metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

fac-(2-Amido­ethyl-κ2C1,O)tri­chlorido(urea-κO)tin(IV)

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland, bDepartamento de Química, Instituto de Cie^ncias Exatas, Universidade Federal de Minas Gerais, Avenida Anto^nio Carlos, 6627 Pampulha, 31270-901 Belo Horizonte, MG, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 14 September 2011; accepted 19 September 2011; online 30 September 2011)

The Sn atom in the title compound, [Sn(C3H6NO)Cl3(CH4N2O)], is octa­hedrally coordinated within a CCl3NO donor set provided by a chelating amido­ethyl ligand (C and O), a urea-O atom and three facially arranged Cl atoms. Systematic variations in the Sn—Cl bond distances are correlated with the relative trans influence exerted by the C and carbonyl-O atoms. The three-dimensional crystal packing is stabilized by N—H⋯O and N—H⋯Cl hydrogen bonds.

Related literature

For background and for related Sn[OCH(NH2)CH2CH2]Cl3L structures, see: Howie et al. (2011[Howie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Welte, W. B. (2011). Z. Kristallogr. doi.10.1524/zkri.2011.1440.]); Wardell et al. (2010[Wardell, S. M. S. V., Harrison, W. T. A., Tiekink, E. R. T., de Lima, G. M. & Wardell, J. L. (2010). Acta Cryst. E66, m312-m313.]); Tiekink et al. (2006[Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, m971-m973.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C3H6NO)Cl3(CH4N2O)]

  • Mr = 357.19

  • Orthorhombic, P b c a

  • a = 11.1223 (2) Å

  • b = 12.0180 (3) Å

  • c = 16.0461 (5) Å

  • V = 2144.85 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.10 mm−1

  • T = 120 K

  • 0.14 × 0.08 × 0.03 mm

Data collection
  • Bruker–Nonius APEXII CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.738, Tmax = 0.913

  • 12333 measured reflections

  • 2451 independent reflections

  • 2242 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.051

  • S = 1.10

  • 2451 reflections

  • 136 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Sn—Cl1 2.3919 (6)
Sn—Cl2 2.4144 (6)
Sn—Cl3 2.4690 (6)
Sn—O1 2.2129 (17)
Sn—O2 2.1850 (18)
Sn—C1 2.135 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯Cl3i 0.81 (3) 2.60 (3) 3.366 (3) 159 (3)
N1—H2n⋯Cl1ii 0.78 (3) 2.76 (3) 3.519 (3) 164 (3)
N2—H3n⋯Cl3iii 0.90 (3) 2.55 (3) 3.435 (2) 170 (3)
N2—H4n⋯Cl1iv 0.89 (3) 2.59 (3) 3.432 (2) 160 (3)
N2—H4n⋯O1iv 0.89 (3) 2.66 (3) 3.219 (3) 122 (2)
N3—H5n⋯Cl1iv 0.86 (3) 2.85 (3) 3.584 (3) 145 (3)
N3—H5n⋯Cl3v 0.86 (3) 2.85 (3) 3.469 (2) 131 (2)
N3—H6n⋯Cl2 0.80 (3) 2.54 (3) 3.272 (3) 152 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was investigated as part of a wider study of 2-amidoethyl-tin compounds (Tiekink et al., 2006; Wardell et al., 2010, Howie et al., 2011, and references therein). The title compound was obtained by a ligand exchange reaction between (H2NCOCH2CH2-C,O)(EtCONH2-O)SnCl3, obtained as previously reported (Howie et al., 2011), and urea.

The Sn atom in (I), Fig. 1, is octahedrally coordinated within a CCl3O2 provided by the C,O donors derived from a chelating amidoethyl ligand, a urea-O atom and three Cl atoms, the latter are arranged facially. There is significant disparity in the Sn—Cl bond distances, Table 1. As observed in the related Sn[OCH(NH2)CH2CH2]Cl3L structures where L = 3-chloropropionamide (Tiekink et al. (2006) and L = water (co-crystallized as a 1:2 18-crown-6 complex) (Wardell et al., 2010), these can be explained in terms to the relative trans influence exerted by the remaining donor atoms. Thus, the Cl1 atom, trans to a C atom, forms a significantly shorter Sn—Cl bond than the other Cl atoms. The elongation of the Sn—Cl3 bond distance with respect to the Sn—O2 distance is related to the stronger coordinating ability of the urea-O atom. Distortions from the ideal octahedral geometry are not great with the maximum deviation found in the C1—Sn—Cl1 angle of 162.84 (7) °.

As anticipated with three amino residues in the structure, there are significant hydrogen bonding interactions operating in the crystal structure of (I), Table 2. While all amino-H participate in hydrogen bonding interactions, Table 2, two of these atoms, i.e. H4n and H5n, are bifurcated and so the hydrogen bonding distances are relatively long. The hydrogen bonding scheme leads to a three-dimensional architecture, Fig. 2.

Related literature top

For background and for related Sn[OCH(NH2)CH2CH2]Cl3L structures, see: Howie et al. (2011); Wardell et al. (2010); Tiekink et al. (2006).

Experimental top

A solution of the complex, (H2NCOCH2CH2-C,O)(EtCONH2-O)SnCl3, isolated from a reaction mixture containing SnCl2, HCl and H2CCHCONH2 in Et2O (Howie et al., 2011) (0.74 g, 2 mmol) and urea (10 mmol) in ethanol (20 ml) was heated at 313 K for 30 min. Crystals of (H2NCOCH2CH2-C,O)(H2NCONH2-O)SnCl3 (I) were harvested from the reaction solution maintained at room temperature, M.pt. 469–471 K. The sample used in the structure determination was grown from its acetone solution. (IR, cm-1): 3300–2500 (v. br), 1698 (s, br), 1590, 1574, 1486, 1427, 1411, 1303, 1263, 1139, 1087, 1102, 1087, 1074, 1004, 916, 898, 850, 808, 750, 719, 667, 652, 544, 496, 416.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and their positions refined with Uiso(H) = 1.2Ueq(N).

Structure description top

The title compound, (I), was investigated as part of a wider study of 2-amidoethyl-tin compounds (Tiekink et al., 2006; Wardell et al., 2010, Howie et al., 2011, and references therein). The title compound was obtained by a ligand exchange reaction between (H2NCOCH2CH2-C,O)(EtCONH2-O)SnCl3, obtained as previously reported (Howie et al., 2011), and urea.

The Sn atom in (I), Fig. 1, is octahedrally coordinated within a CCl3O2 provided by the C,O donors derived from a chelating amidoethyl ligand, a urea-O atom and three Cl atoms, the latter are arranged facially. There is significant disparity in the Sn—Cl bond distances, Table 1. As observed in the related Sn[OCH(NH2)CH2CH2]Cl3L structures where L = 3-chloropropionamide (Tiekink et al. (2006) and L = water (co-crystallized as a 1:2 18-crown-6 complex) (Wardell et al., 2010), these can be explained in terms to the relative trans influence exerted by the remaining donor atoms. Thus, the Cl1 atom, trans to a C atom, forms a significantly shorter Sn—Cl bond than the other Cl atoms. The elongation of the Sn—Cl3 bond distance with respect to the Sn—O2 distance is related to the stronger coordinating ability of the urea-O atom. Distortions from the ideal octahedral geometry are not great with the maximum deviation found in the C1—Sn—Cl1 angle of 162.84 (7) °.

As anticipated with three amino residues in the structure, there are significant hydrogen bonding interactions operating in the crystal structure of (I), Table 2. While all amino-H participate in hydrogen bonding interactions, Table 2, two of these atoms, i.e. H4n and H5n, are bifurcated and so the hydrogen bonding distances are relatively long. The hydrogen bonding scheme leads to a three-dimensional architecture, Fig. 2.

For background and for related Sn[OCH(NH2)CH2CH2]Cl3L structures, see: Howie et al. (2011); Wardell et al. (2010); Tiekink et al. (2006).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of (I). The The N—H···O and N—H···Cl hydrogen bonds are shown as blue and orange dashed lines, respectively.
fac-(2-Amidoethyl-κ2C1,O)trichlorido- (urea-κO)tin(IV) top
Crystal data top
[Sn(C3H6NO)Cl3(CH4N2O)]F(000) = 1376
Mr = 357.19Dx = 2.212 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2702 reflections
a = 11.1223 (2) Åθ = 2.9–27.5°
b = 12.0180 (3) ŵ = 3.10 mm1
c = 16.0461 (5) ÅT = 120 K
V = 2144.85 (9) Å3Plate, colourless
Z = 80.14 × 0.08 × 0.03 mm
Data collection top
Bruker–Nonius APEXII CCD camera on κ-goniostat
diffractometer
2451 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2242 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.039
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
φ & ω scansh = 1314
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1215
Tmin = 0.738, Tmax = 0.913l = 1920
12333 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.P)2 + 3.4389P]
where P = (Fo2 + 2Fc2)/3
2451 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Sn(C3H6NO)Cl3(CH4N2O)]V = 2144.85 (9) Å3
Mr = 357.19Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.1223 (2) ŵ = 3.10 mm1
b = 12.0180 (3) ÅT = 120 K
c = 16.0461 (5) Å0.14 × 0.08 × 0.03 mm
Data collection top
Bruker–Nonius APEXII CCD camera on κ-goniostat
diffractometer
2451 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2242 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.913Rint = 0.039
12333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.42 e Å3
2451 reflectionsΔρmin = 0.41 e Å3
136 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.536685 (14)0.238549 (14)0.600556 (10)0.01156 (6)
Cl10.40499 (6)0.32834 (5)0.69733 (4)0.02118 (14)
Cl20.61521 (5)0.11894 (5)0.70850 (4)0.01937 (14)
Cl30.69075 (6)0.38320 (5)0.62367 (4)0.01866 (14)
O10.44877 (15)0.34588 (14)0.50652 (10)0.0147 (4)
O20.38496 (16)0.12814 (16)0.57517 (11)0.0202 (4)
N10.3982 (2)0.3491 (2)0.37174 (14)0.0194 (5)
H1N0.360 (3)0.405 (3)0.378 (2)0.023*
H2N0.403 (3)0.321 (3)0.328 (2)0.023*
N20.2038 (2)0.0487 (2)0.58401 (15)0.0177 (5)
H3N0.191 (3)0.069 (2)0.531 (2)0.021*
H4N0.160 (3)0.006 (3)0.6044 (18)0.021*
N30.3448 (2)0.01609 (19)0.68601 (14)0.0182 (5)
H5N0.296 (3)0.026 (2)0.713 (2)0.022*
H6N0.411 (3)0.024 (3)0.7044 (19)0.022*
C10.6109 (2)0.1691 (2)0.48944 (15)0.0166 (5)
H1A0.69180.20040.47890.020*
H1B0.61830.08730.49490.020*
C20.5261 (2)0.1983 (2)0.41798 (16)0.0173 (5)
H2A0.57360.20770.36630.021*
H2B0.46940.13590.40920.021*
C30.4551 (2)0.3040 (2)0.43435 (15)0.0141 (5)
C40.3135 (2)0.0653 (2)0.61521 (15)0.0148 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01312 (11)0.01191 (10)0.00966 (10)0.00196 (6)0.00039 (6)0.00036 (6)
Cl10.0263 (3)0.0240 (3)0.0133 (3)0.0119 (3)0.0043 (3)0.0018 (2)
Cl20.0177 (3)0.0225 (3)0.0179 (3)0.0042 (2)0.0017 (2)0.0074 (2)
Cl30.0221 (3)0.0154 (3)0.0185 (3)0.0029 (2)0.0031 (2)0.0013 (2)
O10.0177 (9)0.0146 (9)0.0119 (8)0.0039 (7)0.0003 (7)0.0000 (7)
O20.0207 (9)0.0254 (10)0.0145 (9)0.0095 (8)0.0003 (7)0.0025 (7)
N10.0258 (12)0.0216 (13)0.0107 (10)0.0070 (10)0.0013 (9)0.0022 (9)
N20.0149 (11)0.0195 (12)0.0187 (11)0.0038 (9)0.0006 (9)0.0023 (9)
N30.0162 (11)0.0210 (12)0.0175 (11)0.0018 (9)0.0016 (9)0.0041 (9)
C10.0182 (12)0.0183 (13)0.0132 (12)0.0035 (10)0.0031 (10)0.0027 (9)
C20.0227 (13)0.0172 (13)0.0120 (11)0.0022 (11)0.0008 (10)0.0027 (10)
C30.0121 (11)0.0155 (13)0.0148 (12)0.0042 (9)0.0029 (9)0.0018 (10)
C40.0170 (12)0.0125 (12)0.0148 (12)0.0033 (10)0.0032 (9)0.0018 (9)
Geometric parameters (Å, º) top
Sn—Cl12.3919 (6)N2—H3N0.90 (3)
Sn—Cl22.4144 (6)N2—H4N0.89 (3)
Sn—Cl32.4690 (6)N3—C41.327 (3)
Sn—O12.2129 (17)N3—H5N0.86 (3)
Sn—O22.1850 (18)N3—H6N0.80 (3)
Sn—C12.135 (2)C1—C21.526 (3)
O1—C31.265 (3)C1—H1A0.9900
O2—C41.271 (3)C1—H1B0.9900
N1—C31.305 (3)C2—C31.519 (4)
N1—H1N0.81 (3)C2—H2A0.9900
N1—H2N0.78 (3)C2—H2B0.9900
N2—C41.334 (3)
C1—Sn—O284.59 (9)H3N—N2—H4N117 (3)
C1—Sn—O180.18 (8)C4—N3—H5N121 (2)
O2—Sn—O183.43 (7)C4—N3—H6N120 (2)
C1—Sn—Cl1162.84 (7)H5N—N3—H6N118 (3)
O2—Sn—Cl185.53 (5)C2—C1—Sn107.38 (16)
O1—Sn—Cl184.79 (5)C2—C1—H1A110.2
C1—Sn—Cl2103.09 (7)Sn—C1—H1A110.2
O2—Sn—Cl292.95 (5)C2—C1—H1B110.2
O1—Sn—Cl2174.92 (5)Sn—C1—H1B110.2
Cl1—Sn—Cl291.39 (2)H1A—C1—H1B108.5
C1—Sn—Cl397.60 (7)C3—C2—C1112.6 (2)
O2—Sn—Cl3172.57 (5)C3—C2—H2A109.1
O1—Sn—Cl389.92 (5)C1—C2—H2A109.1
Cl1—Sn—Cl390.56 (2)C3—C2—H2B109.1
Cl2—Sn—Cl393.46 (2)C1—C2—H2B109.1
C3—O1—Sn111.56 (15)H2A—C2—H2B107.8
C4—O2—Sn138.58 (16)O1—C3—N1120.8 (2)
C3—N1—H1N121 (2)O1—C3—C2121.4 (2)
C3—N1—H2N119 (2)N1—C3—C2117.8 (2)
H1N—N1—H2N120 (3)O2—C4—N3122.2 (2)
C4—N2—H3N117.7 (19)O2—C4—N2118.1 (2)
C4—N2—H4N119 (2)N3—C4—N2119.7 (2)
C1—Sn—O1—C316.38 (17)O1—Sn—C1—C222.51 (17)
O2—Sn—O1—C369.23 (16)Cl1—Sn—C1—C26.7 (4)
Cl1—Sn—O1—C3155.32 (16)Cl2—Sn—C1—C2153.52 (16)
Cl2—Sn—O1—C3114.0 (5)Cl3—Sn—C1—C2111.11 (17)
Cl3—Sn—O1—C3114.11 (15)Sn—C1—C2—C326.7 (3)
C1—Sn—O2—C4139.7 (3)Sn—O1—C3—N1173.13 (19)
O1—Sn—O2—C4139.6 (3)Sn—O1—C3—C25.3 (3)
Cl1—Sn—O2—C454.3 (3)C1—C2—C3—O114.9 (3)
Cl2—Sn—O2—C436.8 (3)C1—C2—C3—N1166.6 (2)
Cl3—Sn—O2—C4112.8 (4)Sn—O2—C4—N328.6 (4)
O2—Sn—C1—C261.74 (17)Sn—O2—C4—N2151.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···Cl3i0.81 (3)2.60 (3)3.366 (3)159 (3)
N1—H2n···Cl1ii0.78 (3)2.76 (3)3.519 (3)164 (3)
N2—H3n···Cl3iii0.90 (3)2.55 (3)3.435 (2)170 (3)
N2—H4n···Cl1iv0.89 (3)2.59 (3)3.432 (2)160 (3)
N2—H4n···O1iv0.89 (3)2.66 (3)3.219 (3)122 (2)
N3—H5n···Cl1iv0.86 (3)2.85 (3)3.584 (3)145 (3)
N3—H5n···Cl3v0.86 (3)2.85 (3)3.469 (2)131 (2)
N3—H6n···Cl20.80 (3)2.54 (3)3.272 (3)152 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1; (iv) x+1/2, y1/2, z; (v) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Sn(C3H6NO)Cl3(CH4N2O)]
Mr357.19
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)11.1223 (2), 12.0180 (3), 16.0461 (5)
V3)2144.85 (9)
Z8
Radiation typeMo Kα
µ (mm1)3.10
Crystal size (mm)0.14 × 0.08 × 0.03
Data collection
DiffractometerBruker–Nonius APEXII CCD camera on κ-goniostat
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.738, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
12333, 2451, 2242
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.051, 1.10
No. of reflections2451
No. of parameters136
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.41

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn—Cl12.3919 (6)Sn—O12.2129 (17)
Sn—Cl22.4144 (6)Sn—O22.1850 (18)
Sn—Cl32.4690 (6)Sn—C12.135 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···Cl3i0.81 (3)2.60 (3)3.366 (3)159 (3)
N1—H2n···Cl1ii0.78 (3)2.76 (3)3.519 (3)164 (3)
N2—H3n···Cl3iii0.90 (3)2.55 (3)3.435 (2)170 (3)
N2—H4n···Cl1iv0.89 (3)2.59 (3)3.432 (2)160 (3)
N2—H4n···O1iv0.89 (3)2.66 (3)3.219 (3)122 (2)
N3—H5n···Cl1iv0.86 (3)2.85 (3)3.584 (3)145 (3)
N3—H5n···Cl3v0.86 (3)2.85 (3)3.469 (2)131 (2)
N3—H6n···Cl20.80 (3)2.54 (3)3.272 (3)152 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1; (iv) x+1/2, y1/2, z; (v) x+1, y1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHowie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Welte, W. B. (2011). Z. Kristallogr. doi.10.1524/zkri.2011.1440.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, m971–m973.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWardell, S. M. S. V., Harrison, W. T. A., Tiekink, E. R. T., de Lima, G. M. & Wardell, J. L. (2010). Acta Cryst. E66, m312–m313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds