metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­chlorido-1κ2Cl,2κCl-(2,6-di­methyl­phenolato-2κO)-μ-oxido-bis­{1,2(η5)-2,3,4,5-tetra­methyl-1-[4-(tri­methyl­silyl)phen­yl]cyclo­penta­dien­yl}dititanium(IV)

aSchool of Chemistry, Jilin University, Changchun 130012, People's Republic of China, and bState Key Laboratory of Supramolecular Structure and Materials, School of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: wql@jlu.edu.cn

(Received 18 August 2011; accepted 29 August 2011; online 14 September 2011)

The title dinuclear titanocene, [Ti2(C8H9O)(C18H25Si)2Cl3O], contains one Ti atom tetra­hedrally coordinated by two Cl atoms, a bridging O atom and the substituted cyclo­penta­dienyl ligand, and another Ti atom tetra­hedrally coordinated by a Cl atom, a bridging O atom, the 2,6-dimethyl­phenolate ligand and the substituted cyclo­penta­dienyl ligand. The bridging O atom lies on a twofold rotation axis.

Related literature

For background to titanocene complexes, see: Bochmann (2010[Bochmann, M. (2010). Organometallics, 29, 4711-4740.]); Lee et al. (2001[Lee, B. Y., Han, J. W., Seo, H., Lee, I. S. & Chung, Y. K. (2001). J. Organomet. Chem. 627, 233-238.]); Wu et al. (2006[Wu, Q.-L., Qing, S., Li, G.-H., Gao, W., Mu, Y. & Feng, S. H. (2006). Polyhedron, 25, 2565-2570.]). For potential applications in olefin polymerization, see: Blais et al. (1998[Blais, M. S., Chien, J. C. W. & Rausch, M. D. (1998). Organometallics, 17, 3775-3783.]); Wilson et al. (2008[Wilson, P. A., Wright, J. A., Oganesyan, V. S., Lancaster, S. J. & Bochmann, M. (2008). Organometallics, 27, 6371-6374.]). For Ti—O—Ti angles in related structures, see: Ciruelous et al. (1993[Ciruelous, S., Cuenca, T., Flores, J. C., Gomez, R., Gomez-Sal, P. & Royo, P. (1993). Organometallics, 12, 944-948.]); Varkey et al. (2001[Varkey, S. P., Schormann, M., Pape, T., Roesky, H. W., Noltemeyer, M., Herbst- Irmer, R. & Schmidt, H.-G. (2001). Inorg. Chem. 40, 2427-2429.]). For the preparation, see: Wu et al. (2007[Wu, Q.-L., Ye, L., Li, B. & Mu, Y. (2007). Acta Cryst. E63, m1194-m1195.], 2010[Wu, Q.-L., Su, Q., Ye, L., Li, G. & Mu, Y. (2010). Dalton Trans. 40, 2525-2535.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti2(C8H9O)(C18H25Si)2Cl3O]

  • Mr = 878.24

  • Triclinic, [P \overline 1]

  • a = 11.405 (2) Å

  • b = 12.949 (3) Å

  • c = 18.132 (4) Å

  • α = 104.19 (3)°

  • β = 101.13 (3)°

  • γ = 108.96 (3)°

  • V = 2344.2 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.13 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.882, Tmax = 0.925

  • 22084 measured reflections

  • 10372 independent reflections

  • 6422 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.188

  • S = 1.05

  • 10372 reflections

  • 494 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: XSCANS (Bruker, 1998[Bruker (1998). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Group 4 metallocene complexes with desirable steric and electronic properties have been of considerable interest in recent years, due to the potential applications in olefin polymerization. The most used strategy for improving catalyst performance is modification of the ligand framework by rational tailoring of steric and electronic factors. (Blais, et al., 1998; Wilson, et al., 2008) In our previous work, we have reported a series of monocyclopentadienyl titanium complexes and some of their hydrolysis products (Wu et al., 2006, 2007, 2010). It is of significance to clarify the struture of the hydrolysis products. Therefore, we report herein the crystal structure of the title compound (I)(shown in Fig. 1).

The title compound shows a bimetallic moiety with two cyclopentadienyltitanium units linked by Ti—O bonding. The bridging O atom lies on a crystallographic twofold axis. The title titanocene features tetrahedral coordination geometry around the titanium atom, formed by a substituted cyclopentadienyl ring, two chloride atoms (a chloride atom and a phenolate O atom) and an oxygen atom (oxo-bridge). The average C—C distance of Cp rings (1.417 (5) and 1.423 (4) Å for C1—C5 and C27—C31, respectively) is somewhat longer than the average values in substituted phenyl groups (1.387 (5) Å for both C10—C15 and C36—C41). The Ti—O—Ti angle of 157.0 ° falls within the range of observed values (154–180 °) in titanocene analogues, indicative of resulting from different pi back-bonding affected by intramolecular steric effects (Varkey et al., 2001; Ciruelous et al., 1993) The dihedral angles between the Cp rings and the adjacent phenyl rings are 51.3 ° (C1—C5 and C10—C15), 57.2 ° (C27—C31 and C36—C41),respectively, which is related to the steric crowding of substituted Cp ring through steric and electronic effects of aromatic substituents attached to the Cp ring. The two Cp rings are nearly parallel, with a dihedral angle of 4.2 °.

Related literature top

For background to titanocene complexes, see: Bochmann (2010); Lee et al.(2001); Wu et al. (2006). For potential applications in olefin polymerization, see: Blais et al. (1998); Wilson et al. (2008). For Ti—O—Ti angles in related structures, see: Ciruelous et al. (1993); Varkey et al. (2001). For the preparation, see: Wu et al. (2007, 2010).

Experimental top

Compound (I) was prepared as described in the litererature (Wu et al., 2007, 2010) with {1-(4-trimethylsilylphenyl)-2,3,4,5-tetramethyl- cyclopentadienyl}titanium(IV) trichloride and 2,6-dimethylphenol as starting material. Crystals suitable for X-ray analysis were obtained by recrystallization from a mixture of dichloromethane and n-hexane (1:5 v/v) at room temperature.

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, for aromatic and methyl H-atoms, respectively, and allowed to ride on their parent atoms in the riding model approximation with Uiso(H) = 1.2 Ueq(C) for aromatic H-atoms or 1.5 Ueq(C) for methyl H-atoms.

Structure description top

Group 4 metallocene complexes with desirable steric and electronic properties have been of considerable interest in recent years, due to the potential applications in olefin polymerization. The most used strategy for improving catalyst performance is modification of the ligand framework by rational tailoring of steric and electronic factors. (Blais, et al., 1998; Wilson, et al., 2008) In our previous work, we have reported a series of monocyclopentadienyl titanium complexes and some of their hydrolysis products (Wu et al., 2006, 2007, 2010). It is of significance to clarify the struture of the hydrolysis products. Therefore, we report herein the crystal structure of the title compound (I)(shown in Fig. 1).

The title compound shows a bimetallic moiety with two cyclopentadienyltitanium units linked by Ti—O bonding. The bridging O atom lies on a crystallographic twofold axis. The title titanocene features tetrahedral coordination geometry around the titanium atom, formed by a substituted cyclopentadienyl ring, two chloride atoms (a chloride atom and a phenolate O atom) and an oxygen atom (oxo-bridge). The average C—C distance of Cp rings (1.417 (5) and 1.423 (4) Å for C1—C5 and C27—C31, respectively) is somewhat longer than the average values in substituted phenyl groups (1.387 (5) Å for both C10—C15 and C36—C41). The Ti—O—Ti angle of 157.0 ° falls within the range of observed values (154–180 °) in titanocene analogues, indicative of resulting from different pi back-bonding affected by intramolecular steric effects (Varkey et al., 2001; Ciruelous et al., 1993) The dihedral angles between the Cp rings and the adjacent phenyl rings are 51.3 ° (C1—C5 and C10—C15), 57.2 ° (C27—C31 and C36—C41),respectively, which is related to the steric crowding of substituted Cp ring through steric and electronic effects of aromatic substituents attached to the Cp ring. The two Cp rings are nearly parallel, with a dihedral angle of 4.2 °.

For background to titanocene complexes, see: Bochmann (2010); Lee et al.(2001); Wu et al. (2006). For potential applications in olefin polymerization, see: Blais et al. (1998); Wilson et al. (2008). For Ti—O—Ti angles in related structures, see: Ciruelous et al. (1993); Varkey et al. (2001). For the preparation, see: Wu et al. (2007, 2010).

Computing details top

Data collection: XSCANS (Bruker, 1998); cell refinement: XSCANS (Bruker, 1998); data reduction: XSCANS (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen atoms are omitted for clarity.
Trichlorido-1κ2Cl,2κCl-(2,6-dimethylphenolato-2κO)- µ-oxido-bis{1,2(η5)-2,3,4,5-tetramethyl-1-[4- (trimethylsilyl)phenyl]cyclopentadienyl}dititanium(IV) top
Crystal data top
[Ti2(C8H9O)(C18H25Si)2Cl3O]Z = 2
Mr = 878.24F(000) = 924
Triclinic, P1Dx = 1.244 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.405 (2) ÅCell parameters from 15652 reflections
b = 12.949 (3) Åθ = 3.0–27.4°
c = 18.132 (4) ŵ = 0.60 mm1
α = 104.19 (3)°T = 293 K
β = 101.13 (3)°Block, red
γ = 108.96 (3)°0.21 × 0.18 × 0.13 mm
V = 2344.2 (8) Å3
Data collection top
Bruker P4
diffractometer
10372 independent reflections
Radiation source: fine-focus sealed tube6422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.882, Tmax = 0.925k = 1516
22084 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1012P)2 + 0.0969P]
where P = (Fo2 + 2Fc2)/3
10372 reflections(Δ/σ)max = 0.003
494 parametersΔρmax = 0.35 e Å3
6 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ti2(C8H9O)(C18H25Si)2Cl3O]γ = 108.96 (3)°
Mr = 878.24V = 2344.2 (8) Å3
Triclinic, P1Z = 2
a = 11.405 (2) ÅMo Kα radiation
b = 12.949 (3) ŵ = 0.60 mm1
c = 18.132 (4) ÅT = 293 K
α = 104.19 (3)°0.21 × 0.18 × 0.13 mm
β = 101.13 (3)°
Data collection top
Bruker P4
diffractometer
10372 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6422 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.925Rint = 0.039
22084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0576 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
10372 reflectionsΔρmin = 0.39 e Å3
494 parameters
Special details top

Experimental. see experiment

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.05505 (6)0.33102 (5)0.23000 (4)0.04577 (18)
Ti20.09126 (5)0.53445 (5)0.27494 (4)0.04253 (17)
Cl10.14294 (10)0.18775 (9)0.15420 (7)0.0745 (3)
Cl20.02690 (10)0.68549 (9)0.38951 (6)0.0637 (3)
Cl30.23923 (10)0.42014 (10)0.31861 (7)0.0759 (3)
Si10.68227 (11)0.86972 (10)0.48153 (7)0.0659 (3)
Si20.44356 (10)0.96451 (9)0.15117 (7)0.0589 (3)
O10.1325 (2)0.3496 (2)0.15419 (15)0.0550 (6)
O20.0119 (2)0.45837 (19)0.25895 (14)0.0487 (6)
C10.2305 (3)0.3869 (3)0.3443 (2)0.0522 (9)
C20.1156 (4)0.3543 (4)0.3693 (2)0.0618 (11)
C30.0423 (4)0.2359 (4)0.3271 (3)0.0688 (12)
C40.1105 (4)0.1936 (3)0.2787 (3)0.0653 (11)
C50.2272 (4)0.2861 (3)0.2893 (2)0.0558 (9)
C60.3312 (4)0.2789 (4)0.2507 (3)0.0720 (12)
H6A0.39630.26650.28550.108*
H6B0.37020.34980.24070.108*
H6C0.29340.21560.20120.108*
C70.0699 (5)0.0681 (3)0.2272 (4)0.0976 (18)
H7A0.09130.02510.26010.146*
H7B0.11480.06550.18760.146*
H7C0.02210.03480.20150.146*
C80.0843 (4)0.1661 (5)0.3372 (3)0.1008 (19)
H8A0.15190.13660.28760.151*
H8B0.10560.21440.37720.151*
H8C0.07620.10270.35320.151*
C90.0840 (5)0.4291 (4)0.4330 (3)0.0777 (13)
H9A0.00200.38810.43440.117*
H9B0.08830.49870.42180.117*
H9C0.14540.44850.48370.117*
C100.3386 (3)0.5025 (3)0.3761 (2)0.0500 (8)
C110.4654 (4)0.5133 (3)0.4047 (2)0.0556 (9)
H110.48210.44730.40300.067*
C120.5676 (4)0.6208 (3)0.4359 (2)0.0571 (9)
H120.65170.62540.45460.069*
C130.5472 (4)0.7218 (3)0.4396 (2)0.0537 (9)
C140.4199 (4)0.7100 (3)0.4123 (3)0.0656 (11)
H140.40340.77640.41490.079*
C150.3171 (4)0.6046 (3)0.3816 (3)0.0660 (11)
H150.23310.60080.36440.079*
C160.8427 (5)0.8595 (5)0.5069 (4)0.1062 (19)
H16A0.85480.83860.55430.159*
H16B0.91000.93300.51600.159*
H16C0.84630.80170.46370.159*
C170.6756 (6)0.9428 (5)0.4067 (4)0.122 (2)
H17A0.61210.88930.35750.183*
H17B0.75920.97020.39820.183*
H17C0.65201.00710.42520.183*
C180.6593 (8)0.9524 (6)0.5714 (4)0.148 (3)
H18A0.57750.95980.55780.223*
H18B0.72831.02790.59370.223*
H18C0.66020.91270.60970.223*
C190.2000 (3)0.3610 (3)0.1005 (2)0.0496 (8)
C200.1831 (4)0.2629 (4)0.0395 (2)0.0652 (10)
C210.2525 (5)0.2795 (5)0.0159 (3)0.0837 (14)
H210.24550.21560.05620.100*
C220.3295 (5)0.3874 (6)0.0114 (3)0.0886 (16)
H220.37280.39680.04940.106*
C230.3434 (4)0.4819 (5)0.0484 (3)0.0799 (14)
H230.39700.55510.05090.096*
C240.2793 (3)0.4716 (4)0.1061 (2)0.0577 (10)
C250.0946 (5)0.1436 (4)0.0317 (3)0.0923 (16)
H25A0.12900.12250.07580.139*
H25B0.08820.08940.01720.139*
H25C0.01000.14240.03170.139*
C260.2967 (4)0.5758 (3)0.1735 (3)0.0739 (12)
H26A0.21330.57700.17450.111*
H26B0.34850.64500.16580.111*
H26C0.33940.57160.22320.111*
C270.0665 (3)0.6388 (3)0.18409 (19)0.0402 (7)
C280.1364 (3)0.5201 (3)0.13894 (19)0.0422 (7)
C290.2573 (3)0.4833 (3)0.1562 (2)0.0491 (8)
C300.2621 (3)0.5808 (3)0.2104 (2)0.0505 (8)
C310.1453 (3)0.6770 (3)0.2277 (2)0.0455 (8)
C320.0959 (4)0.4467 (3)0.0796 (2)0.0544 (9)
H32A0.13570.44360.02700.082*
H32B0.12300.36990.08260.082*
H32C0.00320.47970.09140.082*
C330.3632 (4)0.3654 (3)0.1195 (3)0.0721 (12)
H33A0.40950.34880.15690.108*
H33B0.32630.30920.10540.108*
H33C0.42180.36250.07250.108*
C340.3748 (4)0.5838 (4)0.2402 (3)0.0738 (12)
H34A0.34360.63850.29310.111*
H34B0.42380.50830.24090.111*
H34C0.42930.60640.20570.111*
C350.1170 (4)0.7988 (3)0.2744 (3)0.0642 (11)
H35A0.13810.83840.23870.096*
H35B0.02650.83730.30390.096*
H35C0.16810.79940.31070.096*
C360.0589 (3)0.7159 (3)0.17851 (19)0.0399 (7)
C370.1668 (3)0.7828 (3)0.2441 (2)0.0536 (9)
H370.16390.77930.29440.064*
C380.2798 (4)0.8555 (3)0.2350 (2)0.0582 (10)
H380.35180.89810.27960.070*
C390.2891 (3)0.8669 (3)0.1625 (2)0.0487 (8)
C400.1799 (4)0.7992 (3)0.0971 (2)0.0566 (9)
H400.18260.80330.04690.068*
C410.0663 (3)0.7251 (3)0.1051 (2)0.0543 (9)
H410.00530.68130.06040.065*
C420.5400 (4)1.0825 (4)0.2478 (3)0.0798 (13)
H42A0.57151.05060.28600.120*
H42B0.48601.11960.26680.120*
H42C0.61221.13830.24030.120*
C430.3993 (5)1.0289 (4)0.0737 (3)0.0911 (16)
H43A0.36491.08450.09430.137*
H43B0.33510.96880.02720.137*
H43C0.47521.06640.05970.137*
C440.5408 (5)0.8797 (4)0.1237 (4)0.108 (2)
H44A0.61790.92850.11590.162*
H44B0.49050.81620.07530.162*
H44C0.56460.85050.16560.162*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0383 (3)0.0446 (3)0.0570 (4)0.0132 (3)0.0155 (3)0.0244 (3)
Ti20.0357 (3)0.0491 (3)0.0466 (4)0.0152 (3)0.0168 (3)0.0206 (3)
Cl10.0512 (6)0.0616 (6)0.0900 (8)0.0020 (4)0.0043 (5)0.0309 (6)
Cl20.0685 (6)0.0677 (6)0.0489 (5)0.0243 (5)0.0161 (5)0.0136 (5)
Cl30.0552 (6)0.0938 (8)0.0904 (8)0.0178 (5)0.0329 (6)0.0567 (7)
Si10.0527 (7)0.0616 (7)0.0650 (7)0.0095 (5)0.0133 (5)0.0106 (6)
Si20.0497 (6)0.0515 (6)0.0778 (8)0.0126 (5)0.0348 (6)0.0231 (5)
O10.0539 (15)0.0548 (14)0.0638 (16)0.0224 (12)0.0264 (13)0.0237 (12)
O20.0444 (13)0.0535 (13)0.0524 (14)0.0217 (11)0.0154 (11)0.0205 (11)
C10.0423 (19)0.062 (2)0.058 (2)0.0214 (16)0.0140 (17)0.0290 (19)
C20.046 (2)0.086 (3)0.067 (3)0.026 (2)0.0182 (19)0.049 (2)
C30.048 (2)0.080 (3)0.089 (3)0.016 (2)0.018 (2)0.062 (3)
C40.055 (2)0.055 (2)0.091 (3)0.0183 (18)0.011 (2)0.045 (2)
C50.048 (2)0.052 (2)0.077 (3)0.0243 (16)0.0165 (19)0.032 (2)
C60.057 (3)0.072 (3)0.096 (3)0.035 (2)0.024 (2)0.028 (2)
C70.089 (4)0.051 (2)0.141 (5)0.017 (2)0.012 (3)0.044 (3)
C80.058 (3)0.124 (4)0.121 (4)0.004 (3)0.022 (3)0.087 (4)
C90.074 (3)0.120 (4)0.061 (3)0.047 (3)0.034 (2)0.044 (3)
C100.0416 (19)0.056 (2)0.055 (2)0.0194 (16)0.0140 (16)0.0231 (17)
C110.051 (2)0.058 (2)0.065 (2)0.0256 (17)0.0153 (18)0.0284 (19)
C120.0403 (19)0.068 (2)0.059 (2)0.0185 (17)0.0087 (17)0.023 (2)
C130.047 (2)0.058 (2)0.045 (2)0.0164 (17)0.0047 (16)0.0128 (17)
C140.054 (2)0.049 (2)0.081 (3)0.0210 (18)0.005 (2)0.010 (2)
C150.042 (2)0.062 (2)0.081 (3)0.0212 (18)0.001 (2)0.014 (2)
C160.058 (3)0.121 (4)0.121 (5)0.017 (3)0.001 (3)0.051 (4)
C170.103 (5)0.112 (4)0.169 (7)0.038 (4)0.037 (4)0.084 (5)
C180.138 (4)0.143 (4)0.133 (4)0.039 (3)0.052 (4)0.006 (3)
C190.0434 (19)0.059 (2)0.057 (2)0.0278 (16)0.0193 (17)0.0236 (18)
C200.063 (3)0.082 (3)0.054 (2)0.040 (2)0.014 (2)0.016 (2)
C210.072 (3)0.124 (4)0.064 (3)0.056 (3)0.024 (2)0.020 (3)
C220.071 (3)0.155 (5)0.069 (3)0.058 (4)0.038 (3)0.055 (4)
C230.051 (2)0.119 (4)0.102 (4)0.039 (3)0.037 (3)0.072 (3)
C240.0408 (19)0.076 (2)0.077 (3)0.0314 (18)0.0240 (19)0.043 (2)
C250.099 (4)0.065 (3)0.099 (4)0.030 (3)0.028 (3)0.007 (3)
C260.056 (3)0.057 (2)0.114 (4)0.0227 (19)0.035 (3)0.028 (2)
C270.0333 (16)0.0490 (18)0.0417 (17)0.0153 (14)0.0126 (14)0.0206 (15)
C280.0367 (17)0.0458 (17)0.0424 (18)0.0133 (14)0.0109 (14)0.0161 (15)
C290.0344 (17)0.0533 (19)0.052 (2)0.0083 (15)0.0074 (15)0.0214 (17)
C300.0361 (18)0.065 (2)0.058 (2)0.0209 (16)0.0189 (16)0.0288 (19)
C310.0392 (18)0.0526 (19)0.054 (2)0.0217 (15)0.0199 (16)0.0248 (17)
C320.055 (2)0.052 (2)0.050 (2)0.0176 (17)0.0146 (17)0.0138 (17)
C330.045 (2)0.068 (2)0.080 (3)0.0019 (18)0.008 (2)0.027 (2)
C340.048 (2)0.093 (3)0.098 (3)0.033 (2)0.037 (2)0.044 (3)
C350.068 (3)0.059 (2)0.084 (3)0.036 (2)0.038 (2)0.028 (2)
C360.0364 (16)0.0409 (16)0.0453 (18)0.0153 (13)0.0171 (14)0.0154 (14)
C370.049 (2)0.058 (2)0.047 (2)0.0098 (16)0.0198 (17)0.0171 (17)
C380.044 (2)0.060 (2)0.054 (2)0.0027 (16)0.0172 (17)0.0139 (18)
C390.049 (2)0.0415 (17)0.056 (2)0.0137 (15)0.0269 (17)0.0137 (16)
C400.053 (2)0.063 (2)0.054 (2)0.0131 (18)0.0242 (18)0.0263 (19)
C410.0428 (19)0.067 (2)0.046 (2)0.0119 (17)0.0115 (16)0.0209 (18)
C420.064 (3)0.060 (2)0.103 (4)0.010 (2)0.025 (3)0.026 (3)
C430.095 (4)0.088 (3)0.093 (4)0.017 (3)0.043 (3)0.048 (3)
C440.100 (4)0.084 (3)0.171 (6)0.046 (3)0.092 (4)0.042 (4)
Geometric parameters (Å, º) top
Ti1—O11.794 (2)C17—H17C0.9600
Ti1—O21.855 (2)C18—H18A0.9600
Ti1—Cl12.2933 (17)C18—H18B0.9600
Ti1—C12.355 (4)C18—H18C0.9600
Ti1—C52.363 (4)C19—C241.389 (5)
Ti1—C42.373 (4)C19—C201.395 (5)
Ti1—C32.384 (4)C20—C211.408 (6)
Ti1—C22.401 (4)C20—C251.500 (6)
Ti2—O21.784 (2)C21—C221.361 (7)
Ti2—Cl32.2655 (13)C21—H210.9300
Ti2—Cl22.2741 (17)C22—C231.362 (7)
Ti2—C292.361 (4)C22—H220.9300
Ti2—C282.367 (3)C23—C241.396 (6)
Ti2—C272.376 (3)C23—H230.9300
Ti2—C302.398 (4)C24—C261.509 (6)
Ti2—C312.414 (3)C25—H25A0.9600
Si1—C181.833 (7)C25—H25B0.9600
Si1—C171.839 (6)C25—H25C0.9600
Si1—C161.854 (5)C26—H26A0.9600
Si1—C131.880 (4)C26—H26B0.9600
Si2—C441.850 (5)C26—H26C0.9600
Si2—C421.862 (5)C27—C281.416 (4)
Si2—C431.871 (5)C27—C311.431 (4)
Si2—C391.887 (3)C27—C361.493 (4)
O1—C191.360 (4)C28—C291.427 (4)
C1—C51.420 (5)C28—C321.500 (5)
C1—C21.436 (5)C29—C301.422 (5)
C1—C101.482 (5)C29—C331.492 (5)
C2—C31.407 (6)C30—C311.412 (5)
C2—C91.497 (6)C30—C341.495 (5)
C3—C41.408 (6)C31—C351.490 (5)
C3—C81.507 (5)C32—H32A0.9600
C4—C51.413 (5)C32—H32B0.9600
C4—C71.525 (6)C32—H32C0.9600
C5—C61.505 (6)C33—H33A0.9600
C6—H6A0.9600C33—H33B0.9600
C6—H6B0.9600C33—H33C0.9600
C6—H6C0.9600C34—H34A0.9600
C7—H7A0.9600C34—H34B0.9600
C7—H7B0.9600C34—H34C0.9600
C7—H7C0.9600C35—H35A0.9600
C8—H8A0.9600C35—H35B0.9600
C8—H8B0.9600C35—H35C0.9600
C8—H8C0.9600C36—C411.381 (4)
C9—H9A0.9600C36—C371.384 (5)
C9—H9B0.9600C37—C381.395 (5)
C9—H9C0.9600C37—H370.9300
C10—C111.386 (5)C38—C391.378 (5)
C10—C151.405 (5)C38—H380.9300
C11—C121.387 (5)C39—C401.392 (5)
C11—H110.9300C40—C411.397 (5)
C12—C131.389 (5)C40—H400.9300
C12—H120.9300C41—H410.9300
C13—C141.384 (5)C42—H42A0.9600
C14—C151.372 (5)C42—H42B0.9600
C14—H140.9300C42—H42C0.9600
C15—H150.9300C43—H43A0.9600
C16—H16A0.9600C43—H43B0.9600
C16—H16B0.9600C43—H43C0.9600
C16—H16C0.9600C44—H44A0.9600
C17—H17A0.9600C44—H44B0.9600
C17—H17B0.9600C44—H44C0.9600
O1—Ti1—O2105.50 (11)C14—C15—H15119.9
O1—Ti1—Cl1100.53 (10)C10—C15—H15119.9
O2—Ti1—Cl1101.71 (9)Si1—C16—H16A109.5
O1—Ti1—C1103.29 (12)Si1—C16—H16B109.5
O2—Ti1—C197.86 (13)H16A—C16—H16B109.5
Cl1—Ti1—C1143.69 (9)Si1—C16—H16C109.5
O1—Ti1—C587.20 (13)H16A—C16—H16C109.5
O2—Ti1—C5132.54 (13)H16B—C16—H16C109.5
Cl1—Ti1—C5121.02 (10)Si1—C17—H17A109.5
C1—Ti1—C535.03 (13)Si1—C17—H17B109.5
O1—Ti1—C4107.17 (15)H17A—C17—H17B109.5
O2—Ti1—C4142.97 (14)Si1—C17—H17C109.5
Cl1—Ti1—C489.04 (10)H17A—C17—H17C109.5
C1—Ti1—C457.92 (14)H17B—C17—H17C109.5
C5—Ti1—C434.71 (13)Si1—C18—H18A109.5
O1—Ti1—C3141.30 (15)Si1—C18—H18B109.5
O2—Ti1—C3110.16 (15)H18A—C18—H18B109.5
Cl1—Ti1—C386.69 (11)Si1—C18—H18C109.5
C1—Ti1—C357.78 (13)H18A—C18—H18C109.5
C5—Ti1—C357.58 (14)H18B—C18—H18C109.5
C4—Ti1—C334.43 (15)O1—C19—C24118.4 (3)
O1—Ti1—C2138.44 (13)O1—C19—C20119.4 (3)
O2—Ti1—C286.50 (13)C24—C19—C20122.1 (4)
Cl1—Ti1—C2116.07 (10)C19—C20—C21117.3 (4)
C1—Ti1—C235.15 (12)C19—C20—C25122.3 (4)
C5—Ti1—C257.90 (14)C21—C20—C25120.4 (4)
C4—Ti1—C257.31 (16)C22—C21—C20121.2 (5)
C3—Ti1—C234.19 (14)C22—C21—H21119.4
O2—Ti2—Cl3103.14 (8)C20—C21—H21119.4
O2—Ti2—Cl2104.50 (9)C21—C22—C23120.2 (4)
Cl3—Ti2—Cl2100.73 (6)C21—C22—H22119.9
O2—Ti2—C29110.69 (13)C23—C22—H22119.9
Cl3—Ti2—C2988.59 (9)C22—C23—C24121.6 (5)
Cl2—Ti2—C29140.43 (10)C22—C23—H23119.2
O2—Ti2—C2888.37 (11)C24—C23—H23119.2
Cl3—Ti2—C28120.73 (9)C19—C24—C23117.6 (4)
Cl2—Ti2—C28132.64 (8)C19—C24—C26120.6 (3)
C29—Ti2—C2835.13 (11)C23—C24—C26121.8 (4)
O2—Ti2—C27101.71 (11)C20—C25—H25A109.5
Cl3—Ti2—C27143.82 (9)C20—C25—H25B109.5
Cl2—Ti2—C2798.01 (9)H25A—C25—H25B109.5
C29—Ti2—C2758.00 (11)C20—C25—H25C109.5
C28—Ti2—C2734.73 (11)H25A—C25—H25C109.5
O2—Ti2—C30144.44 (12)H25B—C25—H25C109.5
Cl3—Ti2—C3087.46 (9)C24—C26—H26A109.5
Cl2—Ti2—C30106.69 (10)C24—C26—H26B109.5
C29—Ti2—C3034.75 (13)H26A—C26—H26B109.5
C28—Ti2—C3057.77 (12)C24—C26—H26C109.5
C27—Ti2—C3057.46 (11)H26A—C26—H26C109.5
O2—Ti2—C31136.29 (11)H26B—C26—H26C109.5
Cl3—Ti2—C31117.28 (9)C28—C27—C31108.2 (3)
Cl2—Ti2—C3184.51 (9)C28—C27—C36126.1 (3)
C29—Ti2—C3157.56 (12)C31—C27—C36125.1 (3)
C28—Ti2—C3157.68 (12)C28—C27—Ti272.31 (17)
C27—Ti2—C3134.76 (11)C31—C27—Ti274.09 (18)
C30—Ti2—C3134.11 (11)C36—C27—Ti2126.2 (2)
C18—Si1—C17109.7 (4)C27—C28—C29107.8 (3)
C18—Si1—C16109.5 (3)C27—C28—C32126.7 (3)
C17—Si1—C16109.2 (3)C29—C28—C32125.4 (3)
C18—Si1—C13108.6 (3)C27—C28—Ti272.96 (18)
C17—Si1—C13108.8 (2)C29—C28—Ti272.18 (19)
C16—Si1—C13110.9 (2)C32—C28—Ti2123.3 (2)
C44—Si2—C42108.6 (3)C30—C29—C28107.8 (3)
C44—Si2—C43111.7 (3)C30—C29—C33126.1 (3)
C42—Si2—C43109.3 (2)C28—C29—C33125.9 (4)
C44—Si2—C39109.29 (19)C30—C29—Ti274.1 (2)
C42—Si2—C39109.38 (19)C28—C29—Ti272.69 (19)
C43—Si2—C39108.5 (2)C33—C29—Ti2122.1 (3)
C19—O1—Ti1174.5 (2)C31—C30—C29108.5 (3)
Ti2—O2—Ti1157.02 (14)C31—C30—C34125.3 (4)
C5—C1—C2107.7 (3)C29—C30—C34126.1 (3)
C5—C1—C10126.2 (3)C31—C30—Ti273.58 (19)
C2—C1—C10125.9 (4)C29—C30—Ti271.2 (2)
C5—C1—Ti172.8 (2)C34—C30—Ti2124.2 (3)
C2—C1—Ti174.2 (2)C30—C31—C27107.6 (3)
C10—C1—Ti1123.1 (2)C30—C31—C35125.8 (3)
C3—C2—C1107.3 (4)C27—C31—C35126.1 (3)
C3—C2—C9125.8 (4)C30—C31—Ti272.31 (19)
C1—C2—C9126.7 (4)C27—C31—Ti271.15 (18)
C3—C2—Ti172.3 (2)C35—C31—Ti2128.0 (3)
C1—C2—Ti170.7 (2)C28—C32—H32A109.5
C9—C2—Ti1126.0 (3)C28—C32—H32B109.5
C2—C3—C4108.8 (3)H32A—C32—H32B109.5
C2—C3—C8124.7 (5)C28—C32—H32C109.5
C4—C3—C8126.4 (4)H32A—C32—H32C109.5
C2—C3—Ti173.5 (2)H32B—C32—H32C109.5
C4—C3—Ti172.4 (2)C29—C33—H33A109.5
C8—C3—Ti1123.2 (3)C29—C33—H33B109.5
C3—C4—C5108.3 (4)H33A—C33—H33B109.5
C3—C4—C7126.1 (4)C29—C33—H33C109.5
C5—C4—C7125.5 (4)H33A—C33—H33C109.5
C3—C4—Ti173.2 (2)H33B—C33—H33C109.5
C5—C4—Ti172.3 (2)C30—C34—H34A109.5
C7—C4—Ti1123.1 (3)C30—C34—H34B109.5
C4—C5—C1107.8 (4)H34A—C34—H34B109.5
C4—C5—C6126.2 (4)C30—C34—H34C109.5
C1—C5—C6125.9 (3)H34A—C34—H34C109.5
C4—C5—Ti173.0 (2)H34B—C34—H34C109.5
C1—C5—Ti172.2 (2)C31—C35—H35A109.5
C6—C5—Ti1121.5 (3)C31—C35—H35B109.5
C5—C6—H6A109.5H35A—C35—H35B109.5
C5—C6—H6B109.5C31—C35—H35C109.5
H6A—C6—H6B109.5H35A—C35—H35C109.5
C5—C6—H6C109.5H35B—C35—H35C109.5
H6A—C6—H6C109.5C41—C36—C37118.2 (3)
H6B—C6—H6C109.5C41—C36—C27118.7 (3)
C4—C7—H7A109.5C37—C36—C27123.1 (3)
C4—C7—H7B109.5C36—C37—C38120.1 (3)
H7A—C7—H7B109.5C36—C37—H37119.9
C4—C7—H7C109.5C38—C37—H37119.9
H7A—C7—H7C109.5C39—C38—C37122.7 (4)
H7B—C7—H7C109.5C39—C38—H38118.6
C3—C8—H8A109.5C37—C38—H38118.6
C3—C8—H8B109.5C38—C39—C40116.5 (3)
H8A—C8—H8B109.5C38—C39—Si2122.1 (3)
C3—C8—H8C109.5C40—C39—Si2121.4 (3)
H8A—C8—H8C109.5C39—C40—C41121.5 (3)
H8B—C8—H8C109.5C39—C40—H40119.3
C2—C9—H9A109.5C41—C40—H40119.3
C2—C9—H9B109.5C36—C41—C40121.0 (3)
H9A—C9—H9B109.5C36—C41—H41119.5
C2—C9—H9C109.5C40—C41—H41119.5
H9A—C9—H9C109.5Si2—C42—H42A109.5
H9B—C9—H9C109.5Si2—C42—H42B109.5
C11—C10—C15117.6 (3)H42A—C42—H42B109.5
C11—C10—C1120.3 (3)Si2—C42—H42C109.5
C15—C10—C1122.0 (3)H42A—C42—H42C109.5
C10—C11—C12121.2 (3)H42B—C42—H42C109.5
C10—C11—H11119.4Si2—C43—H43A109.5
C12—C11—H11119.4Si2—C43—H43B109.5
C11—C12—C13121.4 (3)H43A—C43—H43B109.5
C11—C12—H12119.3Si2—C43—H43C109.5
C13—C12—H12119.3H43A—C43—H43C109.5
C14—C13—C12116.8 (3)H43B—C43—H43C109.5
C14—C13—Si1120.1 (3)Si2—C44—H44A109.5
C12—C13—Si1123.1 (3)Si2—C44—H44B109.5
C15—C14—C13122.8 (4)H44A—C44—H44B109.5
C15—C14—H14118.6Si2—C44—H44C109.5
C13—C14—H14118.6H44A—C44—H44C109.5
C14—C15—C10120.2 (4)H44B—C44—H44C109.5

Experimental details

Crystal data
Chemical formula[Ti2(C8H9O)(C18H25Si)2Cl3O]
Mr878.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.405 (2), 12.949 (3), 18.132 (4)
α, β, γ (°)104.19 (3), 101.13 (3), 108.96 (3)
V3)2344.2 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.21 × 0.18 × 0.13
Data collection
DiffractometerBruker P4
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.882, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
22084, 10372, 6422
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.188, 1.05
No. of reflections10372
No. of parameters494
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.39

Computer programs: XSCANS (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the National Natural Science Foundation of China (grant Nos. 21004026 and 21074043).

References

First citationBlais, M. S., Chien, J. C. W. & Rausch, M. D. (1998). Organometallics, 17, 3775–3783.  Web of Science CrossRef CAS Google Scholar
First citationBochmann, M. (2010). Organometallics, 29, 4711–4740.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiruelous, S., Cuenca, T., Flores, J. C., Gomez, R., Gomez-Sal, P. & Royo, P. (1993). Organometallics, 12, 944–948.  CSD CrossRef Web of Science Google Scholar
First citationLee, B. Y., Han, J. W., Seo, H., Lee, I. S. & Chung, Y. K. (2001). J. Organomet. Chem. 627, 233–238.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarkey, S. P., Schormann, M., Pape, T., Roesky, H. W., Noltemeyer, M., Herbst- Irmer, R. & Schmidt, H.-G. (2001). Inorg. Chem. 40, 2427–2429.  Web of Science CSD CrossRef CAS Google Scholar
First citationWilson, P. A., Wright, J. A., Oganesyan, V. S., Lancaster, S. J. & Bochmann, M. (2008). Organometallics, 27, 6371–6374.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, Q.-L., Qing, S., Li, G.-H., Gao, W., Mu, Y. & Feng, S. H. (2006). Polyhedron, 25, 2565–2570.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, Q.-L., Su, Q., Ye, L., Li, G. & Mu, Y. (2010). Dalton Trans. 40, 2525–2535.  Web of Science CSD CrossRef Google Scholar
First citationWu, Q.-L., Ye, L., Li, B. & Mu, Y. (2007). Acta Cryst. E63, m1194–m1195.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds