organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Bromo­phen­yl)-2-(phenyl­sulfon­yl)ethanone

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 8 September 2011; accepted 9 September 2011; online 14 September 2011)

The overall conformation of the title mol­ecule, C14H11BrO3S, is L-shaped, as seen in the value of the dihedral angle formed between the terminal benzene rings of 75.44 (13)°. The presence of C—H⋯O inter­actions leads to the formation of linear supra­molecular chains along the a-axis direction in the crystal structure. These are connected into supra­molecular arrays in the ab plane via C—H⋯π contacts.

Related literature

For the biological activity of sulphones, see: Garuti et al. (2002[Garuti, L., Roberti, M. & De Clercq, E. (2002). Bioorg. Med. Chem. Lett. 12, 2707-2710.]); Abdel-Aziz & Mekawey (2009[Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985-4997.]); Abdel-Aziz et al. (2010[Abdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152-159.]). For the synthesis, see: Takahashi et al. (1986[Takahashi, M., Mamiya, T. & Wakao, M. (1986). J. Heterocycl. Chem. 23, 77-80.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrO3S

  • Mr = 339.20

  • Triclinic, [P \overline 1]

  • a = 5.6467 (4) Å

  • b = 10.3597 (6) Å

  • c = 11.1934 (6) Å

  • α = 86.430 (5)°

  • β = 89.177 (5)°

  • γ = 83.763 (5)°

  • V = 649.64 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 5.83 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.291, Tmax = 1.000

  • 4181 measured reflections

  • 2533 independent reflections

  • 2396 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.04

  • 2533 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7a⋯O1i 0.99 2.29 3.250 (3) 162
C7—H7b⋯O1ii 0.99 2.47 3.307 (3) 142
C4—H4⋯Cg1iii 0.95 2.87 3.708 (3) 147
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) x, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The analysis of the title compound, was prompted by the biological activity displayed by sulphones (Garuti, et al., 2002; Abdel-Aziz & Mekawey, 2009; Abdel-Aziz et al., 2010).

In the title molecule (Fig. 1), both sulfonyl-O atoms lie to one side of the S-bound benzene ring, and the methylene group to the other. The dihedral angle formed between the benzene rings of 75.44 (13) ° is consistent with the molecule having an overall L-shape.

Supramolecular chains aligned along the a axis are the most predominant feature of the crystal packing (Table 1 and Fig. 2). Molecules are connected into a linear chain by an alternating sequence of centrosymmetric eight-membered {···HCH···O}2 and {···HCSO}2 synthons. Chains are linked into layers in the ab plane by C—H···π involving the S-bound and Br-benzene rings as donors and acceptors, respectively.

Related literature top

For the biological activity of sulphones, see: Garuti et al. (2002); Abdel-Aziz & Mekawey (2009); Abdel-Aziz et al. (2010). For the synthesis, see: Takahashi et al. (1986).

Experimental top

The title compound was prepared according to the reported method (Takahashi et al., 1986). The crystals were isolated from its EtOH/DMF (v/v = 5/1) solution by slow evaporation at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

The analysis of the title compound, was prompted by the biological activity displayed by sulphones (Garuti, et al., 2002; Abdel-Aziz & Mekawey, 2009; Abdel-Aziz et al., 2010).

In the title molecule (Fig. 1), both sulfonyl-O atoms lie to one side of the S-bound benzene ring, and the methylene group to the other. The dihedral angle formed between the benzene rings of 75.44 (13) ° is consistent with the molecule having an overall L-shape.

Supramolecular chains aligned along the a axis are the most predominant feature of the crystal packing (Table 1 and Fig. 2). Molecules are connected into a linear chain by an alternating sequence of centrosymmetric eight-membered {···HCH···O}2 and {···HCSO}2 synthons. Chains are linked into layers in the ab plane by C—H···π involving the S-bound and Br-benzene rings as donors and acceptors, respectively.

For the biological activity of sulphones, see: Garuti et al. (2002); Abdel-Aziz & Mekawey (2009); Abdel-Aziz et al. (2010). For the synthesis, see: Takahashi et al. (1986).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chain of the title molecules mediated by C—H···O interactions, shown as orange lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of the title compound. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
1-(4-Bromophenyl)-2-(phenylsulfonyl)ethanone top
Crystal data top
C14H11BrO3SZ = 2
Mr = 339.20F(000) = 340
Triclinic, P1Dx = 1.734 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.5418 Å
a = 5.6467 (4) ÅCell parameters from 2772 reflections
b = 10.3597 (6) Åθ = 4.0–74.2°
c = 11.1934 (6) ŵ = 5.83 mm1
α = 86.430 (5)°T = 100 K
β = 89.177 (5)°Plate, light-brown
γ = 83.763 (5)°0.25 × 0.20 × 0.02 mm
V = 649.64 (7) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2533 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2396 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 4.0°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 126
Tmin = 0.291, Tmax = 1.000l = 1313
4181 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0821P)2 + 0.0577P]
where P = (Fo2 + 2Fc2)/3
2533 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
C14H11BrO3Sγ = 83.763 (5)°
Mr = 339.20V = 649.64 (7) Å3
Triclinic, P1Z = 2
a = 5.6467 (4) ÅCu Kα radiation
b = 10.3597 (6) ŵ = 5.83 mm1
c = 11.1934 (6) ÅT = 100 K
α = 86.430 (5)°0.25 × 0.20 × 0.02 mm
β = 89.177 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2533 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2396 reflections with I > 2σ(I)
Tmin = 0.291, Tmax = 1.000Rint = 0.034
4181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.04Δρmax = 0.69 e Å3
2533 reflectionsΔρmin = 0.80 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.22639 (4)0.85297 (2)0.03616 (2)0.01909 (14)
S10.56382 (10)0.30122 (6)0.45101 (5)0.01267 (17)
O10.3196 (3)0.36055 (18)0.44650 (17)0.0179 (4)
O20.6741 (3)0.27303 (18)0.56677 (16)0.0187 (4)
O30.5107 (3)0.40819 (18)0.19816 (16)0.0193 (4)
C10.5826 (4)0.1561 (2)0.3754 (2)0.0137 (5)
C20.7865 (5)0.0678 (3)0.3911 (2)0.0168 (5)
H20.91290.08690.43990.020*
C30.8018 (5)0.0480 (3)0.3345 (2)0.0198 (5)
H30.93890.10940.34490.024*
C40.6160 (5)0.0744 (3)0.2624 (3)0.0195 (5)
H40.62760.15340.22280.023*
C50.4139 (5)0.0141 (3)0.2480 (2)0.0178 (5)
H50.28770.00510.19910.021*
C60.3948 (4)0.1304 (2)0.3045 (2)0.0164 (5)
H60.25670.19110.29500.020*
C70.7509 (5)0.4054 (2)0.3716 (2)0.0137 (5)
H7A0.76010.48280.41820.016*
H7B0.91340.35910.36780.016*
C80.6743 (4)0.4514 (2)0.2452 (2)0.0147 (5)
C90.8097 (4)0.5513 (2)0.1824 (2)0.0143 (5)
C101.0105 (5)0.5959 (3)0.2326 (2)0.0158 (5)
H101.06230.56390.31030.019*
C111.1329 (5)0.6872 (3)0.1681 (2)0.0173 (5)
H111.26800.71830.20160.021*
C121.0565 (5)0.7321 (2)0.0551 (2)0.0162 (5)
C130.8565 (5)0.6902 (3)0.0040 (2)0.0184 (5)
H130.80510.72280.07360.022*
C140.7355 (5)0.6008 (3)0.0685 (2)0.0181 (5)
H140.59840.57200.03490.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0211 (2)0.0184 (2)0.01762 (19)0.00312 (12)0.00239 (12)0.00122 (12)
S10.0132 (3)0.0128 (3)0.0125 (3)0.0021 (2)0.0015 (2)0.0028 (2)
O10.0136 (9)0.0173 (9)0.0232 (9)0.0003 (7)0.0005 (7)0.0078 (7)
O20.0231 (10)0.0203 (10)0.0133 (9)0.0045 (7)0.0034 (7)0.0013 (7)
O30.0230 (9)0.0170 (9)0.0191 (9)0.0066 (7)0.0078 (7)0.0003 (7)
C10.0163 (11)0.0117 (11)0.0139 (11)0.0044 (9)0.0012 (9)0.0017 (8)
C20.0166 (12)0.0173 (12)0.0168 (12)0.0036 (10)0.0043 (9)0.0008 (9)
C30.0198 (12)0.0163 (13)0.0226 (13)0.0002 (10)0.0012 (10)0.0002 (10)
C40.0250 (14)0.0144 (12)0.0206 (12)0.0081 (10)0.0056 (10)0.0046 (9)
C50.0178 (12)0.0201 (13)0.0171 (12)0.0075 (10)0.0019 (9)0.0039 (9)
C60.0157 (12)0.0164 (12)0.0173 (12)0.0028 (9)0.0001 (9)0.0009 (9)
C70.0151 (11)0.0125 (11)0.0138 (12)0.0026 (9)0.0024 (9)0.0011 (9)
C80.0169 (11)0.0104 (11)0.0164 (12)0.0020 (9)0.0031 (9)0.0040 (9)
C90.0177 (12)0.0108 (11)0.0145 (12)0.0004 (9)0.0029 (9)0.0033 (9)
C100.0171 (12)0.0169 (12)0.0133 (11)0.0007 (9)0.0031 (9)0.0018 (9)
C110.0154 (12)0.0182 (12)0.0187 (13)0.0022 (9)0.0027 (9)0.0026 (10)
C120.0179 (12)0.0145 (12)0.0165 (12)0.0010 (9)0.0019 (9)0.0039 (9)
C130.0228 (13)0.0199 (13)0.0125 (11)0.0011 (10)0.0052 (9)0.0012 (9)
C140.0183 (12)0.0193 (12)0.0175 (12)0.0035 (10)0.0058 (10)0.0031 (10)
Geometric parameters (Å, º) top
Br1—C121.899 (3)C6—H60.9500
S1—O21.4452 (19)C7—C81.518 (3)
S1—O11.4478 (18)C7—H7A0.9900
S1—C11.763 (2)C7—H7B0.9900
S1—C71.781 (3)C8—C91.489 (4)
O3—C81.210 (3)C9—C141.397 (3)
C1—C61.392 (3)C9—C101.407 (4)
C1—C21.396 (3)C10—C111.391 (4)
C2—C31.386 (4)C10—H100.9500
C2—H20.9500C11—C121.379 (4)
C3—C41.393 (4)C11—H110.9500
C3—H30.9500C12—C131.395 (4)
C4—C51.389 (4)C13—C141.372 (4)
C4—H40.9500C13—H130.9500
C5—C61.388 (4)C14—H140.9500
C5—H50.9500
O2—S1—O1118.37 (11)S1—C7—H7A108.3
O2—S1—C1108.48 (11)C8—C7—H7B108.3
O1—S1—C1108.42 (11)S1—C7—H7B108.3
O2—S1—C7104.73 (11)H7A—C7—H7B107.4
O1—S1—C7109.49 (12)O3—C8—C9121.8 (2)
C1—S1—C7106.77 (11)O3—C8—C7121.2 (2)
C6—C1—C2121.6 (2)C9—C8—C7117.0 (2)
C6—C1—S1120.05 (19)C14—C9—C10119.0 (2)
C2—C1—S1118.32 (18)C14—C9—C8118.4 (2)
C3—C2—C1119.1 (2)C10—C9—C8122.6 (2)
C3—C2—H2120.5C11—C10—C9119.8 (2)
C1—C2—H2120.5C11—C10—H10120.1
C2—C3—C4119.9 (2)C9—C10—H10120.1
C2—C3—H3120.1C12—C11—C10119.4 (2)
C4—C3—H3120.1C12—C11—H11120.3
C5—C4—C3120.4 (2)C10—C11—H11120.3
C5—C4—H4119.8C11—C12—C13121.8 (2)
C3—C4—H4119.8C11—C12—Br1120.0 (2)
C4—C5—C6120.5 (2)C13—C12—Br1118.2 (2)
C4—C5—H5119.7C14—C13—C12118.5 (2)
C6—C5—H5119.7C14—C13—H13120.7
C5—C6—C1118.5 (2)C12—C13—H13120.7
C5—C6—H6120.8C13—C14—C9121.4 (2)
C1—C6—H6120.8C13—C14—H14119.3
C8—C7—S1115.92 (18)C9—C14—H14119.3
C8—C7—H7A108.3
O2—S1—C1—C6142.5 (2)S1—C7—C8—O37.5 (3)
O1—S1—C1—C612.8 (2)S1—C7—C8—C9172.60 (17)
C7—S1—C1—C6105.1 (2)O3—C8—C9—C143.6 (3)
O2—S1—C1—C236.0 (2)C7—C8—C9—C14176.6 (2)
O1—S1—C1—C2165.7 (2)O3—C8—C9—C10175.5 (3)
C7—S1—C1—C276.4 (2)C7—C8—C9—C104.4 (3)
C6—C1—C2—C30.1 (4)C14—C9—C10—C110.6 (4)
S1—C1—C2—C3178.6 (2)C8—C9—C10—C11178.4 (2)
C1—C2—C3—C40.5 (4)C9—C10—C11—C120.5 (4)
C2—C3—C4—C50.8 (4)C10—C11—C12—C131.1 (4)
C3—C4—C5—C60.5 (4)C10—C11—C12—Br1178.25 (18)
C4—C5—C6—C10.1 (4)C11—C12—C13—C140.7 (4)
C2—C1—C6—C50.4 (4)Br1—C12—C13—C14178.7 (2)
S1—C1—C6—C5178.86 (19)C12—C13—C14—C90.5 (4)
O2—S1—C7—C8179.65 (18)C10—C9—C14—C131.1 (4)
O1—S1—C7—C851.8 (2)C8—C9—C14—C13178.0 (2)
C1—S1—C7—C865.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7a···O1i0.992.293.250 (3)162
C7—H7b···O1ii0.992.473.307 (3)142
C4—H4···Cg1iii0.952.873.708 (3)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H11BrO3S
Mr339.20
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.6467 (4), 10.3597 (6), 11.1934 (6)
α, β, γ (°)86.430 (5), 89.177 (5), 83.763 (5)
V3)649.64 (7)
Z2
Radiation typeCu Kα
µ (mm1)5.83
Crystal size (mm)0.25 × 0.20 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.291, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4181, 2533, 2396
Rint0.034
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.04
No. of reflections2533
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.80

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7a···O1i0.992.293.250 (3)162
C7—H7b···O1ii0.992.473.307 (3)142
C4—H4···Cg1iii0.952.873.708 (3)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: hatem_741@yahoo.com.

Acknowledgements

The authors thank King Saud University and the University of Malaya for supporting this study.

References

First citationAbdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152–159.  Google Scholar
First citationAbdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985–4997.  Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGaruti, L., Roberti, M. & De Clercq, E. (2002). Bioorg. Med. Chem. Lett. 12, 2707–2710.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, M., Mamiya, T. & Wakao, M. (1986). J. Heterocycl. Chem. 23, 77–80.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds