metal-organic compounds
catena-Poly[[diaquabis{μ2-3,5-bis[(pyridin-4-yl)methylamino]benzoato}nickel] monohydrate]
aFaculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
*Correspondence e-mail: hyitshy@126.com
In the title coordination polymer, {[Ni(C19H17N4O2)2(H2O)2]·H2O}n, the Ni2+ cation is located on an inversion center and coordinated by two carboxylate O atoms from two different 3,5-bis(pyridin-4-ylmethylamino)benzoate anions, two O atoms from two coordinated water molecules and two N atoms from two different 3,5-bis(pyridin-4-ylmethylamino)benzoate anions, displaying a slightly distorted NiN2O4 octahedral geometry. Each 3,5-bis(pyridin-4-ylmethylamino)benzoate anion acts as a μ2-bridge, linking different nickel ions into a chain along [010]. In the crystal, adjacent chains are further linked through N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds into a three-dimensional network. The coordinated water molecules and a disordered water molecule of hydration with 0.50 site occupancy play an important role in the formation of these hydrogen-bonding interactions.
Related literature
For background to metal-organic hybrid materials, see: Bradshaw et al. (2005); Das & Bharadwaj (2009); Hua et al. (2010). For the use of N-, or O- multidentate donor ligands as building blocks in the construction of infinite frameworks, see: Peng et al. (2010). For related structures, see: Chen et al. (2009); Kuai et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536811038633/pv2448sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811038633/pv2448Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811038633/pv2448Isup4.cdx
A mixture of nickel nitrate hexahydrate (29.1 mg, 0.1 mmol), 3,5-bis(pyridin-4-ylmethylamino)benzoic acid (33.4 mg, 0.1 mmol), and potassium hydroxide (5.61 mg, 0.1 mmol) in 8 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 373 K for 3 days. After cooling to the room temperature, green block crystals of the title complex were obtained.
The hydrogen atoms bonded to C atoms were included in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atoms bonded to N and O atoms were located from the difference Fourier maps and fixed at those positions with Uiso(H) = 1.2Ueq(N or O)].
During the past few decades, growing interests have been focused on the rapidly expanding field of crystal engineering of metal-organic frameworks (MOFs) due to their intriguing architectures as well as their tremendous potential applications in
ion-recognition, nonlinear optics and molecular adsorption (Bradshaw et al., 2005; Das & Bharadwaj, 2009; Hua et al., 2010). One of the effective strategies for construction of such polymers is to select suitable multidentate organic ligands as building blocks to link metal centers into infinite framework. Among popularly employed organic ligands, N–, or O– multidentate donor ligands are regarded as excellent candidates for building the blocks of desirable frameworks (Peng et al., 2010). Herein, we report the of the title coordination polymer.The
of the title complex consists of half of a nickel ion, a 3,5-bis(pyridin-4-ylmethylamino)benzoate anion, a coordinated water molecule, and one half water molecule of crystallization. The Ni ion is located on an inversion center and coordinated by two carboxylate O atoms from two different 3,5-bis(pyridin-4-ylmethylamino)benzoate anions, two O atoms from two coordinated water molecules, and two N atoms from two different 3,5-bis(pyridin-4-ylmethylamino)benzoate anions, displaying a slightly distorted NiN2O4 octahedral geometry. (Fig. 1). Each 3,5-bis(pyridin-4-ylmethylamino)benzoate anion acts as a µ2-bridge, linking different nickel ions to form a one-dimensional chain (Fig. 2). In the adjacent chains are further linked through N—H···O, O—H···O, O—H···N and C—H···O hydrogen bonds into a three-dimensional network (Fig. 3 and Table 1). Water molecules as donor or acceptor, including coordinated water molecules and lattice water molecule, play very important roles in the formation of these hydrogen bonding interactions.For background to metal-organic hybrid materials, see: Bradshaw et al. (2005); Das & Bharadwaj (2009); Hua et al. (2010). For the use of N-, or O- multidentate donor ligands as building blocks in the construction of infinite frameworks, see: Peng et al. (2010).For related structures, see: Chen et al. (2009); Kuai et al. (2011). Scheme – should show 2 waters and 2 organic ligands per Ni atom
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The coordination environment of nickel ion in the title complex with the ellipsoids drawn at the 30% probability level; hydrogen atoms have been omitted for clarity. Symmetry codes: (A) x, 1 + y, z; (B) -x, 1 - y, 1 - z; (C) -x, 2 - y, 1 - z. | |
Fig. 2. A one-dimensional chain formed from nickel ions and 3,5-bis(pyridin-4-ylmethylamino)benzoate anions. | |
Fig. 3. Unit cell packing of the title complex showing the three-dimensional network constructed from one-dimensional chains via hydrogen bonding. |
[Ni(C19H17N4O2)2(H2O)2]·H2O | F(000) = 816 |
Mr = 779.49 | Dx = 1.424 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2160 reflections |
a = 10.7786 (10) Å | θ = 2.5–22.6° |
b = 9.3152 (9) Å | µ = 0.60 mm−1 |
c = 18.1211 (17) Å | T = 293 K |
β = 92.324 (1)° | Block, green |
V = 1817.9 (3) Å3 | 0.22 × 0.20 × 0.18 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 4300 independent reflections |
Radiation source: fine-focus sealed tube | 2688 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
φ and ω scans | θmax = 28.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADBAS; Sheldrick, 1996) | h = −14→11 |
Tmin = 0.880, Tmax = 0.900 | k = −12→11 |
11129 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 0.90 | w = 1/[σ2(Fo2) + (0.0321P)2] where P = (Fo2 + 2Fc2)/3 |
4300 reflections | (Δ/σ)max < 0.001 |
250 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
[Ni(C19H17N4O2)2(H2O)2]·H2O | V = 1817.9 (3) Å3 |
Mr = 779.49 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.7786 (10) Å | µ = 0.60 mm−1 |
b = 9.3152 (9) Å | T = 293 K |
c = 18.1211 (17) Å | 0.22 × 0.20 × 0.18 mm |
β = 92.324 (1)° |
Bruker APEXII CCD area-detector diffractometer | 4300 independent reflections |
Absorption correction: multi-scan (SADBAS; Sheldrick, 1996) | 2688 reflections with I > 2σ(I) |
Tmin = 0.880, Tmax = 0.900 | Rint = 0.061 |
11129 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 0.90 | Δρmax = 0.44 e Å−3 |
4300 reflections | Δρmin = −0.47 e Å−3 |
250 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.2314 (2) | 0.6148 (2) | 0.75121 (13) | 0.0339 (6) | |
C2 | 0.3407 (2) | 0.6653 (3) | 0.78657 (13) | 0.0378 (6) | |
H1 | 0.3675 | 0.6260 | 0.8316 | 0.045* | |
C3 | 0.4095 (2) | 0.7733 (3) | 0.75505 (13) | 0.0377 (6) | |
C4 | 0.3705 (2) | 0.8302 (3) | 0.68700 (13) | 0.0394 (6) | |
H2 | 0.4173 | 0.9009 | 0.6650 | 0.047* | |
C5 | 0.2619 (2) | 0.7814 (2) | 0.65213 (12) | 0.0324 (5) | |
C6 | 0.1920 (2) | 0.6747 (2) | 0.68380 (12) | 0.0327 (5) | |
H3 | 0.1189 | 0.6430 | 0.6601 | 0.039* | |
C12 | 0.1299 (2) | 0.1913 (2) | 0.61577 (12) | 0.0344 (6) | |
H4 | 0.1999 | 0.1400 | 0.6032 | 0.041* | |
C13 | 0.1411 (2) | 0.2878 (2) | 0.67343 (12) | 0.0359 (6) | |
H5 | 0.2170 | 0.2994 | 0.6990 | 0.043* | |
C14 | 0.0392 (2) | 0.3673 (2) | 0.69312 (12) | 0.0323 (5) | |
C15 | −0.0692 (2) | 0.3470 (2) | 0.65150 (13) | 0.0390 (6) | |
H6 | −0.1396 | 0.4001 | 0.6616 | 0.047* | |
C16 | −0.0735 (2) | 0.2485 (3) | 0.59503 (13) | 0.0389 (6) | |
H7 | −0.1479 | 0.2371 | 0.5678 | 0.047* | |
C17 | 0.0430 (2) | 0.4665 (2) | 0.75874 (13) | 0.0389 (6) | |
H8 | −0.0025 | 0.5533 | 0.7456 | 0.047* | |
H9 | 0.0009 | 0.4206 | 0.7987 | 0.047* | |
C32 | 0.2739 (3) | 1.0393 (3) | 0.97764 (16) | 0.0556 (8) | |
H11 | 0.2331 | 1.0256 | 1.0213 | 0.067* | |
C33 | 0.3599 (2) | 0.9375 (3) | 0.95793 (15) | 0.0499 (7) | |
H12 | 0.3756 | 0.8582 | 0.9880 | 0.060* | |
C34 | 0.4219 (2) | 0.9538 (3) | 0.89414 (15) | 0.0429 (6) | |
C35 | 0.3910 (3) | 1.0717 (3) | 0.85121 (17) | 0.0646 (9) | |
H13 | 0.4277 | 1.0856 | 0.8062 | 0.078* | |
C36 | 0.3051 (3) | 1.1692 (3) | 0.87565 (19) | 0.0748 (10) | |
H14 | 0.2877 | 1.2495 | 0.8466 | 0.090* | |
C37 | 0.5200 (2) | 0.8495 (3) | 0.87000 (15) | 0.0549 (8) | |
H15 | 0.6009 | 0.8861 | 0.8861 | 0.066* | |
H16 | 0.5081 | 0.7587 | 0.8949 | 0.066* | |
C51 | 0.2157 (2) | 0.8553 (2) | 0.58246 (13) | 0.0325 (5) | |
N11 | 0.02360 (17) | 0.16775 (19) | 0.57703 (10) | 0.0312 (4) | |
N12 | 0.16700 (19) | 0.5057 (2) | 0.78483 (10) | 0.0402 (5) | |
H10 | 0.1781 | 0.4972 | 0.8355 | 0.048* | |
N31 | 0.2462 (2) | 1.1551 (3) | 0.93783 (14) | 0.0618 (7) | |
N32 | 0.52039 (17) | 0.8233 (2) | 0.79128 (12) | 0.0503 (6) | |
H17 | 0.5447 | 0.8995 | 0.7696 | 0.060* | |
Ni1 | 0.0000 | 1.0000 | 0.5000 | 0.02782 (13) | |
O1 | 0.09988 (14) | 0.86368 (16) | 0.57090 (8) | 0.0344 (4) | |
O2 | 0.29410 (15) | 0.9082 (2) | 0.54080 (10) | 0.0502 (5) | |
O3 | 0.15872 (13) | 1.06418 (16) | 0.44745 (8) | 0.0342 (4) | |
H18 | 0.2116 | 1.0178 | 0.4756 | 0.041* | |
H19 | 0.1664 | 1.1683 | 0.4476 | 0.041* | |
O4 | 0.4743 (5) | −0.0193 (9) | 0.4494 (3) | 0.204 (4) | 0.50 |
H20 | 0.4269 | −0.0406 | 0.4985 | 0.245* | 0.50 |
H21 | 0.5132 | 0.0652 | 0.4551 | 0.245* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0435 (14) | 0.0271 (13) | 0.0308 (13) | 0.0031 (11) | −0.0003 (11) | −0.0066 (10) |
C2 | 0.0454 (15) | 0.0369 (15) | 0.0302 (14) | 0.0113 (12) | −0.0078 (11) | −0.0043 (11) |
C3 | 0.0293 (13) | 0.0405 (15) | 0.0427 (15) | 0.0071 (11) | −0.0058 (11) | −0.0113 (12) |
C4 | 0.0347 (14) | 0.0393 (15) | 0.0441 (16) | 0.0011 (11) | −0.0009 (12) | −0.0003 (12) |
C5 | 0.0333 (13) | 0.0313 (13) | 0.0323 (13) | 0.0051 (10) | −0.0006 (10) | −0.0001 (10) |
C6 | 0.0356 (13) | 0.0312 (13) | 0.0310 (13) | 0.0009 (10) | −0.0038 (10) | −0.0028 (10) |
C12 | 0.0332 (13) | 0.0323 (14) | 0.0380 (14) | −0.0011 (11) | 0.0047 (11) | −0.0062 (11) |
C13 | 0.0360 (14) | 0.0371 (14) | 0.0345 (14) | −0.0082 (11) | 0.0002 (11) | −0.0060 (11) |
C14 | 0.0426 (14) | 0.0250 (13) | 0.0297 (13) | −0.0068 (11) | 0.0069 (11) | 0.0010 (10) |
C15 | 0.0398 (14) | 0.0313 (14) | 0.0458 (16) | 0.0050 (11) | 0.0023 (12) | −0.0061 (11) |
C16 | 0.0354 (14) | 0.0368 (15) | 0.0439 (16) | 0.0017 (11) | −0.0064 (12) | −0.0030 (11) |
C17 | 0.0548 (16) | 0.0313 (15) | 0.0313 (14) | −0.0065 (11) | 0.0106 (12) | −0.0029 (10) |
C32 | 0.0563 (19) | 0.064 (2) | 0.0470 (18) | −0.0080 (15) | 0.0080 (14) | −0.0100 (15) |
C33 | 0.0539 (18) | 0.0496 (17) | 0.0457 (17) | −0.0045 (14) | −0.0064 (14) | −0.0002 (14) |
C34 | 0.0396 (15) | 0.0410 (16) | 0.0476 (17) | −0.0071 (12) | −0.0042 (13) | −0.0096 (13) |
C35 | 0.085 (2) | 0.0425 (18) | 0.069 (2) | −0.0043 (17) | 0.0315 (18) | −0.0008 (16) |
C36 | 0.108 (3) | 0.0388 (18) | 0.079 (2) | 0.0121 (18) | 0.028 (2) | 0.0042 (16) |
C37 | 0.0401 (16) | 0.069 (2) | 0.0540 (19) | 0.0042 (14) | −0.0149 (13) | −0.0180 (15) |
C51 | 0.0373 (14) | 0.0279 (13) | 0.0321 (14) | 0.0001 (11) | −0.0007 (11) | −0.0008 (10) |
N11 | 0.0333 (11) | 0.0293 (11) | 0.0310 (11) | −0.0016 (9) | −0.0002 (8) | −0.0021 (8) |
N12 | 0.0643 (14) | 0.0322 (11) | 0.0237 (10) | −0.0067 (11) | −0.0039 (9) | −0.0009 (9) |
N31 | 0.0758 (18) | 0.0476 (16) | 0.0629 (17) | 0.0067 (13) | 0.0152 (14) | −0.0085 (13) |
N32 | 0.0350 (12) | 0.0637 (16) | 0.0515 (14) | 0.0028 (11) | −0.0086 (10) | −0.0131 (12) |
Ni1 | 0.0319 (2) | 0.0265 (2) | 0.0248 (2) | −0.00238 (19) | −0.00169 (16) | −0.00021 (18) |
O1 | 0.0327 (9) | 0.0358 (10) | 0.0340 (9) | −0.0021 (7) | −0.0056 (7) | 0.0060 (7) |
O2 | 0.0358 (10) | 0.0643 (13) | 0.0509 (12) | −0.0005 (9) | 0.0071 (8) | 0.0203 (10) |
O3 | 0.0401 (10) | 0.0308 (9) | 0.0313 (9) | −0.0035 (7) | −0.0020 (7) | 0.0042 (7) |
O4 | 0.126 (5) | 0.383 (11) | 0.105 (5) | −0.158 (6) | 0.030 (4) | −0.026 (6) |
C1—N12 | 1.386 (3) | C32—H11 | 0.9300 |
C1—C6 | 1.393 (3) | C33—C34 | 1.367 (3) |
C1—C2 | 1.400 (3) | C33—H12 | 0.9300 |
C2—C3 | 1.387 (3) | C34—C35 | 1.379 (4) |
C2—H1 | 0.9300 | C34—C37 | 1.514 (3) |
C3—C4 | 1.392 (3) | C35—C36 | 1.383 (4) |
C3—N32 | 1.418 (3) | C35—H13 | 0.9300 |
C4—C5 | 1.383 (3) | C36—N31 | 1.322 (3) |
C4—H2 | 0.9300 | C36—H14 | 0.9300 |
C5—C6 | 1.386 (3) | C37—N32 | 1.447 (3) |
C5—C51 | 1.505 (3) | C37—H15 | 0.9700 |
C6—H3 | 0.9300 | C37—H16 | 0.9700 |
C12—N11 | 1.337 (3) | C51—O2 | 1.256 (3) |
C12—C13 | 1.380 (3) | C51—O1 | 1.260 (3) |
C12—H4 | 0.9300 | N11—Ni1i | 2.1038 (18) |
C13—C14 | 1.383 (3) | N12—H10 | 0.9247 |
C13—H5 | 0.9300 | N32—H17 | 0.8583 |
C14—C15 | 1.378 (3) | Ni1—O1ii | 2.0761 (15) |
C14—C17 | 1.505 (3) | Ni1—O1 | 2.0761 (15) |
C15—C16 | 1.374 (3) | Ni1—O3 | 2.0792 (14) |
C15—H6 | 0.9300 | Ni1—O3ii | 2.0792 (14) |
C16—N11 | 1.340 (3) | Ni1—N11iii | 2.1038 (18) |
C16—H7 | 0.9300 | Ni1—N11iv | 2.1038 (18) |
C17—N12 | 1.446 (3) | O3—H18 | 0.8647 |
C17—H8 | 0.9700 | O3—H19 | 0.9729 |
C17—H9 | 0.9700 | O4—H20 | 1.0633 |
C32—N31 | 1.325 (3) | O4—H21 | 0.8961 |
C32—C33 | 1.383 (4) | ||
N12—C1—C6 | 122.6 (2) | C35—C34—C37 | 120.2 (3) |
N12—C1—C2 | 118.2 (2) | C34—C35—C36 | 119.5 (3) |
C6—C1—C2 | 119.2 (2) | C34—C35—H13 | 120.3 |
C3—C2—C1 | 120.6 (2) | C36—C35—H13 | 120.3 |
C3—C2—H1 | 119.7 | N31—C36—C35 | 124.0 (3) |
C1—C2—H1 | 119.7 | N31—C36—H14 | 118.0 |
C2—C3—C4 | 119.6 (2) | C35—C36—H14 | 118.0 |
C2—C3—N32 | 120.1 (2) | N32—C37—C34 | 115.0 (2) |
C4—C3—N32 | 120.3 (2) | N32—C37—H15 | 108.5 |
C5—C4—C3 | 120.0 (2) | C34—C37—H15 | 108.5 |
C5—C4—H2 | 120.0 | N32—C37—H16 | 108.5 |
C3—C4—H2 | 120.0 | C34—C37—H16 | 108.5 |
C4—C5—C6 | 120.7 (2) | H15—C37—H16 | 107.5 |
C4—C5—C51 | 118.5 (2) | O2—C51—O1 | 124.2 (2) |
C6—C5—C51 | 120.6 (2) | O2—C51—C5 | 118.4 (2) |
C5—C6—C1 | 119.9 (2) | O1—C51—C5 | 117.4 (2) |
C5—C6—H3 | 120.1 | C12—N11—C16 | 116.2 (2) |
C1—C6—H3 | 120.1 | C12—N11—Ni1i | 123.26 (15) |
N11—C12—C13 | 123.5 (2) | C16—N11—Ni1i | 120.24 (15) |
N11—C12—H4 | 118.3 | C1—N12—C17 | 120.95 (19) |
C13—C12—H4 | 118.3 | C1—N12—H10 | 116.9 |
C12—C13—C14 | 119.8 (2) | C17—N12—H10 | 112.6 |
C12—C13—H5 | 120.1 | C36—N31—C32 | 116.0 (3) |
C14—C13—H5 | 120.1 | C3—N32—C37 | 118.4 (2) |
C15—C14—C13 | 116.8 (2) | C3—N32—H17 | 109.1 |
C15—C14—C17 | 120.8 (2) | C37—N32—H17 | 109.0 |
C13—C14—C17 | 122.4 (2) | O1ii—Ni1—O1 | 180.00 (7) |
C16—C15—C14 | 120.1 (2) | O1ii—Ni1—O3 | 87.50 (6) |
C16—C15—H6 | 120.0 | O1—Ni1—O3 | 92.50 (6) |
C14—C15—H6 | 120.0 | O1ii—Ni1—O3ii | 92.50 (6) |
N11—C16—C15 | 123.6 (2) | O1—Ni1—O3ii | 87.50 (6) |
N11—C16—H7 | 118.2 | O3—Ni1—O3ii | 180.0 |
C15—C16—H7 | 118.2 | O1ii—Ni1—N11iii | 89.89 (7) |
N12—C17—C14 | 114.09 (19) | O1—Ni1—N11iii | 90.11 (7) |
N12—C17—H8 | 108.7 | O3—Ni1—N11iii | 89.39 (6) |
C14—C17—H8 | 108.7 | O3ii—Ni1—N11iii | 90.61 (6) |
N12—C17—H9 | 108.7 | O1ii—Ni1—N11iv | 90.11 (7) |
C14—C17—H9 | 108.7 | O1—Ni1—N11iv | 89.89 (7) |
H8—C17—H9 | 107.6 | O3—Ni1—N11iv | 90.61 (6) |
N31—C32—C33 | 123.8 (3) | O3ii—Ni1—N11iv | 89.39 (6) |
N31—C32—H11 | 118.1 | N11iii—Ni1—N11iv | 180.00 (7) |
C33—C32—H11 | 118.1 | C51—O1—Ni1 | 128.76 (15) |
C34—C33—C32 | 119.9 (3) | Ni1—O3—H18 | 96.9 |
C34—C33—H12 | 120.1 | Ni1—O3—H19 | 110.9 |
C32—C33—H12 | 120.1 | H18—O3—H19 | 116.3 |
C33—C34—C35 | 116.8 (3) | H20—O4—H21 | 107.8 |
C33—C34—C37 | 123.0 (3) | ||
N12—C1—C2—C3 | 179.4 (2) | C33—C34—C37—N32 | 142.8 (3) |
C6—C1—C2—C3 | −0.1 (3) | C35—C34—C37—N32 | −37.1 (4) |
C1—C2—C3—C4 | −1.1 (3) | C4—C5—C51—O2 | 31.6 (3) |
C1—C2—C3—N32 | −179.8 (2) | C6—C5—C51—O2 | −153.6 (2) |
C2—C3—C4—C5 | 1.6 (4) | C4—C5—C51—O1 | −146.4 (2) |
N32—C3—C4—C5 | −179.7 (2) | C6—C5—C51—O1 | 28.4 (3) |
C3—C4—C5—C6 | −0.9 (4) | C13—C12—N11—C16 | 2.7 (3) |
C3—C4—C5—C51 | 174.0 (2) | C13—C12—N11—Ni1i | −170.66 (17) |
C4—C5—C6—C1 | −0.4 (3) | C15—C16—N11—C12 | −2.4 (4) |
C51—C5—C6—C1 | −175.1 (2) | C15—C16—N11—Ni1i | 171.21 (18) |
N12—C1—C6—C5 | −178.6 (2) | C6—C1—N12—C17 | −11.8 (3) |
C2—C1—C6—C5 | 0.9 (3) | C2—C1—N12—C17 | 168.7 (2) |
N11—C12—C13—C14 | −0.8 (4) | C14—C17—N12—C1 | 82.0 (3) |
C12—C13—C14—C15 | −1.6 (3) | C35—C36—N31—C32 | 0.1 (5) |
C12—C13—C14—C17 | 175.6 (2) | C33—C32—N31—C36 | 0.9 (4) |
C13—C14—C15—C16 | 2.0 (3) | C2—C3—N32—C37 | −44.2 (3) |
C17—C14—C15—C16 | −175.3 (2) | C4—C3—N32—C37 | 137.1 (3) |
C14—C15—C16—N11 | 0.1 (4) | C34—C37—N32—C3 | −56.3 (3) |
C15—C14—C17—N12 | −164.7 (2) | O2—C51—O1—Ni1 | −16.3 (3) |
C13—C14—C17—N12 | 18.1 (3) | C5—C51—O1—Ni1 | 161.54 (15) |
N31—C32—C33—C34 | 0.0 (4) | O1ii—Ni1—O1—C51 | −87 (100) |
C32—C33—C34—C35 | −1.9 (4) | O3—Ni1—O1—C51 | 12.11 (19) |
C32—C33—C34—C37 | 178.1 (2) | O3ii—Ni1—O1—C51 | −167.89 (19) |
C33—C34—C35—C36 | 2.9 (4) | N11iii—Ni1—O1—C51 | 101.51 (19) |
C37—C34—C35—C36 | −177.2 (3) | N11iv—Ni1—O1—C51 | −78.49 (19) |
C34—C35—C36—N31 | −2.0 (5) |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y+2, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N12—H10···O3v | 0.92 | 2.13 | 3.023 (2) | 163 |
O3—H18···O2 | 0.86 | 1.77 | 2.627 (2) | 169 |
O4—H21···O2vi | 0.90 | 2.09 | 2.701 (5) | 125 |
O4—H20···O2i | 1.06 | 1.72 | 2.690 (5) | 150 |
O3—H19···N31vii | 0.97 | 1.87 | 2.787 (3) | 156 |
C2—H1···O4viii | 0.93 | 2.58 | 3.505 (6) | 172 |
C37—H16···O4viii | 0.97 | 2.47 | 3.440 (8) | 176 |
Symmetry codes: (i) x, y−1, z; (v) x, −y+3/2, z+1/2; (vi) −x+1, −y+1, −z+1; (vii) x, −y+5/2, z−1/2; (viii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C19H17N4O2)2(H2O)2]·H2O |
Mr | 779.49 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.7786 (10), 9.3152 (9), 18.1211 (17) |
β (°) | 92.324 (1) |
V (Å3) | 1817.9 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.60 |
Crystal size (mm) | 0.22 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADBAS; Sheldrick, 1996) |
Tmin, Tmax | 0.880, 0.900 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11129, 4300, 2688 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.094, 0.90 |
No. of reflections | 4300 |
No. of parameters | 250 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.47 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N12—H10···O3i | 0.92 | 2.13 | 3.023 (2) | 163.1 |
O3—H18···O2 | 0.86 | 1.77 | 2.627 (2) | 169.0 |
O4—H21···O2ii | 0.90 | 2.09 | 2.701 (5) | 124.6 |
O4—H20···O2iii | 1.06 | 1.72 | 2.690 (5) | 149.6 |
O3—H19···N31iv | 0.97 | 1.87 | 2.787 (3) | 156.4 |
C2—H1···O4v | 0.93 | 2.58 | 3.505 (6) | 172.0 |
C37—H16···O4v | 0.97 | 2.47 | 3.440 (8) | 176.0 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z; (iv) x, −y+5/2, z−1/2; (v) x, −y+1/2, z+1/2. |
Acknowledgements
The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province of China (BK2008195) for financial support of this work.
References
Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, M.-S., Chen, S.-S., Okamura, T.-A., Su, Z., Sun, W.-Y. & Ueyama, N. (2009). J. Coord. Chem. 62, 2421–2428. Web of Science CSD CrossRef CAS Google Scholar
Das, M. C. & Bharadwaj, P. K. (2009). J. Am. Chem. Soc. 131, 10942–10943. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hua, Q., Zhao, Y., Xu, G.-C., Chen, M.-S., Su, Z., Cai, K. & Sun, W.-Y. (2010). Cryst. Growth Des. 10, 2553–2562. Web of Science CSD CrossRef CAS Google Scholar
Kuai, H.-W., Cheng, X.-C. & Zhu, X.-H. (2011). J. Coord. Chem. 64, 1636–1644. Web of Science CSD CrossRef Google Scholar
Peng, G., Qiu, Y.-C., Liu, Z.-H., Liu, B. & Deng, H. (2010). Cryst. Growth Des. 10, 114–121. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the past few decades, growing interests have been focused on the rapidly expanding field of crystal engineering of metal-organic frameworks (MOFs) due to their intriguing architectures as well as their tremendous potential applications in heterogeneous catalysis, ion-recognition, nonlinear optics and molecular adsorption (Bradshaw et al., 2005; Das & Bharadwaj, 2009; Hua et al., 2010). One of the effective strategies for construction of such polymers is to select suitable multidentate organic ligands as building blocks to link metal centers into infinite framework. Among popularly employed organic ligands, N–, or O– multidentate donor ligands are regarded as excellent candidates for building the blocks of desirable frameworks (Peng et al., 2010). Herein, we report the crystal structure of the title coordination polymer.
The asymmetric unit of the title complex consists of half of a nickel ion, a 3,5-bis(pyridin-4-ylmethylamino)benzoate anion, a coordinated water molecule, and one half water molecule of crystallization. The Ni ion is located on an inversion center and coordinated by two carboxylate O atoms from two different 3,5-bis(pyridin-4-ylmethylamino)benzoate anions, two O atoms from two coordinated water molecules, and two N atoms from two different 3,5-bis(pyridin-4-ylmethylamino)benzoate anions, displaying a slightly distorted NiN2O4 octahedral geometry. (Fig. 1). Each 3,5-bis(pyridin-4-ylmethylamino)benzoate anion acts as a µ2-bridge, linking different nickel ions to form a one-dimensional chain (Fig. 2). In the crystal structure, adjacent chains are further linked through N—H···O, O—H···O, O—H···N and C—H···O hydrogen bonds into a three-dimensional network (Fig. 3 and Table 1). Water molecules as donor or acceptor, including coordinated water molecules and lattice water molecule, play very important roles in the formation of these hydrogen bonding interactions.