metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Di­chloridobis{[4-(di­methyl­amino)­phen­yl]di­phenyl­phosphane-κP}platinum(II) ethyl acetate monosolvate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 9 August 2011; accepted 1 September 2011; online 14 September 2011)

The title compound, [PtCl2(C20H20P)2]·C4H8O2, crystallizes with the Pt atom in a distorted cis-square-planar geometry. The Pt—P bond lengths are 2.2490 (19) and 2.253 (2) Å, and the Pt—Cl bond lengths are 2.344 (2) and 2.3475 (18) Å. Some weak C—H⋯Cl and C—H⋯O inter­actions involving the solvate mol­ecule were observed.

Related literature

For a review on related compounds, see: Spessard & Miessler (1996[Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131-135. Upper Saddle River, New Jersey, USA: Prentice Hall.]). For the synthesis of the starting materials, see: Drew & Doyle (1990[Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346-349.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C20H20P)2]·C4H8O2

  • Mr = 964.76

  • Monoclinic, P 21 /n

  • a = 11.8148 (7) Å

  • b = 19.1072 (11) Å

  • c = 18.5668 (13) Å

  • β = 104.732 (4)°

  • V = 4053.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.71 mm−1

  • T = 100 K

  • 0.14 × 0.08 × 0.04 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.625, Tmax = 0.866

  • 47227 measured reflections

  • 10080 independent reflections

  • 6044 reflections with I > 2σ(I)

  • Rint = 0.143

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.144

  • S = 1.01

  • 10080 reflections

  • 484 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.53 e Å−3

  • Δρmin = −1.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯Cl2i 0.98 2.79 3.601 (10) 141
C64—H64⋯O1ii 0.95 2.39 3.317 (11) 166
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans–[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound were obtained.

The PtCl2(L)2 (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5–cyclooctadiene (COD) from [PtCl2(COD)]. The title compound, cis–{PtCl2[PPh2(4–Me2NC6H4)]2}, crystallizes in the monoclinic space group P21/n, with each pair of equivalent ligands in a mutually cis–orientation. The geometry is slightly distorted square planar and the Pt atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P1—Pt—P2 = 98.43 (7)° and Cl1—Pt—Cl2 = 87.13 (7)°. The Cl1—Pt—P angles are 175.95 (7)° and 84.93 (7)° respectively for P1 and P2. Some weak intermolecular interactions were observed and are reported in Table 1.

The title compound compares well with other closely related Pt(II) complexes from the literature containing two chloro and two tertiary phosphine ligands in a cis–geometry. The title compound, having Pt—Cl bond lengths of 2.344 (2)Å and 2.3475 (18)Å and Pd—P bond lengths of 2.2490 (19)Å and 2.253 (2)Å, fits well into the typical range for complexes of this kind. It is notable that the title compound crystallized as a solvated complex, as these type of Pt(II) complexes tend to crystallize as solvates.

Related literature top

For a review on related compounds, see: Spessard & Miessler (1996). For the synthesis of the starting materials, see: Drew & Doyle (1990).

Experimental top

Dichloro(1,5–cyclooctadiene)platinum(II), PtCl2(COD), was prepared according to the literature procedure of Drew & Doyle (1990). A solution of diphenyl(4–dimethylaminophenyl)phosphine (0.2 mmol) in ethyl acetate (2.0 cm3) was added to a solution of PdCl2(COD) (0.1 mmol) in dichloromethane (3.0 cm3). Recrystallization from ethyl acetate gave light yellow crystals of the title compound.

Refinement top

The aromatic, methylene, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95Å–0.98Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density.

The highest residual electron density peak of 1.53 e×Å3 is 1.14Å from Pt and the deepest hole of -1.87 e×Å3 is 0.87Å from Pt representing no physical meaning.

Structure description top

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans–[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound were obtained.

The PtCl2(L)2 (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5–cyclooctadiene (COD) from [PtCl2(COD)]. The title compound, cis–{PtCl2[PPh2(4–Me2NC6H4)]2}, crystallizes in the monoclinic space group P21/n, with each pair of equivalent ligands in a mutually cis–orientation. The geometry is slightly distorted square planar and the Pt atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P1—Pt—P2 = 98.43 (7)° and Cl1—Pt—Cl2 = 87.13 (7)°. The Cl1—Pt—P angles are 175.95 (7)° and 84.93 (7)° respectively for P1 and P2. Some weak intermolecular interactions were observed and are reported in Table 1.

The title compound compares well with other closely related Pt(II) complexes from the literature containing two chloro and two tertiary phosphine ligands in a cis–geometry. The title compound, having Pt—Cl bond lengths of 2.344 (2)Å and 2.3475 (18)Å and Pd—P bond lengths of 2.2490 (19)Å and 2.253 (2)Å, fits well into the typical range for complexes of this kind. It is notable that the title compound crystallized as a solvated complex, as these type of Pt(II) complexes tend to crystallize as solvates.

For a review on related compounds, see: Spessard & Miessler (1996). For the synthesis of the starting materials, see: Drew & Doyle (1990).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Some lables have been omitted for clarity, all rings have been numbered in the same, systematic manner.
cis-Dichloridobis{[4-(dimethylamino)phenyl]diphenylphosphane- κP}platinum(II) ethyl acetate monosolvate top
Crystal data top
[PtCl2(C20H20P)2]·C4H8O2F(000) = 1936
Mr = 964.76Dx = 1.581 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3702 reflections
a = 11.8148 (7) Åθ = 2.5–23.6°
b = 19.1072 (11) ŵ = 3.71 mm1
c = 18.5668 (13) ÅT = 100 K
β = 104.732 (4)°Prism, light yellow
V = 4053.6 (4) Å30.14 × 0.08 × 0.04 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
6044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.143
φ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.625, Tmax = 0.866k = 2523
47227 measured reflectionsl = 2424
10080 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0541P)2]
where P = (Fo2 + 2Fc2)/3
10080 reflections(Δ/σ)max = 0.001
484 parametersΔρmax = 1.53 e Å3
6 restraintsΔρmin = 1.87 e Å3
Crystal data top
[PtCl2(C20H20P)2]·C4H8O2V = 4053.6 (4) Å3
Mr = 964.76Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8148 (7) ŵ = 3.71 mm1
b = 19.1072 (11) ÅT = 100 K
c = 18.5668 (13) Å0.14 × 0.08 × 0.04 mm
β = 104.732 (4)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
10080 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
6044 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.866Rint = 0.143
47227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0586 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.01Δρmax = 1.53 e Å3
10080 reflectionsΔρmin = 1.87 e Å3
484 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt0.41608 (2)0.272508 (17)0.144139 (17)0.01765 (10)
P10.24750 (16)0.21421 (11)0.09926 (11)0.0182 (5)
P20.52011 (15)0.22582 (12)0.06977 (11)0.0189 (4)
Cl10.58930 (15)0.33308 (11)0.19929 (11)0.0232 (5)
Cl20.32651 (16)0.33794 (12)0.22107 (12)0.0283 (5)
C110.2574 (6)0.1215 (5)0.0909 (4)0.0226 (19)
C120.1588 (6)0.0804 (4)0.0589 (4)0.0224 (19)
H120.08760.10310.0350.027*
C130.1616 (6)0.0082 (4)0.0610 (4)0.0202 (18)
H130.0940.01750.03640.024*
C140.2645 (6)0.0284 (4)0.0994 (4)0.0183 (17)
C150.3618 (6)0.0134 (4)0.1327 (4)0.0176 (17)
H150.4330.00870.15770.021*
C160.3566 (6)0.0842 (5)0.1301 (4)0.0209 (18)
H160.42330.10990.1560.025*
C10.1571 (6)0.1382 (5)0.0803 (5)0.0250 (19)
H1A0.10380.12230.10960.038*
H1B0.17340.18820.08920.038*
H1C0.12080.13050.02720.038*
C20.3666 (7)0.1350 (5)0.1502 (5)0.027 (2)
H2A0.43880.11510.14220.04*
H2B0.3630.1850.13820.04*
H2C0.36550.12870.20240.04*
N10.2652 (5)0.0993 (4)0.1019 (4)0.0229 (16)
C210.1454 (6)0.2173 (4)0.1589 (4)0.0185 (17)
C220.0286 (6)0.2383 (4)0.1329 (4)0.0229 (19)
H220.00010.25490.08340.028*
C230.0448 (7)0.2344 (5)0.1806 (5)0.028 (2)
H230.12390.24920.16390.034*
C240.0035 (7)0.2094 (5)0.2519 (5)0.027 (2)
H240.05490.20530.28360.033*
C250.1119 (7)0.1903 (5)0.2774 (5)0.026 (2)
H250.14090.17390.3270.031*
C260.1852 (6)0.1950 (4)0.2310 (4)0.0226 (19)
H260.26520.18240.24920.027*
C310.1652 (6)0.2525 (4)0.0108 (4)0.0207 (18)
C320.1250 (6)0.2170 (4)0.0550 (4)0.0217 (18)
H320.13990.16830.0570.026*
C330.0625 (7)0.2515 (5)0.1188 (5)0.026 (2)
H330.03640.22640.16420.031*
C340.0387 (7)0.3208 (5)0.1163 (5)0.034 (2)
H340.00580.34410.15950.041*
C350.0799 (7)0.3575 (5)0.0503 (5)0.032 (2)
H350.06420.40610.04880.038*
C360.1430 (7)0.3243 (5)0.0127 (5)0.031 (2)
H360.17150.34990.05750.037*
C410.6309 (6)0.1657 (4)0.1169 (4)0.0175 (17)
C420.6565 (6)0.1574 (4)0.1945 (4)0.0206 (18)
H420.61520.18490.2220.025*
C430.7400 (6)0.1105 (4)0.2322 (5)0.0224 (19)
H430.75270.10480.28440.027*
C440.8064 (6)0.0711 (4)0.1933 (5)0.0222 (19)
C450.7817 (6)0.0793 (5)0.1154 (4)0.0231 (19)
H450.82460.05290.08790.028*
C460.6956 (6)0.1252 (4)0.0781 (4)0.0199 (18)
H460.68000.12950.02560.024*
N20.8877 (5)0.0230 (4)0.2294 (4)0.0260 (17)
C30.9274 (7)0.0223 (5)0.3106 (5)0.029 (2)
H3A0.96570.06690.32810.044*
H3B0.98310.01610.32660.044*
H3C0.86010.01560.33170.044*
C40.9620 (7)0.0137 (5)0.1886 (5)0.032 (2)
H4A0.91240.0360.14420.048*
H4B1.00850.04950.22090.048*
H4C1.01440.020.17380.048*
C510.4439 (6)0.1813 (5)0.0155 (4)0.0204 (18)
C520.4352 (6)0.1089 (5)0.0196 (4)0.0226 (19)
H520.47350.08140.02210.027*
C530.3707 (6)0.0758 (5)0.0845 (5)0.027 (2)
H530.3650.02630.08690.033*
C540.3155 (6)0.1164 (5)0.1449 (5)0.030 (2)
H540.27010.09440.18860.037*
C550.3254 (6)0.1879 (5)0.1425 (5)0.0240 (19)
H550.28810.21520.18470.029*
C560.3899 (6)0.2203 (5)0.0782 (4)0.0222 (18)
H560.39740.26980.0770.027*
C610.5940 (6)0.2958 (4)0.0322 (4)0.0171 (17)
C620.7032 (6)0.2860 (4)0.0172 (4)0.0210 (19)
H620.74090.24180.02680.025*
C630.7571 (7)0.3399 (5)0.0116 (5)0.033 (2)
H630.83050.33240.02250.04*
C640.7032 (8)0.4048 (5)0.0245 (5)0.034 (2)
H640.74070.44220.0430.041*
C650.5950 (8)0.4152 (5)0.0103 (5)0.036 (2)
H650.55830.45970.01950.043*
C660.5398 (7)0.3613 (5)0.0173 (5)0.027 (2)
H660.46490.36880.02610.033*
O10.3757 (5)0.0196 (4)0.4216 (3)0.0376 (16)
O20.4524 (5)0.0288 (3)0.3231 (3)0.0317 (15)
C50.2629 (7)0.0185 (5)0.3013 (5)0.038 (2)
H5A0.2120.04180.32820.057*
H5B0.21970.01950.27080.057*
H5C0.28820.05250.26910.057*
C60.3671 (7)0.0107 (5)0.3557 (5)0.026 (2)
C70.5553 (7)0.0609 (5)0.3705 (5)0.035 (2)
H7A0.53410.10490.39210.042*
H7B0.59250.0290.41170.042*
C80.6377 (7)0.0758 (5)0.3222 (6)0.040 (3)
H8A0.60010.10790.28210.06*
H8B0.70950.09710.35250.06*
H8C0.65690.03190.30070.06*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.01160 (13)0.02100 (19)0.01731 (15)0.00091 (14)0.00192 (10)0.00105 (16)
P10.0129 (9)0.0214 (13)0.0183 (10)0.0001 (8)0.0004 (8)0.0029 (9)
P20.0118 (8)0.0226 (12)0.0191 (10)0.0001 (9)0.0016 (7)0.0012 (10)
Cl10.0141 (8)0.0287 (13)0.0231 (10)0.0062 (8)0.0016 (7)0.0039 (9)
Cl20.0202 (9)0.0334 (14)0.0301 (11)0.0041 (9)0.0044 (8)0.0120 (10)
C110.016 (4)0.026 (5)0.024 (4)0.003 (3)0.003 (3)0.002 (4)
C120.012 (4)0.026 (5)0.026 (4)0.007 (3)0.001 (3)0.000 (4)
C130.017 (4)0.021 (5)0.021 (4)0.003 (3)0.001 (3)0.003 (4)
C140.019 (4)0.015 (5)0.022 (4)0.000 (3)0.005 (3)0.000 (4)
C150.010 (3)0.018 (5)0.020 (4)0.001 (3)0.005 (3)0.003 (3)
C160.016 (4)0.030 (5)0.017 (4)0.002 (3)0.003 (3)0.001 (4)
C10.019 (4)0.028 (5)0.027 (5)0.003 (4)0.004 (3)0.002 (4)
C20.021 (4)0.021 (5)0.035 (5)0.003 (4)0.000 (4)0.001 (4)
N10.015 (3)0.023 (4)0.028 (4)0.003 (3)0.001 (3)0.002 (3)
C210.014 (3)0.013 (5)0.026 (4)0.001 (3)0.001 (3)0.001 (4)
C220.015 (3)0.029 (6)0.021 (4)0.002 (3)0.002 (3)0.001 (4)
C230.020 (4)0.035 (6)0.027 (5)0.003 (4)0.003 (3)0.004 (4)
C240.024 (4)0.027 (6)0.034 (5)0.008 (4)0.012 (4)0.003 (4)
C250.031 (4)0.020 (5)0.028 (5)0.001 (4)0.009 (4)0.001 (4)
C260.016 (4)0.025 (5)0.024 (4)0.002 (3)0.001 (3)0.002 (4)
C310.016 (4)0.026 (5)0.017 (4)0.003 (3)0.000 (3)0.007 (3)
C320.020 (4)0.019 (5)0.027 (4)0.008 (3)0.007 (3)0.003 (4)
C330.023 (4)0.027 (5)0.024 (4)0.005 (3)0.001 (3)0.000 (4)
C340.028 (4)0.042 (7)0.025 (5)0.002 (4)0.008 (4)0.006 (5)
C350.034 (5)0.030 (6)0.027 (5)0.008 (4)0.003 (4)0.002 (4)
C360.025 (4)0.037 (6)0.026 (5)0.001 (4)0.001 (4)0.001 (4)
C410.011 (3)0.021 (5)0.020 (4)0.005 (3)0.004 (3)0.001 (3)
C420.009 (3)0.024 (5)0.028 (4)0.004 (3)0.003 (3)0.002 (4)
C430.007 (3)0.031 (5)0.027 (4)0.001 (3)0.002 (3)0.002 (4)
C440.007 (3)0.023 (5)0.032 (4)0.002 (3)0.004 (3)0.003 (4)
C450.020 (4)0.025 (5)0.023 (4)0.000 (3)0.003 (3)0.003 (4)
C460.014 (3)0.028 (5)0.015 (4)0.000 (3)0.002 (3)0.003 (4)
N20.016 (3)0.028 (5)0.030 (4)0.001 (3)0.001 (3)0.004 (3)
C30.030 (4)0.030 (6)0.024 (5)0.002 (4)0.002 (4)0.005 (4)
C40.020 (4)0.036 (6)0.036 (5)0.014 (4)0.003 (4)0.003 (5)
C510.015 (4)0.026 (5)0.019 (4)0.004 (3)0.001 (3)0.001 (4)
C520.016 (4)0.028 (6)0.020 (4)0.001 (3)0.002 (3)0.001 (4)
C530.016 (4)0.034 (6)0.030 (5)0.010 (4)0.003 (4)0.005 (4)
C540.014 (4)0.055 (7)0.018 (4)0.005 (4)0.002 (3)0.009 (4)
C550.022 (4)0.022 (5)0.025 (4)0.001 (4)0.001 (3)0.001 (4)
C560.016 (3)0.024 (5)0.022 (4)0.003 (3)0.002 (3)0.002 (4)
C610.018 (4)0.021 (5)0.010 (3)0.001 (3)0.001 (3)0.004 (3)
C620.017 (4)0.023 (5)0.019 (4)0.001 (3)0.004 (3)0.002 (4)
C630.020 (4)0.054 (7)0.024 (5)0.007 (4)0.003 (4)0.001 (5)
C640.042 (5)0.034 (6)0.023 (5)0.016 (5)0.003 (4)0.003 (4)
C650.041 (5)0.034 (6)0.031 (5)0.001 (5)0.007 (4)0.000 (5)
C660.025 (4)0.033 (6)0.022 (4)0.001 (4)0.001 (4)0.004 (4)
O10.040 (4)0.046 (5)0.028 (4)0.008 (3)0.011 (3)0.005 (3)
O20.023 (3)0.042 (4)0.030 (3)0.008 (3)0.007 (3)0.007 (3)
C50.037 (5)0.036 (7)0.040 (6)0.005 (4)0.007 (5)0.004 (5)
C60.030 (4)0.021 (5)0.028 (5)0.005 (4)0.010 (4)0.001 (4)
C70.033 (5)0.047 (7)0.016 (4)0.015 (4)0.011 (4)0.002 (4)
C80.027 (5)0.042 (7)0.051 (6)0.011 (4)0.010 (5)0.004 (5)
Geometric parameters (Å, º) top
Pt—P12.2490 (19)C42—C431.384 (10)
Pt—P22.253 (2)C42—H420.95
Pt—Cl22.344 (2)C43—C441.410 (11)
Pt—Cl12.3475 (18)C43—H430.95
P1—C111.785 (9)C44—N21.374 (10)
P1—C211.834 (8)C44—C451.411 (11)
P1—C311.835 (8)C45—C461.388 (10)
P2—C411.793 (8)C45—H450.95
P2—C511.821 (8)C46—H460.95
P2—C611.830 (8)N2—C31.460 (10)
C11—C121.406 (11)N2—C41.475 (10)
C11—C161.406 (10)C3—H3A0.98
C12—C131.380 (11)C3—H3B0.98
C12—H120.95C3—H3C0.98
C13—C141.426 (10)C4—H4A0.98
C13—H130.95C4—H4B0.98
C14—N11.354 (10)C4—H4C0.98
C14—C151.406 (10)C51—C521.388 (12)
C15—C161.355 (11)C51—C561.392 (11)
C15—H150.95C52—C531.402 (11)
C16—H160.95C52—H520.95
C1—N11.444 (9)C53—C541.382 (12)
C1—H1A0.98C53—H530.95
C1—H1B0.98C54—C551.372 (12)
C1—H1C0.98C54—H540.95
C2—N11.469 (10)C55—C561.388 (10)
C2—H2A0.98C55—H550.95
C2—H2B0.98C56—H560.95
C2—H2C0.98C61—C621.400 (10)
C21—C261.369 (11)C61—C661.401 (11)
C21—C221.400 (10)C62—C631.388 (12)
C22—C231.390 (11)C62—H620.95
C22—H220.95C63—C641.385 (13)
C23—C241.374 (12)C63—H630.95
C23—H230.95C64—C651.384 (12)
C24—C251.375 (11)C64—H640.95
C24—H240.95C65—C661.385 (12)
C25—C261.372 (11)C65—H650.95
C25—H250.95C66—H660.95
C26—H260.95O1—C61.215 (10)
C31—C321.371 (11)O2—C61.346 (9)
C31—C361.399 (12)O2—C71.444 (9)
C32—C331.392 (11)C5—C61.489 (12)
C32—H320.95C5—H5A0.98
C33—C341.358 (13)C5—H5B0.98
C33—H330.95C5—H5C0.98
C34—C351.387 (12)C7—C81.509 (12)
C34—H340.95C7—H7A0.99
C35—C361.373 (11)C7—H7B0.99
C35—H350.95C8—H8A0.98
C36—H360.95C8—H8B0.98
C41—C421.403 (10)C8—H8C0.98
C41—C461.407 (11)
P1—Pt—P298.43 (7)C46—C41—P2121.7 (6)
P1—Pt—Cl289.74 (7)C43—C42—C41122.1 (8)
P2—Pt—Cl2170.42 (8)C43—C42—H42118.9
P1—Pt—Cl1175.96 (7)C41—C42—H42118.9
P2—Pt—Cl184.93 (7)C42—C43—C44120.3 (8)
Cl2—Pt—Cl187.13 (7)C42—C43—H43119.8
C11—P1—C2198.8 (4)C44—C43—H43119.8
C11—P1—C31110.4 (4)N2—C44—C43121.2 (8)
C21—P1—C31104.4 (3)N2—C44—C45120.7 (7)
C11—P1—Pt116.9 (2)C43—C44—C45118.0 (7)
C21—P1—Pt114.6 (3)C46—C45—C44121.0 (8)
C31—P1—Pt110.6 (3)C46—C45—H45119.5
C41—P2—C51105.3 (4)C44—C45—H45119.5
C41—P2—C61107.1 (3)C45—C46—C41121.2 (7)
C51—P2—C61100.8 (4)C45—C46—H46119.4
C41—P2—Pt113.5 (3)C41—C46—H46119.4
C51—P2—Pt119.4 (2)C44—N2—C3120.7 (7)
C61—P2—Pt109.4 (3)C44—N2—C4120.1 (7)
C12—C11—C16115.3 (8)C3—N2—C4116.7 (6)
C12—C11—P1121.7 (6)N2—C3—H3A109.5
C16—C11—P1121.5 (6)N2—C3—H3B109.5
C13—C12—C11122.3 (7)H3A—C3—H3B109.5
C13—C12—H12118.8N2—C3—H3C109.5
C11—C12—H12118.8H3A—C3—H3C109.5
C12—C13—C14121.1 (7)H3B—C3—H3C109.5
C12—C13—H13119.5N2—C4—H4A109.5
C14—C13—H13119.5N2—C4—H4B109.5
N1—C14—C15123.7 (7)H4A—C4—H4B109.5
N1—C14—C13120.3 (7)N2—C4—H4C109.5
C15—C14—C13116.0 (7)H4A—C4—H4C109.5
C16—C15—C14121.8 (7)H4B—C4—H4C109.5
C16—C15—H15119.1C52—C51—C56118.4 (7)
C14—C15—H15119.1C52—C51—P2121.7 (6)
C15—C16—C11123.3 (7)C56—C51—P2119.8 (7)
C15—C16—H16118.3C51—C52—C53120.9 (8)
C11—C16—H16118.3C51—C52—H52119.6
N1—C1—H1A109.5C53—C52—H52119.6
N1—C1—H1B109.5C54—C53—C52119.1 (9)
H1A—C1—H1B109.5C54—C53—H53120.5
N1—C1—H1C109.5C52—C53—H53120.5
H1A—C1—H1C109.5C55—C54—C53120.9 (8)
H1B—C1—H1C109.5C55—C54—H54119.6
N1—C2—H2A109.5C53—C54—H54119.6
N1—C2—H2B109.5C54—C55—C56119.7 (8)
H2A—C2—H2B109.5C54—C55—H55120.1
N1—C2—H2C109.5C56—C55—H55120.1
H2A—C2—H2C109.5C55—C56—C51121.0 (8)
H2B—C2—H2C109.5C55—C56—H56119.5
C14—N1—C1120.5 (6)C51—C56—H56119.5
C14—N1—C2118.8 (6)C62—C61—C66118.6 (7)
C1—N1—C2117.2 (7)C62—C61—P2122.1 (6)
C26—C21—C22119.4 (7)C66—C61—P2119.3 (6)
C26—C21—P1117.7 (5)C63—C62—C61120.9 (8)
C22—C21—P1122.9 (6)C63—C62—H62119.6
C23—C22—C21119.0 (7)C61—C62—H62119.6
C23—C22—H22120.5C64—C63—C62119.7 (8)
C21—C22—H22120.5C64—C63—H63120.2
C24—C23—C22120.4 (7)C62—C63—H63120.2
C24—C23—H23119.8C65—C64—C63120.1 (9)
C22—C23—H23119.8C65—C64—H64119.9
C23—C24—C25120.1 (8)C63—C64—H64119.9
C23—C24—H24119.9C64—C65—C66120.6 (9)
C25—C24—H24119.9C64—C65—H65119.7
C26—C25—C24119.7 (8)C66—C65—H65119.7
C26—C25—H25120.1C65—C66—C61120.1 (8)
C24—C25—H25120.1C65—C66—H66119.9
C21—C26—C25121.3 (7)C61—C66—H66119.9
C21—C26—H26119.3C6—O2—C7116.4 (7)
C25—C26—H26119.3C6—C5—H5A109.5
C32—C31—C36118.9 (7)C6—C5—H5B109.5
C32—C31—P1125.8 (7)H5A—C5—H5B109.5
C36—C31—P1115.3 (6)C6—C5—H5C109.5
C31—C32—C33120.8 (8)H5A—C5—H5C109.5
C31—C32—H32119.6H5B—C5—H5C109.5
C33—C32—H32119.6O1—C6—O2122.5 (8)
C34—C33—C32120.2 (8)O1—C6—C5125.4 (8)
C34—C33—H33119.9O2—C6—C5112.1 (7)
C32—C33—H33119.9O2—C7—C8106.7 (7)
C33—C34—C35119.6 (8)O2—C7—H7A110.4
C33—C34—H34120.2C8—C7—H7A110.4
C35—C34—H34120.2O2—C7—H7B110.4
C36—C35—C34120.8 (9)C8—C7—H7B110.4
C36—C35—H35119.6H7A—C7—H7B108.6
C34—C35—H35119.6C7—C8—H8A109.5
C35—C36—C31119.7 (8)C7—C8—H8B109.5
C35—C36—H36120.2H8A—C8—H8B109.5
C31—C36—H36120.2C7—C8—H8C109.5
C42—C41—C46117.3 (7)H8A—C8—H8C109.5
C42—C41—P2120.9 (6)H8B—C8—H8C109.5
P2—Pt—P1—C1149.7 (3)C33—C34—C35—C360.9 (13)
Cl2—Pt—P1—C11135.3 (3)C34—C35—C36—C310.6 (13)
P2—Pt—P1—C21164.6 (3)C32—C31—C36—C351.2 (12)
Cl2—Pt—P1—C2120.5 (3)P1—C31—C36—C35178.6 (7)
P2—Pt—P1—C3177.8 (3)C51—P2—C41—C42140.1 (6)
Cl2—Pt—P1—C3197.1 (3)C61—P2—C41—C42113.2 (6)
P1—Pt—P2—C41107.5 (3)Pt—P2—C41—C427.6 (7)
Cl1—Pt—P2—C4170.2 (3)C51—P2—C41—C4640.2 (7)
P1—Pt—P2—C5117.6 (3)C61—P2—C41—C4666.6 (7)
Cl1—Pt—P2—C51164.6 (3)Pt—P2—C41—C46172.6 (5)
P1—Pt—P2—C61132.9 (2)C46—C41—C42—C431.4 (11)
Cl1—Pt—P2—C6149.3 (2)P2—C41—C42—C43178.8 (6)
C21—P1—C11—C1261.0 (7)C41—C42—C43—C442.7 (12)
C31—P1—C11—C1248.0 (8)C42—C43—C44—N2178.4 (7)
Pt—P1—C11—C12175.6 (6)C42—C43—C44—C452.3 (11)
C21—P1—C11—C16104.7 (7)N2—C44—C45—C46176.8 (7)
C31—P1—C11—C16146.3 (6)C43—C44—C45—C460.7 (12)
Pt—P1—C11—C1618.7 (8)C44—C45—C46—C410.6 (12)
C16—C11—C12—C134.6 (11)C42—C41—C46—C450.3 (11)
P1—C11—C12—C13171.1 (6)P2—C41—C46—C45179.5 (6)
C11—C12—C13—C143.2 (12)C43—C44—N2—C314.1 (11)
C12—C13—C14—N1179.0 (7)C45—C44—N2—C3169.9 (7)
C12—C13—C14—C151.6 (11)C43—C44—N2—C4175.5 (7)
N1—C14—C15—C16178.8 (7)C45—C44—N2—C48.5 (11)
C13—C14—C15—C161.9 (11)C41—P2—C51—C5229.2 (7)
C14—C15—C16—C113.7 (12)C61—P2—C51—C52140.5 (6)
C12—C11—C16—C154.9 (11)Pt—P2—C51—C5299.8 (6)
P1—C11—C16—C15171.4 (6)C41—P2—C51—C56152.4 (6)
C15—C14—N1—C1167.2 (7)C61—P2—C51—C5641.1 (7)
C13—C14—N1—C113.4 (11)Pt—P2—C51—C5678.6 (6)
C15—C14—N1—C28.8 (11)C56—C51—C52—C531.9 (11)
C13—C14—N1—C2171.8 (7)P2—C51—C52—C53176.5 (6)
C11—P1—C21—C2669.3 (7)C51—C52—C53—C540.1 (11)
C31—P1—C21—C26176.9 (7)C52—C53—C54—C551.5 (12)
Pt—P1—C21—C2655.7 (7)C53—C54—C55—C561.1 (12)
C11—P1—C21—C22107.7 (7)C54—C55—C56—C510.8 (11)
C31—P1—C21—C226.2 (8)C52—C51—C56—C552.3 (11)
Pt—P1—C21—C22127.3 (6)P2—C51—C56—C55176.1 (6)
C26—C21—C22—C231.3 (12)C41—P2—C61—C6223.9 (7)
P1—C21—C22—C23175.6 (6)C51—P2—C61—C6286.0 (6)
C21—C22—C23—C241.0 (13)Pt—P2—C61—C62147.3 (6)
C22—C23—C24—C252.3 (13)C41—P2—C61—C66156.6 (6)
C23—C24—C25—C261.3 (13)C51—P2—C61—C6693.5 (7)
C22—C21—C26—C252.4 (13)Pt—P2—C61—C6633.2 (7)
P1—C21—C26—C25174.7 (6)C66—C61—C62—C630.2 (11)
C24—C25—C26—C211.1 (13)P2—C61—C62—C63179.7 (6)
C11—P1—C31—C325.3 (8)C61—C62—C63—C641.2 (12)
C21—P1—C31—C32110.6 (7)C62—C63—C64—C651.6 (13)
Pt—P1—C31—C32125.7 (6)C63—C64—C65—C660.5 (13)
C11—P1—C31—C36174.5 (6)C64—C65—C66—C611.0 (13)
C21—P1—C31—C3669.3 (6)C62—C61—C66—C651.3 (12)
Pt—P1—C31—C3654.5 (6)P2—C61—C66—C65179.2 (7)
C36—C31—C32—C330.3 (11)C7—O2—C6—O11.1 (13)
P1—C31—C32—C33179.5 (6)C7—O2—C6—C5177.0 (8)
C31—C32—C33—C341.2 (12)C6—O2—C7—C8179.6 (7)
C32—C33—C34—C351.8 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···Cl2i0.982.793.601 (10)141
C64—H64···O1ii0.952.393.317 (11)166
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[PtCl2(C20H20P)2]·C4H8O2
Mr964.76
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.8148 (7), 19.1072 (11), 18.5668 (13)
β (°) 104.732 (4)
V3)4053.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.71
Crystal size (mm)0.14 × 0.08 × 0.04
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.625, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
47227, 10080, 6044
Rint0.143
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.144, 1.01
No. of reflections10080
No. of parameters484
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.53, 1.87

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004) and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···Cl2i0.982.793.601 (10)141
C64—H64···O1ii0.952.393.317 (11)166
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged. The University of the Free State (Professor A. Roodt) is thanked for the use of its diffractometer.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. Upper Saddle River, New Jersey, USA: Prentice Hall.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds