metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­bis­­{μ2-3,5-bis­­[(pyridin-4-yl)methyl­amino]­benzoato}nickel] monohydrate]

aFaculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
*Correspondence e-mail: hyitshy@126.com

(Received 12 September 2011; accepted 20 September 2011; online 30 September 2011)

In the title coordination polymer, {[Ni(C19H17N4O2)2(H2O)2]·H2O}n, the Ni2+ cation is located on an inversion center and coordinated by two carboxyl­ate O atoms from two different 3,5-bis­(pyridin-4-yl­methyl­amino)­benzoate anions, two O atoms from two coordinated water mol­ecules and two N atoms from two different 3,5-bis­(pyridin-4-yl­methyl­amino)­benzoate anions, displaying a slightly distorted NiN2O4 octa­hedral geometry. Each 3,5-bis­(pyridin-4-yl­methyl­amino)­benzoate anion acts as a μ2-bridge, linking different nickel ions into a chain along [010]. In the crystal, adjacent chains are further linked through N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds into a three-dimensional network. The coordinated water mol­ecules and a disordered water mol­ecule of hydration with 0.50 site occupancy play an important role in the formation of these hydrogen-bonding inter­actions.

Related literature

For background to metal-organic hybrid materials, see: Bradshaw et al. (2005[Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273-282.]); Das & Bharadwaj (2009[Das, M. C. & Bharadwaj, P. K. (2009). J. Am. Chem. Soc. 131, 10942-10943.]); Hua et al. (2010[Hua, Q., Zhao, Y., Xu, G.-C., Chen, M.-S., Su, Z., Cai, K. & Sun, W.-Y. (2010). Cryst. Growth Des. 10, 2553-2562.]). For the use of N-, or O- multidentate donor ligands as building blocks in the construction of infinite frameworks, see: Peng et al. (2010[Peng, G., Qiu, Y.-C., Liu, Z.-H., Liu, B. & Deng, H. (2010). Cryst. Growth Des. 10, 114-121.]). For related structures, see: Chen et al. (2009[Chen, M.-S., Chen, S.-S., Okamura, T.-A., Su, Z., Sun, W.-Y. & Ueyama, N. (2009). J. Coord. Chem. 62, 2421-2428.]); Kuai et al. (2011[Kuai, H.-W., Cheng, X.-C. & Zhu, X.-H. (2011). J. Coord. Chem. 64, 1636-1644.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C19H17N4O2)2(H2O)2]·H2O

  • Mr = 779.49

  • Monoclinic, P 21 /c

  • a = 10.7786 (10) Å

  • b = 9.3152 (9) Å

  • c = 18.1211 (17) Å

  • β = 92.324 (1)°

  • V = 1817.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.880, Tmax = 0.900

  • 11129 measured reflections

  • 4300 independent reflections

  • 2688 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.094

  • S = 0.90

  • 4300 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H10⋯O3i 0.92 2.13 3.023 (2) 163
O3—H18⋯O2 0.86 1.77 2.627 (2) 169
O4—H21⋯O2ii 0.90 2.09 2.701 (5) 125
O4—H20⋯O2iii 1.06 1.72 2.690 (5) 150
O3—H19⋯N31iv 0.97 1.87 2.787 (3) 156
C2—H1⋯O4v 0.93 2.58 3.505 (6) 172
C37—H16⋯O4v 0.97 2.47 3.440 (8) 176
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

During the past few decades, growing interests have been focused on the rapidly expanding field of crystal engineering of metal-organic frameworks (MOFs) due to their intriguing architectures as well as their tremendous potential applications in heterogeneous catalysis, ion-recognition, nonlinear optics and molecular adsorption (Bradshaw et al., 2005; Das & Bharadwaj, 2009; Hua et al., 2010). One of the effective strategies for construction of such polymers is to select suitable multidentate organic ligands as building blocks to link metal centers into infinite framework. Among popularly employed organic ligands, N–, or O– multidentate donor ligands are regarded as excellent candidates for building the blocks of desirable frameworks (Peng et al., 2010). Herein, we report the crystal structure of the title coordination polymer.

The asymmetric unit of the title complex consists of half of a nickel ion, a 3,5-bis(pyridin-4-ylmethylamino)benzoate anion, a coordinated water molecule, and one half water molecule of crystallization. The Ni ion is located on an inversion center and coordinated by two carboxylate O atoms from two different 3,5-bis(pyridin-4-ylmethylamino)benzoate anions, two O atoms from two coordinated water molecules, and two N atoms from two different 3,5-bis(pyridin-4-ylmethylamino)benzoate anions, displaying a slightly distorted NiN2O4 octahedral geometry. (Fig. 1). Each 3,5-bis(pyridin-4-ylmethylamino)benzoate anion acts as a µ2-bridge, linking different nickel ions to form a one-dimensional chain (Fig. 2). In the crystal structure, adjacent chains are further linked through N—H···O, O—H···O, O—H···N and C—H···O hydrogen bonds into a three-dimensional network (Fig. 3 and Table 1). Water molecules as donor or acceptor, including coordinated water molecules and lattice water molecule, play very important roles in the formation of these hydrogen bonding interactions.

Related literature top

For background to metal-organic hybrid materials, see: Bradshaw et al. (2005); Das & Bharadwaj (2009); Hua et al. (2010). For the use of N-, or O- multidentate donor ligands as building blocks in the construction of infinite frameworks, see: Peng et al. (2010).For related structures, see: Chen et al. (2009); Kuai et al. (2011). Scheme – should show 2 waters and 2 organic ligands per Ni atom

Experimental top

A mixture of nickel nitrate hexahydrate (29.1 mg, 0.1 mmol), 3,5-bis(pyridin-4-ylmethylamino)benzoic acid (33.4 mg, 0.1 mmol), and potassium hydroxide (5.61 mg, 0.1 mmol) in 8 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 373 K for 3 days. After cooling to the room temperature, green block crystals of the title complex were obtained.

Refinement top

The hydrogen atoms bonded to C atoms were included in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atoms bonded to N and O atoms were located from the difference Fourier maps and fixed at those positions with Uiso(H) = 1.2Ueq(N or O)].

Structure description top

During the past few decades, growing interests have been focused on the rapidly expanding field of crystal engineering of metal-organic frameworks (MOFs) due to their intriguing architectures as well as their tremendous potential applications in heterogeneous catalysis, ion-recognition, nonlinear optics and molecular adsorption (Bradshaw et al., 2005; Das & Bharadwaj, 2009; Hua et al., 2010). One of the effective strategies for construction of such polymers is to select suitable multidentate organic ligands as building blocks to link metal centers into infinite framework. Among popularly employed organic ligands, N–, or O– multidentate donor ligands are regarded as excellent candidates for building the blocks of desirable frameworks (Peng et al., 2010). Herein, we report the crystal structure of the title coordination polymer.

The asymmetric unit of the title complex consists of half of a nickel ion, a 3,5-bis(pyridin-4-ylmethylamino)benzoate anion, a coordinated water molecule, and one half water molecule of crystallization. The Ni ion is located on an inversion center and coordinated by two carboxylate O atoms from two different 3,5-bis(pyridin-4-ylmethylamino)benzoate anions, two O atoms from two coordinated water molecules, and two N atoms from two different 3,5-bis(pyridin-4-ylmethylamino)benzoate anions, displaying a slightly distorted NiN2O4 octahedral geometry. (Fig. 1). Each 3,5-bis(pyridin-4-ylmethylamino)benzoate anion acts as a µ2-bridge, linking different nickel ions to form a one-dimensional chain (Fig. 2). In the crystal structure, adjacent chains are further linked through N—H···O, O—H···O, O—H···N and C—H···O hydrogen bonds into a three-dimensional network (Fig. 3 and Table 1). Water molecules as donor or acceptor, including coordinated water molecules and lattice water molecule, play very important roles in the formation of these hydrogen bonding interactions.

For background to metal-organic hybrid materials, see: Bradshaw et al. (2005); Das & Bharadwaj (2009); Hua et al. (2010). For the use of N-, or O- multidentate donor ligands as building blocks in the construction of infinite frameworks, see: Peng et al. (2010).For related structures, see: Chen et al. (2009); Kuai et al. (2011). Scheme – should show 2 waters and 2 organic ligands per Ni atom

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of nickel ion in the title complex with the ellipsoids drawn at the 30% probability level; hydrogen atoms have been omitted for clarity. Symmetry codes: (A) x, 1 + y, z; (B) -x, 1 - y, 1 - z; (C) -x, 2 - y, 1 - z.
[Figure 2] Fig. 2. A one-dimensional chain formed from nickel ions and 3,5-bis(pyridin-4-ylmethylamino)benzoate anions.
[Figure 3] Fig. 3. Unit cell packing of the title complex showing the three-dimensional network constructed from one-dimensional chains via hydrogen bonding.
catena-Poly[[diaquabis{µ2-3,5-bis[(pyridin-4-yl)methylamino]benzoato}nickel] monohydrate] top
Crystal data top
[Ni(C19H17N4O2)2(H2O)2]·H2OF(000) = 816
Mr = 779.49Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2160 reflections
a = 10.7786 (10) Åθ = 2.5–22.6°
b = 9.3152 (9) ŵ = 0.60 mm1
c = 18.1211 (17) ÅT = 293 K
β = 92.324 (1)°Block, green
V = 1817.9 (3) Å30.22 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4300 independent reflections
Radiation source: fine-focus sealed tube2688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADBAS; Sheldrick, 1996)
h = 1411
Tmin = 0.880, Tmax = 0.900k = 1211
11129 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0321P)2]
where P = (Fo2 + 2Fc2)/3
4300 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ni(C19H17N4O2)2(H2O)2]·H2OV = 1817.9 (3) Å3
Mr = 779.49Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.7786 (10) ŵ = 0.60 mm1
b = 9.3152 (9) ÅT = 293 K
c = 18.1211 (17) Å0.22 × 0.20 × 0.18 mm
β = 92.324 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4300 independent reflections
Absorption correction: multi-scan
(SADBAS; Sheldrick, 1996)
2688 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.900Rint = 0.061
11129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.90Δρmax = 0.44 e Å3
4300 reflectionsΔρmin = 0.47 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2314 (2)0.6148 (2)0.75121 (13)0.0339 (6)
C20.3407 (2)0.6653 (3)0.78657 (13)0.0378 (6)
H10.36750.62600.83160.045*
C30.4095 (2)0.7733 (3)0.75505 (13)0.0377 (6)
C40.3705 (2)0.8302 (3)0.68700 (13)0.0394 (6)
H20.41730.90090.66500.047*
C50.2619 (2)0.7814 (2)0.65213 (12)0.0324 (5)
C60.1920 (2)0.6747 (2)0.68380 (12)0.0327 (5)
H30.11890.64300.66010.039*
C120.1299 (2)0.1913 (2)0.61577 (12)0.0344 (6)
H40.19990.14000.60320.041*
C130.1411 (2)0.2878 (2)0.67343 (12)0.0359 (6)
H50.21700.29940.69900.043*
C140.0392 (2)0.3673 (2)0.69312 (12)0.0323 (5)
C150.0692 (2)0.3470 (2)0.65150 (13)0.0390 (6)
H60.13960.40010.66160.047*
C160.0735 (2)0.2485 (3)0.59503 (13)0.0389 (6)
H70.14790.23710.56780.047*
C170.0430 (2)0.4665 (2)0.75874 (13)0.0389 (6)
H80.00250.55330.74560.047*
H90.00090.42060.79870.047*
C320.2739 (3)1.0393 (3)0.97764 (16)0.0556 (8)
H110.23311.02561.02130.067*
C330.3599 (2)0.9375 (3)0.95793 (15)0.0499 (7)
H120.37560.85820.98800.060*
C340.4219 (2)0.9538 (3)0.89414 (15)0.0429 (6)
C350.3910 (3)1.0717 (3)0.85121 (17)0.0646 (9)
H130.42771.08560.80620.078*
C360.3051 (3)1.1692 (3)0.87565 (19)0.0748 (10)
H140.28771.24950.84660.090*
C370.5200 (2)0.8495 (3)0.87000 (15)0.0549 (8)
H150.60090.88610.88610.066*
H160.50810.75870.89490.066*
C510.2157 (2)0.8553 (2)0.58246 (13)0.0325 (5)
N110.02360 (17)0.16775 (19)0.57703 (10)0.0312 (4)
N120.16700 (19)0.5057 (2)0.78483 (10)0.0402 (5)
H100.17810.49720.83550.048*
N310.2462 (2)1.1551 (3)0.93783 (14)0.0618 (7)
N320.52039 (17)0.8233 (2)0.79128 (12)0.0503 (6)
H170.54470.89950.76960.060*
Ni10.00001.00000.50000.02782 (13)
O10.09988 (14)0.86368 (16)0.57090 (8)0.0344 (4)
O20.29410 (15)0.9082 (2)0.54080 (10)0.0502 (5)
O30.15872 (13)1.06418 (16)0.44745 (8)0.0342 (4)
H180.21161.01780.47560.041*
H190.16641.16830.44760.041*
O40.4743 (5)0.0193 (9)0.4494 (3)0.204 (4)0.50
H200.42690.04060.49850.245*0.50
H210.51320.06520.45510.245*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0435 (14)0.0271 (13)0.0308 (13)0.0031 (11)0.0003 (11)0.0066 (10)
C20.0454 (15)0.0369 (15)0.0302 (14)0.0113 (12)0.0078 (11)0.0043 (11)
C30.0293 (13)0.0405 (15)0.0427 (15)0.0071 (11)0.0058 (11)0.0113 (12)
C40.0347 (14)0.0393 (15)0.0441 (16)0.0011 (11)0.0009 (12)0.0003 (12)
C50.0333 (13)0.0313 (13)0.0323 (13)0.0051 (10)0.0006 (10)0.0001 (10)
C60.0356 (13)0.0312 (13)0.0310 (13)0.0009 (10)0.0038 (10)0.0028 (10)
C120.0332 (13)0.0323 (14)0.0380 (14)0.0011 (11)0.0047 (11)0.0062 (11)
C130.0360 (14)0.0371 (14)0.0345 (14)0.0082 (11)0.0002 (11)0.0060 (11)
C140.0426 (14)0.0250 (13)0.0297 (13)0.0068 (11)0.0069 (11)0.0010 (10)
C150.0398 (14)0.0313 (14)0.0458 (16)0.0050 (11)0.0023 (12)0.0061 (11)
C160.0354 (14)0.0368 (15)0.0439 (16)0.0017 (11)0.0064 (12)0.0030 (11)
C170.0548 (16)0.0313 (15)0.0313 (14)0.0065 (11)0.0106 (12)0.0029 (10)
C320.0563 (19)0.064 (2)0.0470 (18)0.0080 (15)0.0080 (14)0.0100 (15)
C330.0539 (18)0.0496 (17)0.0457 (17)0.0045 (14)0.0064 (14)0.0002 (14)
C340.0396 (15)0.0410 (16)0.0476 (17)0.0071 (12)0.0042 (13)0.0096 (13)
C350.085 (2)0.0425 (18)0.069 (2)0.0043 (17)0.0315 (18)0.0008 (16)
C360.108 (3)0.0388 (18)0.079 (2)0.0121 (18)0.028 (2)0.0042 (16)
C370.0401 (16)0.069 (2)0.0540 (19)0.0042 (14)0.0149 (13)0.0180 (15)
C510.0373 (14)0.0279 (13)0.0321 (14)0.0001 (11)0.0007 (11)0.0008 (10)
N110.0333 (11)0.0293 (11)0.0310 (11)0.0016 (9)0.0002 (8)0.0021 (8)
N120.0643 (14)0.0322 (11)0.0237 (10)0.0067 (11)0.0039 (9)0.0009 (9)
N310.0758 (18)0.0476 (16)0.0629 (17)0.0067 (13)0.0152 (14)0.0085 (13)
N320.0350 (12)0.0637 (16)0.0515 (14)0.0028 (11)0.0086 (10)0.0131 (12)
Ni10.0319 (2)0.0265 (2)0.0248 (2)0.00238 (19)0.00169 (16)0.00021 (18)
O10.0327 (9)0.0358 (10)0.0340 (9)0.0021 (7)0.0056 (7)0.0060 (7)
O20.0358 (10)0.0643 (13)0.0509 (12)0.0005 (9)0.0071 (8)0.0203 (10)
O30.0401 (10)0.0308 (9)0.0313 (9)0.0035 (7)0.0020 (7)0.0042 (7)
O40.126 (5)0.383 (11)0.105 (5)0.158 (6)0.030 (4)0.026 (6)
Geometric parameters (Å, º) top
C1—N121.386 (3)C32—H110.9300
C1—C61.393 (3)C33—C341.367 (3)
C1—C21.400 (3)C33—H120.9300
C2—C31.387 (3)C34—C351.379 (4)
C2—H10.9300C34—C371.514 (3)
C3—C41.392 (3)C35—C361.383 (4)
C3—N321.418 (3)C35—H130.9300
C4—C51.383 (3)C36—N311.322 (3)
C4—H20.9300C36—H140.9300
C5—C61.386 (3)C37—N321.447 (3)
C5—C511.505 (3)C37—H150.9700
C6—H30.9300C37—H160.9700
C12—N111.337 (3)C51—O21.256 (3)
C12—C131.380 (3)C51—O11.260 (3)
C12—H40.9300N11—Ni1i2.1038 (18)
C13—C141.383 (3)N12—H100.9247
C13—H50.9300N32—H170.8583
C14—C151.378 (3)Ni1—O1ii2.0761 (15)
C14—C171.505 (3)Ni1—O12.0761 (15)
C15—C161.374 (3)Ni1—O32.0792 (14)
C15—H60.9300Ni1—O3ii2.0792 (14)
C16—N111.340 (3)Ni1—N11iii2.1038 (18)
C16—H70.9300Ni1—N11iv2.1038 (18)
C17—N121.446 (3)O3—H180.8647
C17—H80.9700O3—H190.9729
C17—H90.9700O4—H201.0633
C32—N311.325 (3)O4—H210.8961
C32—C331.383 (4)
N12—C1—C6122.6 (2)C35—C34—C37120.2 (3)
N12—C1—C2118.2 (2)C34—C35—C36119.5 (3)
C6—C1—C2119.2 (2)C34—C35—H13120.3
C3—C2—C1120.6 (2)C36—C35—H13120.3
C3—C2—H1119.7N31—C36—C35124.0 (3)
C1—C2—H1119.7N31—C36—H14118.0
C2—C3—C4119.6 (2)C35—C36—H14118.0
C2—C3—N32120.1 (2)N32—C37—C34115.0 (2)
C4—C3—N32120.3 (2)N32—C37—H15108.5
C5—C4—C3120.0 (2)C34—C37—H15108.5
C5—C4—H2120.0N32—C37—H16108.5
C3—C4—H2120.0C34—C37—H16108.5
C4—C5—C6120.7 (2)H15—C37—H16107.5
C4—C5—C51118.5 (2)O2—C51—O1124.2 (2)
C6—C5—C51120.6 (2)O2—C51—C5118.4 (2)
C5—C6—C1119.9 (2)O1—C51—C5117.4 (2)
C5—C6—H3120.1C12—N11—C16116.2 (2)
C1—C6—H3120.1C12—N11—Ni1i123.26 (15)
N11—C12—C13123.5 (2)C16—N11—Ni1i120.24 (15)
N11—C12—H4118.3C1—N12—C17120.95 (19)
C13—C12—H4118.3C1—N12—H10116.9
C12—C13—C14119.8 (2)C17—N12—H10112.6
C12—C13—H5120.1C36—N31—C32116.0 (3)
C14—C13—H5120.1C3—N32—C37118.4 (2)
C15—C14—C13116.8 (2)C3—N32—H17109.1
C15—C14—C17120.8 (2)C37—N32—H17109.0
C13—C14—C17122.4 (2)O1ii—Ni1—O1180.00 (7)
C16—C15—C14120.1 (2)O1ii—Ni1—O387.50 (6)
C16—C15—H6120.0O1—Ni1—O392.50 (6)
C14—C15—H6120.0O1ii—Ni1—O3ii92.50 (6)
N11—C16—C15123.6 (2)O1—Ni1—O3ii87.50 (6)
N11—C16—H7118.2O3—Ni1—O3ii180.0
C15—C16—H7118.2O1ii—Ni1—N11iii89.89 (7)
N12—C17—C14114.09 (19)O1—Ni1—N11iii90.11 (7)
N12—C17—H8108.7O3—Ni1—N11iii89.39 (6)
C14—C17—H8108.7O3ii—Ni1—N11iii90.61 (6)
N12—C17—H9108.7O1ii—Ni1—N11iv90.11 (7)
C14—C17—H9108.7O1—Ni1—N11iv89.89 (7)
H8—C17—H9107.6O3—Ni1—N11iv90.61 (6)
N31—C32—C33123.8 (3)O3ii—Ni1—N11iv89.39 (6)
N31—C32—H11118.1N11iii—Ni1—N11iv180.00 (7)
C33—C32—H11118.1C51—O1—Ni1128.76 (15)
C34—C33—C32119.9 (3)Ni1—O3—H1896.9
C34—C33—H12120.1Ni1—O3—H19110.9
C32—C33—H12120.1H18—O3—H19116.3
C33—C34—C35116.8 (3)H20—O4—H21107.8
C33—C34—C37123.0 (3)
N12—C1—C2—C3179.4 (2)C33—C34—C37—N32142.8 (3)
C6—C1—C2—C30.1 (3)C35—C34—C37—N3237.1 (4)
C1—C2—C3—C41.1 (3)C4—C5—C51—O231.6 (3)
C1—C2—C3—N32179.8 (2)C6—C5—C51—O2153.6 (2)
C2—C3—C4—C51.6 (4)C4—C5—C51—O1146.4 (2)
N32—C3—C4—C5179.7 (2)C6—C5—C51—O128.4 (3)
C3—C4—C5—C60.9 (4)C13—C12—N11—C162.7 (3)
C3—C4—C5—C51174.0 (2)C13—C12—N11—Ni1i170.66 (17)
C4—C5—C6—C10.4 (3)C15—C16—N11—C122.4 (4)
C51—C5—C6—C1175.1 (2)C15—C16—N11—Ni1i171.21 (18)
N12—C1—C6—C5178.6 (2)C6—C1—N12—C1711.8 (3)
C2—C1—C6—C50.9 (3)C2—C1—N12—C17168.7 (2)
N11—C12—C13—C140.8 (4)C14—C17—N12—C182.0 (3)
C12—C13—C14—C151.6 (3)C35—C36—N31—C320.1 (5)
C12—C13—C14—C17175.6 (2)C33—C32—N31—C360.9 (4)
C13—C14—C15—C162.0 (3)C2—C3—N32—C3744.2 (3)
C17—C14—C15—C16175.3 (2)C4—C3—N32—C37137.1 (3)
C14—C15—C16—N110.1 (4)C34—C37—N32—C356.3 (3)
C15—C14—C17—N12164.7 (2)O2—C51—O1—Ni116.3 (3)
C13—C14—C17—N1218.1 (3)C5—C51—O1—Ni1161.54 (15)
N31—C32—C33—C340.0 (4)O1ii—Ni1—O1—C5187 (100)
C32—C33—C34—C351.9 (4)O3—Ni1—O1—C5112.11 (19)
C32—C33—C34—C37178.1 (2)O3ii—Ni1—O1—C51167.89 (19)
C33—C34—C35—C362.9 (4)N11iii—Ni1—O1—C51101.51 (19)
C37—C34—C35—C36177.2 (3)N11iv—Ni1—O1—C5178.49 (19)
C34—C35—C36—N312.0 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H10···O3v0.922.133.023 (2)163
O3—H18···O20.861.772.627 (2)169
O4—H21···O2vi0.902.092.701 (5)125
O4—H20···O2i1.061.722.690 (5)150
O3—H19···N31vii0.971.872.787 (3)156
C2—H1···O4viii0.932.583.505 (6)172
C37—H16···O4viii0.972.473.440 (8)176
Symmetry codes: (i) x, y1, z; (v) x, y+3/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x, y+5/2, z1/2; (viii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C19H17N4O2)2(H2O)2]·H2O
Mr779.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.7786 (10), 9.3152 (9), 18.1211 (17)
β (°) 92.324 (1)
V3)1817.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADBAS; Sheldrick, 1996)
Tmin, Tmax0.880, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
11129, 4300, 2688
Rint0.061
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.094, 0.90
No. of reflections4300
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.47

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H10···O3i0.922.133.023 (2)163.1
O3—H18···O20.861.772.627 (2)169.0
O4—H21···O2ii0.902.092.701 (5)124.6
O4—H20···O2iii1.061.722.690 (5)149.6
O3—H19···N31iv0.971.872.787 (3)156.4
C2—H1···O4v0.932.583.505 (6)172.0
C37—H16···O4v0.972.473.440 (8)176.0
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y+5/2, z1/2; (v) x, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province of China (BK2008195) for financial support of this work.

References

First citationBradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, M.-S., Chen, S.-S., Okamura, T.-A., Su, Z., Sun, W.-Y. & Ueyama, N. (2009). J. Coord. Chem. 62, 2421–2428.  Web of Science CSD CrossRef CAS Google Scholar
First citationDas, M. C. & Bharadwaj, P. K. (2009). J. Am. Chem. Soc. 131, 10942–10943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHua, Q., Zhao, Y., Xu, G.-C., Chen, M.-S., Su, Z., Cai, K. & Sun, W.-Y. (2010). Cryst. Growth Des. 10, 2553–2562.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuai, H.-W., Cheng, X.-C. & Zhu, X.-H. (2011). J. Coord. Chem. 64, 1636–1644.  Web of Science CSD CrossRef Google Scholar
First citationPeng, G., Qiu, Y.-C., Liu, Z.-H., Liu, B. & Deng, H. (2010). Cryst. Growth Des. 10, 114–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds