organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-p-Tolyl-9H-carbazole-3-carbo­nitrile

aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, bDepartment of Organic Chemistry, University of Madras, Guindy campus, Chennai 600 025, India, cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and dDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: crystallography2010@gmail.com

(Received 19 September 2011; accepted 24 September 2011; online 30 September 2011)

In the title compound, C20H14N2, the carbazole ring system is essentially planar (r.m.s. deviation = 0.187 Å) and is inclined at an angle of 54.33 (4) ° with respect to the benzene ring. The crystal packing is stabilized by weak C—H⋯N and C—H⋯π inter­actions.

Related literature

For the biological activity of carbazole derivatives, see: Ramsewak et al. (1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]); Tachibana et al. (2001[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589-5594.]); Itoigawa et al. (2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]). For related structures, see: Archana et al. (2010[Archana, R., Prabakaran, K., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o1713.]); Velmurugan et al. (2010[Velmurugan, R., Sekar, M., Chandramohan, A., Ramesh, P. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o2965.]); Yuan et al. (2010[Yuan, M.-S., Zhao, L. & Zhang, R. (2010). Acta Cryst. E66, o1885.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14N2

  • Mr = 282.33

  • Triclinic, [P \overline 1]

  • a = 8.6031 (3) Å

  • b = 8.8247 (3) Å

  • c = 10.4609 (4) Å

  • α = 80.514 (2)°

  • β = 87.499 (2)°

  • γ = 72.114 (2)°

  • V = 745.45 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.22 × 0.19 × 0.17 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.987

  • 13631 measured reflections

  • 3724 independent reflections

  • 2695 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.04

  • 3724 reflections

  • 200 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N2i 0.93 2.57 3.434 (2) 154
C15—H15⋯Cg2ii 0.93 2.71 3.453 (1) 137
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carbazole derivatives possess antioxidative (Tachibana et al., 2001), antitumor (Itoigawa et al., 2000), anti-inflammatory and antimutagenic (Ramsewak et al., 1999) activities.

The geometric parameters of the title molecule (Fig. 1) agree well with the corresponding geometric parameters reported in similar structures (Archana et al., 2010; Velmurugan et al., 2010; Yuan et al., 2010). The carbazole ring system is essentially planar with maximum deviation of C9 from the least-squae plane defined by the atoms N1/C1–C12 being 0.0306 (10) Å. The mean plane of the carbazole ring system makes a dihedral angle of 54.33 (4) ° with the phenyl ring. The sum of bond angles around N1 [359.87 (10) °]indicates the sp2 hybridization state of atom N1 in the molecule. The crystal packing of the compound is stabilized by weak C8—H8···N2 hydrogen bonds and C15—H15···π interactions involving the centroid of C1–C6 ring (Table 1).

Related literature top

For the biological activity of carbazole derivatives, see: Ramsewak et al. (1999); Tachibana et al. (2001); Itoigawa et al. (2000). For related structures, see: Archana et al. (2010); Velmurugan et al. (2010); Yuan et al. (2010).

Experimental top

To a stirred solution of AlCl3 (2.8 g, 2.1 mmol), in dry THF (100 ml) sodium azide (4.1 g, 6.31 mmol), and 9-p-tolyl-9H-carbazole-3-carbaldehyde (3 g, 1.05 mmol) were added and the resulting mixture was heated to gentle reflux. The progress of the reaction was monitored by TLC. The suspension gradually turned pale yellow after 5–6 h. Then excess THF was removed by distillation and the residue was diluted with 10% HCl (10 ml). The aqueous layer was extracted with CHCl3 (2x50 ml) and brine (25 ml). The organic layer was separated and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure and the residue was purified by column chromatography by elution with mixture of ethyl acetate and hexane (1:4) to give the title compound as colorless crystalline solid.(m.p 449 K).

Refinement top

The H atoms were positioned geometrically and refined using riding model with C—H = 0.93 and 0.96Å for aryl and methyl type H-atoms, respectively, and Uiso(H) = 1.2 or 1.5 times Ueq(C) for aromatic or methyl H-atoms.

Structure description top

Carbazole derivatives possess antioxidative (Tachibana et al., 2001), antitumor (Itoigawa et al., 2000), anti-inflammatory and antimutagenic (Ramsewak et al., 1999) activities.

The geometric parameters of the title molecule (Fig. 1) agree well with the corresponding geometric parameters reported in similar structures (Archana et al., 2010; Velmurugan et al., 2010; Yuan et al., 2010). The carbazole ring system is essentially planar with maximum deviation of C9 from the least-squae plane defined by the atoms N1/C1–C12 being 0.0306 (10) Å. The mean plane of the carbazole ring system makes a dihedral angle of 54.33 (4) ° with the phenyl ring. The sum of bond angles around N1 [359.87 (10) °]indicates the sp2 hybridization state of atom N1 in the molecule. The crystal packing of the compound is stabilized by weak C8—H8···N2 hydrogen bonds and C15—H15···π interactions involving the centroid of C1–C6 ring (Table 1).

For the biological activity of carbazole derivatives, see: Ramsewak et al. (1999); Tachibana et al. (2001); Itoigawa et al. (2000). For related structures, see: Archana et al. (2010); Velmurugan et al. (2010); Yuan et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for the non-H atoms.
9-p-Tolyl-9H-carbazole-3-carbonitrile top
Crystal data top
C20H14N2Z = 2
Mr = 282.33F(000) = 296
Triclinic, P1Dx = 1.258 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6031 (3) ÅCell parameters from 3724 reflections
b = 8.8247 (3) Åθ = 2.0–28.4°
c = 10.4609 (4) ŵ = 0.08 mm1
α = 80.514 (2)°T = 295 K
β = 87.499 (2)°Block, colourless
γ = 72.114 (2)°0.22 × 0.19 × 0.17 mm
V = 745.45 (5) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3724 independent reflections
Radiation source: fine-focus sealed tube2695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 0 pixels mm-1θmax = 28.4°, θmin = 2.0°
ω and φ scansh = 119
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.984, Tmax = 0.987l = 1313
13631 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.1087P]
where P = (Fo2 + 2Fc2)/3
3724 reflections(Δ/σ)max = 0.002
200 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C20H14N2γ = 72.114 (2)°
Mr = 282.33V = 745.45 (5) Å3
Triclinic, P1Z = 2
a = 8.6031 (3) ÅMo Kα radiation
b = 8.8247 (3) ŵ = 0.08 mm1
c = 10.4609 (4) ÅT = 295 K
α = 80.514 (2)°0.22 × 0.19 × 0.17 mm
β = 87.499 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3724 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2695 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.987Rint = 0.029
13631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
3724 reflectionsΔρmin = 0.21 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.15482 (15)0.39757 (15)0.76616 (11)0.0428 (3)
C21.28283 (17)0.27239 (16)0.72999 (13)0.0503 (3)
H21.26410.19690.68510.060*
C31.43894 (17)0.26447 (17)0.76330 (13)0.0544 (3)
H31.52670.18140.74080.065*
C41.46875 (17)0.37727 (17)0.82957 (13)0.0540 (3)
H41.57550.36840.85030.065*
C51.34207 (15)0.50179 (16)0.86478 (12)0.0482 (3)
H51.36220.57740.90870.058*
C61.18294 (15)0.51223 (14)0.83321 (11)0.0413 (3)
C71.02493 (14)0.62392 (14)0.85320 (11)0.0408 (3)
C80.97472 (15)0.75589 (15)0.91712 (12)0.0447 (3)
H81.05050.78990.95610.054*
C90.80848 (16)0.83680 (15)0.92188 (12)0.0470 (3)
C100.69339 (16)0.78683 (16)0.86297 (13)0.0513 (3)
H100.58290.84310.86700.062*
C110.74155 (16)0.65580 (16)0.79929 (13)0.0497 (3)
H110.66530.62280.75990.060*
C120.90815 (15)0.57363 (15)0.79534 (11)0.0428 (3)
C130.91238 (15)0.35356 (16)0.67085 (12)0.0447 (3)
C140.81166 (17)0.43835 (18)0.56626 (12)0.0531 (3)
H140.79380.54870.54310.064*
C150.73821 (18)0.3594 (2)0.49679 (13)0.0588 (4)
H150.66880.41810.42820.071*
C160.76514 (18)0.1943 (2)0.52662 (14)0.0582 (4)
C170.86723 (18)0.11099 (18)0.63019 (15)0.0582 (4)
H170.88830.00010.65120.070*
C180.93897 (17)0.18914 (16)0.70359 (13)0.0517 (3)
H181.00470.13130.77450.062*
C190.6847 (3)0.1091 (3)0.4495 (2)0.0915 (6)
H19A0.56820.15200.45570.137*
H19B0.71820.00410.48320.137*
H19C0.71630.12490.36030.137*
C200.75645 (17)0.97199 (16)0.99028 (14)0.0537 (3)
N10.98705 (12)0.43589 (13)0.74328 (10)0.0454 (3)
N20.72084 (16)1.07784 (16)1.04614 (14)0.0700 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0421 (6)0.0455 (7)0.0405 (6)0.0140 (5)0.0003 (5)0.0053 (5)
C20.0519 (8)0.0486 (7)0.0508 (7)0.0142 (6)0.0048 (6)0.0122 (6)
C30.0440 (7)0.0523 (8)0.0608 (8)0.0070 (6)0.0063 (6)0.0083 (6)
C40.0411 (7)0.0592 (8)0.0590 (8)0.0140 (6)0.0018 (6)0.0039 (6)
C50.0438 (7)0.0531 (7)0.0482 (7)0.0157 (6)0.0035 (5)0.0061 (6)
C60.0420 (6)0.0432 (6)0.0386 (6)0.0137 (5)0.0001 (5)0.0049 (5)
C70.0397 (6)0.0426 (6)0.0398 (6)0.0132 (5)0.0003 (5)0.0044 (5)
C80.0462 (7)0.0432 (7)0.0461 (6)0.0154 (5)0.0011 (5)0.0072 (5)
C90.0486 (7)0.0412 (6)0.0489 (7)0.0112 (5)0.0020 (5)0.0060 (5)
C100.0409 (7)0.0484 (7)0.0616 (8)0.0097 (5)0.0015 (6)0.0079 (6)
C110.0413 (7)0.0525 (7)0.0572 (7)0.0163 (6)0.0021 (6)0.0096 (6)
C120.0435 (7)0.0425 (6)0.0432 (6)0.0143 (5)0.0006 (5)0.0061 (5)
C130.0451 (7)0.0519 (7)0.0417 (6)0.0197 (6)0.0029 (5)0.0120 (5)
C140.0586 (8)0.0568 (8)0.0467 (7)0.0234 (7)0.0034 (6)0.0040 (6)
C150.0592 (9)0.0763 (10)0.0456 (7)0.0267 (8)0.0038 (6)0.0098 (7)
C160.0549 (8)0.0776 (10)0.0552 (8)0.0319 (7)0.0074 (6)0.0261 (7)
C170.0610 (9)0.0531 (8)0.0678 (9)0.0241 (7)0.0063 (7)0.0184 (7)
C180.0529 (8)0.0509 (7)0.0524 (7)0.0168 (6)0.0016 (6)0.0085 (6)
C190.0912 (14)0.1118 (16)0.0975 (14)0.0513 (12)0.0035 (11)0.0491 (12)
C200.0492 (7)0.0454 (7)0.0637 (8)0.0097 (6)0.0016 (6)0.0108 (6)
N10.0418 (6)0.0472 (6)0.0496 (6)0.0141 (5)0.0016 (4)0.0133 (5)
N20.0611 (8)0.0583 (8)0.0926 (10)0.0125 (6)0.0004 (7)0.0279 (7)
Geometric parameters (Å, º) top
C1—C21.3894 (18)C11—C121.3958 (18)
C1—N11.3995 (16)C11—H110.9300
C1—C61.4048 (17)C12—N11.3834 (16)
C2—C31.380 (2)C13—C181.3835 (18)
C2—H20.9300C13—C141.3865 (18)
C3—C41.392 (2)C13—N11.4230 (16)
C3—H30.9300C14—C151.3750 (19)
C4—C51.3761 (19)C14—H140.9300
C4—H40.9300C15—C161.386 (2)
C5—C61.3942 (17)C15—H150.9300
C5—H50.9300C16—C171.382 (2)
C6—C71.4434 (17)C16—C191.505 (2)
C7—C81.3829 (17)C17—C181.3869 (19)
C7—C121.4100 (17)C17—H170.9300
C8—C91.3914 (18)C18—H180.9300
C8—H80.9300C19—H19A0.9600
C9—C101.4021 (19)C19—H19B0.9600
C9—C201.4356 (18)C19—H19C0.9600
C10—C111.3740 (18)C20—N21.1386 (17)
C10—H100.9300
C2—C1—N1129.38 (12)C12—C11—H11120.9
C2—C1—C6121.43 (12)N1—C12—C11129.52 (12)
N1—C1—C6109.18 (11)N1—C12—C7109.05 (11)
C3—C2—C1117.33 (13)C11—C12—C7121.40 (12)
C3—C2—H2121.3C18—C13—C14119.34 (12)
C1—C2—H2121.3C18—C13—N1120.73 (11)
C2—C3—C4121.90 (13)C14—C13—N1119.93 (12)
C2—C3—H3119.0C15—C14—C13120.07 (13)
C4—C3—H3119.0C15—C14—H14120.0
C5—C4—C3120.78 (13)C13—C14—H14120.0
C5—C4—H4119.6C14—C15—C16121.56 (14)
C3—C4—H4119.6C14—C15—H15119.2
C4—C5—C6118.60 (13)C16—C15—H15119.2
C4—C5—H5120.7C17—C16—C15117.77 (13)
C6—C5—H5120.7C17—C16—C19121.14 (16)
C5—C6—C1119.96 (12)C15—C16—C19121.09 (15)
C5—C6—C7133.56 (12)C16—C17—C18121.52 (14)
C1—C6—C7106.48 (11)C16—C17—H17119.2
C8—C7—C12119.87 (11)C18—C17—H17119.2
C8—C7—C6133.07 (11)C13—C18—C17119.71 (13)
C12—C7—C6107.03 (10)C13—C18—H18120.1
C7—C8—C9118.63 (11)C17—C18—H18120.1
C7—C8—H8120.7C16—C19—H19A109.5
C9—C8—H8120.7C16—C19—H19B109.5
C8—C9—C10121.09 (12)H19A—C19—H19B109.5
C8—C9—C20118.52 (12)C16—C19—H19C109.5
C10—C9—C20120.38 (12)H19A—C19—H19C109.5
C11—C10—C9120.90 (12)H19B—C19—H19C109.5
C11—C10—H10119.6N2—C20—C9177.51 (16)
C9—C10—H10119.6C12—N1—C1108.25 (10)
C10—C11—C12118.11 (12)C12—N1—C13126.03 (10)
C10—C11—H11120.9C1—N1—C13125.59 (10)
N1—C1—C2—C3178.70 (12)C8—C7—C12—C110.94 (18)
C6—C1—C2—C30.40 (19)C6—C7—C12—C11179.09 (11)
C1—C2—C3—C40.5 (2)C18—C13—C14—C150.5 (2)
C2—C3—C4—C50.1 (2)N1—C13—C14—C15179.43 (12)
C3—C4—C5—C60.3 (2)C13—C14—C15—C161.6 (2)
C4—C5—C6—C10.38 (18)C14—C15—C16—C170.8 (2)
C4—C5—C6—C7179.43 (12)C14—C15—C16—C19179.72 (14)
C2—C1—C6—C50.02 (18)C15—C16—C17—C180.9 (2)
N1—C1—C6—C5178.58 (11)C19—C16—C17—C18178.53 (14)
C2—C1—C6—C7179.31 (11)C14—C13—C18—C171.2 (2)
N1—C1—C6—C70.70 (13)N1—C13—C18—C17178.86 (12)
C5—C6—C7—C84.1 (2)C16—C17—C18—C131.9 (2)
C1—C6—C7—C8176.79 (13)C8—C9—C20—N28 (4)
C5—C6—C7—C12178.13 (13)C10—C9—C20—N2171 (4)
C1—C6—C7—C121.01 (13)C11—C12—N1—C1178.47 (12)
C12—C7—C8—C90.38 (17)C7—C12—N1—C10.55 (13)
C6—C7—C8—C9177.97 (12)C11—C12—N1—C135.6 (2)
C7—C8—C9—C100.23 (19)C7—C12—N1—C13176.45 (11)
C7—C8—C9—C20178.90 (11)C2—C1—N1—C12178.57 (12)
C8—C9—C10—C110.3 (2)C6—C1—N1—C120.11 (13)
C20—C9—C10—C11178.79 (12)C2—C1—N1—C132.6 (2)
C9—C10—C11—C120.22 (19)C6—C1—N1—C13175.81 (11)
C10—C11—C12—N1176.86 (12)C18—C13—N1—C12128.91 (14)
C10—C11—C12—C70.84 (19)C14—C13—N1—C1251.05 (17)
C8—C7—C12—N1177.18 (11)C18—C13—N1—C155.88 (17)
C6—C7—C12—N10.97 (13)C14—C13—N1—C1124.16 (14)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···N2i0.932.573.434 (2)154
C15—H15···Cg2ii0.932.713.453 (1)137
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H14N2
Mr282.33
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.6031 (3), 8.8247 (3), 10.4609 (4)
α, β, γ (°)80.514 (2), 87.499 (2), 72.114 (2)
V3)745.45 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.19 × 0.17
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
13631, 3724, 2695
Rint0.029
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.04
No. of reflections3724
No. of parameters200
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···N2i0.932.573.434 (2)154
C15—H15···Cg2ii0.932.713.453 (1)137
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y+1, z+1.
 

Acknowledgements

CR wishes to acknowledge AMET University management, India, for their kind support.

References

First citationArchana, R., Prabakaran, K., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o1713.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVelmurugan, R., Sekar, M., Chandramohan, A., Ramesh, P. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o2965.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYuan, M.-S., Zhao, L. & Zhang, R. (2010). Acta Cryst. E66, o1885.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds