organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Azido-N′-(phenylsulfonyl)methan­imid­amide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan
*Correspondence e-mail: iuklodhi@yahoo.com, mnachemist@hotmail.com

(Received 11 September 2011; accepted 15 September 2011; online 30 September 2011)

In the title compound, C7H7N5O2S, the aromatic ring is oriented at dihedral angles of 79.46 (2) and 89.17 (2)°, respectively, with respect to the amino­(azido)­methyl and the S(6) six-membered ring motif generated by an intra­molecular N—H⋯O inter­action [N⋯O = 2.8901 (15) Å]. Inter­molecular N—H⋯O hydrogen bonds [N⋯O = 2.9177 (15) and 2.9757 (15) Å] generate an infinite one-dimensional network along the base vector (010).

Related literature

For the synthesis, see: Mahmood et al. (2011[Mahmood, A., Khan, I. U., Arshad, M. N. & Ahmed, J. (2011). Acta Cryst. E67, o2140.]). For related structures, see: Denny et al. (1980[Denny, G. H., Crageo, E. J. Jr & Rooney, C. S. (1980). J. Org. Chem. E45, 1662-1665.]); Mahmood et al. (2011[Mahmood, A., Khan, I. U., Arshad, M. N. & Ahmed, J. (2011). Acta Cryst. E67, o2140.]); Müller & Bärnighausen (1970[Müller, U. & Bärnighausen, H. (1970). Acta Cryst. B26, 1671-1679.]). For graph-set notations, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N5O2S

  • Mr = 225.24

  • Triclinic, [P \overline 1]

  • a = 7.0399 (2) Å

  • b = 7.1714 (2) Å

  • c = 10.3670 (3) Å

  • α = 90.267 (1)°

  • β = 98.997 (1)°

  • γ = 110.358 (1)°

  • V = 483.67 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.35 × 0.31 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.896, Tmax = 0.962

  • 8598 measured reflections

  • 2422 independent reflections

  • 2246 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.097

  • S = 1.06

  • 2422 reflections

  • 143 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O1i 0.85 (1) 2.10 (1) 2.9177 (15) 163 (2)
N2—H2N⋯O2ii 0.84 (1) 2.23 (1) 2.9757 (15) 148 (2)
N2—H2N⋯O2 0.84 (1) 2.33 (2) 2.8901 (15) 125 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In continuation to our studies on sulfonamide derivatives we now report the structure of the title compound which is an analogue of the compound reported earlier (Mahmood et al., 2011),

In the title molecule (Fig. 1), the azido group (N3/N4/N5) carries cationic and anionic characters as observed in the previously report compound and reportedin the literature (Denny et al., 1980; Müller & Bärnighausen, 1970). The bond distance N4—N5 is 1.105 (19) Å, which clearly indicates its tripple bond character (NN = 1.10 Å) The other bond distances, C7—N1 = 1.3105 (15) Å & C7—N3 = 1.4022 (16) Å represent C to N double and single covalent bonds, respectively. The planer amino(azido)methyl (N1/C8/N2/N3/N4/N5) moiety (r. m. s. deviation of 0.0164 A°) is oriented at a dihedral angle of 79.46 (6)° with respect to the toluene ring. The intramolecular hydrogen bond N2—H2N···O2 produces a six membered ring motif S(6) (Bernstein et al., 1995) which is inclined almost perpendicular (89.17 (2)°) to the aromatic ring (C1—C6). The intermolecular hydrogen bonds are very much in accord with the corresponding hydrogen bonding reported in the previous analogue (Mahmood et al., 2011) as it forms dimers which are further connected through N—H···O type interactions and extended along the b axis (Table. 2, Figure. 2).

Related literature top

For the synthesis, see: Mahmood et al. (2011). For related structures, see: Denny et al. (1980); Mahmood et al. (2011); Müller & Bärnighausen (1970). For graph-set notations, see: Bernstein et al. (1995).

Experimental top

The titile compound was prepared in accordance with reported method (Mahmood et al., 2011) and recrystalized from a mixture of methanol and ethylacetate (1:1) by slow evaporation.

Refinement top

All C—H H atoms were positioned geometrically with Caromatic—H = 0.93 and treated as with Uiso(H) = 1.2 Ueq(C). The hydrogen atoms bonded to N2 were located via from a fourier map and were included in the refinement with N—H distancs constrained at 0.84 (1) Å with Uiso(H) = 1.5 Ueq(N). The reflection 0 0 1 has been omitted in final refinement.

Structure description top

In continuation to our studies on sulfonamide derivatives we now report the structure of the title compound which is an analogue of the compound reported earlier (Mahmood et al., 2011),

In the title molecule (Fig. 1), the azido group (N3/N4/N5) carries cationic and anionic characters as observed in the previously report compound and reportedin the literature (Denny et al., 1980; Müller & Bärnighausen, 1970). The bond distance N4—N5 is 1.105 (19) Å, which clearly indicates its tripple bond character (NN = 1.10 Å) The other bond distances, C7—N1 = 1.3105 (15) Å & C7—N3 = 1.4022 (16) Å represent C to N double and single covalent bonds, respectively. The planer amino(azido)methyl (N1/C8/N2/N3/N4/N5) moiety (r. m. s. deviation of 0.0164 A°) is oriented at a dihedral angle of 79.46 (6)° with respect to the toluene ring. The intramolecular hydrogen bond N2—H2N···O2 produces a six membered ring motif S(6) (Bernstein et al., 1995) which is inclined almost perpendicular (89.17 (2)°) to the aromatic ring (C1—C6). The intermolecular hydrogen bonds are very much in accord with the corresponding hydrogen bonding reported in the previous analogue (Mahmood et al., 2011) as it forms dimers which are further connected through N—H···O type interactions and extended along the b axis (Table. 2, Figure. 2).

For the synthesis, see: Mahmood et al. (2011). For related structures, see: Denny et al. (1980); Mahmood et al. (2011); Müller & Bärnighausen (1970). For graph-set notations, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound drawn at 50% probability level showing the intramolecular hydrogen bonding via dshed line.
[Figure 2] Fig. 2. Unit cell packing diagram showing the hydrogen bonds via dshed lines, the hydrogen atoms not involved in hydrogen bonding have been omitted.
1-azido-N'-(phenylsulfonyl)methanimidamide top
Crystal data top
C7H7N5O2SZ = 2
Mr = 225.24F(000) = 232
Triclinic, P1Dx = 1.547 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0399 (2) ÅCell parameters from 6153 reflections
b = 7.1714 (2) Åθ = 3.0–28.5°
c = 10.3670 (3) ŵ = 0.32 mm1
α = 90.267 (1)°T = 296 K
β = 98.997 (1)°Plate, colourless
γ = 110.358 (1)°0.35 × 0.31 × 0.12 mm
V = 483.67 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2422 independent reflections
Radiation source: fine-focus sealed tube2246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 89
Tmin = 0.896, Tmax = 0.962k = 99
8598 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.059P)2 + 0.1064P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2422 reflectionsΔρmax = 0.30 e Å3
143 parametersΔρmin = 0.30 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.178 (13)
Crystal data top
C7H7N5O2Sγ = 110.358 (1)°
Mr = 225.24V = 483.67 (2) Å3
Triclinic, P1Z = 2
a = 7.0399 (2) ÅMo Kα radiation
b = 7.1714 (2) ŵ = 0.32 mm1
c = 10.3670 (3) ÅT = 296 K
α = 90.267 (1)°0.35 × 0.31 × 0.12 mm
β = 98.997 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2422 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2246 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.962Rint = 0.025
8598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0323 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.30 e Å3
2422 reflectionsΔρmin = 0.30 e Å3
143 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29872 (4)0.66106 (4)0.14334 (3)0.03096 (13)
O10.22775 (17)0.82450 (15)0.15249 (12)0.0501 (3)
O20.37880 (15)0.63793 (15)0.02689 (9)0.0407 (2)
N40.18866 (18)0.17258 (17)0.21333 (12)0.0412 (3)
N30.05785 (18)0.12367 (17)0.16650 (12)0.0406 (3)
C70.10971 (19)0.28677 (17)0.14142 (11)0.0297 (2)
N10.11035 (16)0.46635 (15)0.16629 (10)0.0318 (2)
N20.24609 (19)0.22835 (17)0.09706 (13)0.0405 (3)
H2N0.346 (2)0.310 (2)0.0691 (19)0.061*
H1N0.230 (3)0.1058 (15)0.096 (2)0.061*
N50.3157 (2)0.1915 (2)0.25610 (18)0.0632 (4)
C10.49613 (19)0.69027 (18)0.27813 (12)0.0317 (3)
C20.6735 (2)0.6594 (2)0.26000 (14)0.0415 (3)
H20.68820.62090.17750.050*
C30.8287 (3)0.6865 (3)0.36578 (18)0.0598 (5)
H30.94840.66530.35490.072*
C40.8055 (3)0.7449 (3)0.48716 (18)0.0676 (5)
H40.91090.76410.55790.081*
C60.4725 (3)0.7480 (3)0.40091 (15)0.0498 (4)
H60.35250.76800.41250.060*
C50.6289 (3)0.7752 (3)0.50550 (17)0.0650 (5)
H50.61500.81410.58820.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03183 (19)0.02277 (18)0.04005 (19)0.01043 (12)0.00916 (12)0.00792 (11)
O10.0508 (6)0.0279 (5)0.0787 (8)0.0209 (5)0.0146 (5)0.0126 (5)
O20.0400 (5)0.0447 (6)0.0364 (5)0.0115 (4)0.0113 (4)0.0105 (4)
N40.0348 (6)0.0323 (6)0.0514 (7)0.0040 (5)0.0105 (5)0.0104 (5)
N30.0391 (6)0.0269 (5)0.0526 (7)0.0052 (5)0.0138 (5)0.0038 (5)
C70.0306 (6)0.0250 (5)0.0314 (5)0.0078 (4)0.0040 (4)0.0044 (4)
N10.0294 (5)0.0253 (5)0.0416 (5)0.0092 (4)0.0095 (4)0.0040 (4)
N20.0444 (7)0.0260 (5)0.0560 (7)0.0136 (5)0.0194 (5)0.0053 (5)
N50.0470 (8)0.0558 (9)0.0908 (11)0.0143 (7)0.0320 (8)0.0185 (8)
C10.0327 (6)0.0232 (5)0.0370 (6)0.0058 (4)0.0086 (5)0.0025 (4)
C20.0364 (7)0.0482 (8)0.0397 (6)0.0144 (6)0.0074 (5)0.0006 (6)
C30.0377 (8)0.0830 (13)0.0552 (9)0.0204 (8)0.0000 (7)0.0004 (9)
C40.0518 (10)0.0894 (15)0.0448 (8)0.0108 (10)0.0068 (7)0.0014 (8)
C60.0487 (8)0.0557 (9)0.0453 (8)0.0155 (7)0.0158 (6)0.0042 (7)
C50.0696 (12)0.0791 (13)0.0376 (7)0.0152 (10)0.0099 (8)0.0089 (8)
Geometric parameters (Å, º) top
S1—O11.4330 (10)C1—C21.3811 (19)
S1—O21.4419 (10)C1—C61.3885 (18)
S1—N11.6057 (11)C2—C31.382 (2)
S1—C11.7650 (13)C2—H20.9300
N4—N51.1055 (19)C3—C41.376 (3)
N4—N31.2529 (17)C3—H30.9300
N3—C71.4022 (16)C4—C51.375 (3)
C7—N11.3105 (15)C4—H40.9300
C7—N21.3134 (16)C6—C51.379 (3)
N2—H2N0.837 (9)C6—H60.9300
N2—H1N0.846 (9)C5—H50.9300
O1—S1—O2117.23 (7)C6—C1—S1119.38 (11)
O1—S1—N1105.53 (6)C1—C2—C3119.31 (14)
O2—S1—N1112.47 (6)C1—C2—H2120.3
O1—S1—C1107.62 (7)C3—C2—H2120.3
O2—S1—C1107.32 (6)C4—C3—C2119.78 (16)
N1—S1—C1106.07 (6)C4—C3—H3120.1
N5—N4—N3171.37 (15)C2—C3—H3120.1
N4—N3—C7113.51 (11)C5—C4—C3121.01 (17)
N1—C7—N2130.53 (12)C5—C4—H4119.5
N1—C7—N3118.15 (11)C3—C4—H4119.5
N2—C7—N3111.31 (11)C5—C6—C1119.30 (15)
C7—N1—S1121.29 (9)C5—C6—H6120.4
C7—N2—H2N120.8 (13)C1—C6—H6120.4
C7—N2—H1N118.7 (13)C4—C5—C6119.79 (16)
H2N—N2—H1N120.5 (18)C4—C5—H5120.1
C2—C1—C6120.81 (13)C6—C5—H5120.1
C2—C1—S1119.80 (10)
N4—N3—C7—N11.19 (18)O2—S1—C1—C6169.50 (11)
N4—N3—C7—N2177.67 (12)N1—S1—C1—C670.08 (12)
N2—C7—N1—S10.0 (2)C6—C1—C2—C30.0 (2)
N3—C7—N1—S1178.63 (9)S1—C1—C2—C3178.76 (13)
O1—S1—N1—C7167.67 (11)C1—C2—C3—C40.5 (3)
O2—S1—N1—C738.71 (12)C2—C3—C4—C50.6 (3)
C1—S1—N1—C778.31 (11)C2—C1—C6—C50.2 (2)
O1—S1—C1—C2136.24 (12)S1—C1—C6—C5178.49 (14)
O2—S1—C1—C29.24 (13)C3—C4—C5—C60.3 (4)
N1—S1—C1—C2111.19 (12)C1—C6—C5—C40.1 (3)
O1—S1—C1—C642.49 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O1i0.85 (1)2.10 (1)2.9177 (15)163 (2)
N2—H2N···O2ii0.84 (1)2.23 (1)2.9757 (15)148 (2)
N2—H2N···O20.84 (1)2.33 (2)2.8901 (15)125 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H7N5O2S
Mr225.24
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.0399 (2), 7.1714 (2), 10.3670 (3)
α, β, γ (°)90.267 (1), 98.997 (1), 110.358 (1)
V3)483.67 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.35 × 0.31 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.896, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
8598, 2422, 2246
Rint0.025
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.097, 1.06
No. of reflections2422
No. of parameters143
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O1i0.846 (9)2.099 (11)2.9177 (15)162.8 (19)
N2—H2N···O2ii0.837 (9)2.233 (13)2.9757 (15)147.8 (18)
N2—H2N···O20.837 (9)2.330 (17)2.8901 (15)124.7 (16)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
 

Footnotes

Current address: X-ray Diffraction and Crystallography Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for the purchase of the diffractometer under the grant for strengthening of the Materials Chemistry Laboratory at GC University, Lahore, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDenny, G. H., Crageo, E. J. Jr & Rooney, C. S. (1980). J. Org. Chem. E45, 1662–1665.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMahmood, A., Khan, I. U., Arshad, M. N. & Ahmed, J. (2011). Acta Cryst. E67, o2140.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMüller, U. & Bärnighausen, H. (1970). Acta Cryst. B26, 1671–1679.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds