H15B0.9700
C2—C31.357 (6)C16—C211.376 (5)
C2—H2B0.9300C16—C171.378 (5)
N3—C111.330 (4)C17—C181.374 (5)
N3—C101.340 (5)C17—H17A0.9300
N3—H3A0.8600C18—C191.386 (5)
C3—C41.377 (6)C18—H18A0.9300
C4—C51.374 (5)C19—C201.362 (5)
C4—H4A0.9300C20—C211.388 (5)
C5—C61.358 (5)C20—H20A0.9300
C6—C71.479 (5)C21—H21A0.9300
C7—C81.327 (5)N4—O31.212 (4)
C8—C91.475 (5)N4—O41.243 (4)
C9—H9A0.9600N4—O51.279 (4)
C9—H9B0.9600
C7—O1—C12116.6 (3)O1—C12—C13108.6 (3)
C11—N1—N2110.7 (3)O1—C12—H12A110.0
C11—N1—C8130.2 (3)C13—C12—H12A110.0
N2—N1—C8119.1 (3)O1—C12—H12B110.0
C2—C1—C6122.0 (4)C13—C12—H12B110.0
C2—C1—H1A119.0H12A—C12—H12B108.3
C6—C1—H1A119.0C12—C13—C14113.1 (3)
C16—O2—C15118.2 (3)C12—C13—H13A109.0
C10—N2—N1102.9 (3)C14—C13—H13A109.0
C3—C2—C1118.5 (4)C12—C13—H13B109.0
C3—C2—H2B120.8C14—C13—H13B109.0
C1—C2—H2B120.8H13A—C13—H13B107.8
C11—N3—C10106.2 (3)C15—C14—C13115.2 (3)
C11—N3—H3A126.9C15—C14—H14A108.5
C10—N3—H3A126.9C13—C14—H14A108.5
F1—C3—C2119.0 (4)C15—C14—H14B108.5
F1—C3—C4118.3 (4)C13—C14—H14B108.5
C2—C3—C4122.7 (4)H14A—C14—H14B107.5
C5—C4—C3116.0 (4)O2—C15—C14107.3 (3)
C5—C4—H4A122.0O2—C15—H15A110.2
C3—C4—H4A122.0C14—C15—H15A110.2
C6—C5—F2118.9 (3)O2—C15—H15B110.2
C6—C5—C4124.7 (4)C14—C15—H15B110.2
F2—C5—C4116.4 (4)H15A—C15—H15B108.5
C5—C6—C1116.1 (4)O2—C16—C21125.5 (4)
C5—C6—C7122.7 (3)O2—C16—C17115.2 (3)
C1—C6—C7121.2 (4)C21—C16—C17119.3 (4)
C8—C7—O1120.0 (3)C18—C17—C16120.9 (4)
C8—C7—C6122.0 (3)C18—C17—H17A119.5
O1—C7—C6117.6 (3)C16—C17—H17A119.5
C7—C8—N1119.3 (3)C17—C18—C19119.4 (4)
C7—C8—C9125.9 (3)C17—C18—H18A120.3
N1—C8—C9114.8 (3)C19—C18—H18A120.3
C8—C9—H9A109.5C20—C19—C18120.1 (4)
C8—C9—H9B109.5C20—C19—Cl120.1 (3)
H9A—C9—H9B109.5C18—C19—Cl119.8 (3)
C8—C9—H9C109.5C19—C20—C21120.3 (4)
H9A—C9—H9C109.5C19—C20—H20A119.9
H9B—C9—H9C109.5C21—C20—H20A119.9
N2—C10—N3113.0 (4)C16—C21—C20120.0 (4)
N2—C10—H10A123.5C16—C21—H21A120.0
N3—C10—H10A123.5C20—C21—H21A120.0
N1—C11—N3107.2 (3)O3—N4—O4123.7 (4)
N1—C11—H11A126.4O3—N4—O5119.4 (4)
N3—C11—H11A126.4O4—N4—O5116.9 (4)
C11—N1—N2—C100.3 (4)N2—N1—C8—C7139.3 (4)
C8—N1—N2—C10179.2 (3)C11—N1—C8—C9137.7 (4)
C6—C1—C2—C30.8 (6)N2—N1—C8—C940.9 (5)
C1—C2—C3—F1179.4 (4)N1—N2—C10—N30.2 (5)
C1—C2—C3—C40.9 (7)C11—N3—C10—N20.6 (5)
F1—C3—C4—C5179.8 (3)N2—N1—C11—N30.7 (4)
C2—C3—C4—C50.5 (6)C8—N1—C11—N3179.4 (3)
C3—C4—C5—C60.0 (6)C10—N3—C11—N10.8 (4)
C3—C4—C5—F2179.0 (3)C7—O1—C12—C13176.6 (3)
F2—C5—C6—C1178.8 (3)O1—C12—C13—C14178.3 (3)
C4—C5—C6—C10.2 (6)C12—C13—C14—C15175.8 (3)
F2—C5—C6—C71.6 (6)C16—O2—C15—C14171.0 (3)
C4—C5—C6—C7179.4 (4)C13—C14—C15—O266.4 (4)
C2—C1—C6—C50.3 (6)C15—O2—C16—C218.9 (6)
C2—C1—C6—C7179.8 (4)C15—O2—C16—C17171.0 (3)
C12—O1—C7—C8145.4 (4)O2—C16—C17—C18179.0 (4)
C12—O1—C7—C641.0 (4)C21—C16—C17—C181.0 (6)
C5—C6—C7—C874.0 (5)C16—C17—C18—C190.5 (6)
C1—C6—C7—C8105.6 (5)C17—C18—C19—C200.1 (6)
C5—C6—C7—O1112.6 (4)C17—C18—C19—Cl178.6 (3)
C1—C6—C7—O167.8 (5)C18—C19—C20—C210.2 (7)
O1—C7—C8—N11.5 (6)Cl—C19—C20—C21178.7 (4)
C6—C7—C8—N1174.8 (3)O2—C16—C21—C20178.9 (4)
O1—C7—C8—C9178.3 (4)C17—C16—C21—C201.1 (6)
C6—C7—C8—C95.0 (7)C19—C20—C21—C160.7 (7)
C11—N1—C8—C742.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O50.861.802.659 (4)174
C9—H9A···F1i0.962.533.371 (5)146
C10—H10A···O4ii0.932.283.033 (5)137
C1—H1A···O3iii0.932.573.434 (5)155
C11—H11A···O5iii0.932.253.180 (5)174
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H21ClF2N3O2+·NO3
Mr482.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.9580 (16), 31.635 (6), 9.1850 (18)
β (°) 97.29 (3)
V3)2293.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.936, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
4521, 4216, 1952
Rint0.092
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.140, 1.00
No. of reflections4216
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O50.861.802.659 (4)174
C9—H9A···F1i0.962.533.371 (5)146
C10—H10A···O4ii0.932.283.033 (5)137
C1—H1A···O3iii0.932.573.434 (5)155
C11—H11A···O5iii0.932.253.180 (5)174
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2.
 

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJeu, L., Piacenti, F. J., Lyakhovetskiy, A. G. & Fung, H. B. (2003). Clin. Ther. 25, 1321–1381.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKurt, T., Ludwing, Z., Max, H. P., Martin, E. & Max, D. (1987). Helv. Chim. Acta 70, 441–444.  Google Scholar
First citationLudwig, Z. & Kurt, T. (1985). US Patent Appl. US4554356.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds