organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-Methyl 3-(2,4-di­chloro­phen­yl)-2-[(2-formyl­phen­­oxy)meth­yl]acrylate

aDepartment of Physics, Ethiraj College for Women (Autonomous), Chennai 600 008, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 17 August 2011; accepted 16 September 2011; online 30 September 2011)

In the title compound, C18H14Cl2O4, the mean planes of the methyl acrylate unit and the phenyl ring of the benzaldehyde are approximately orthogonal to each other, making a dihedral angle of 83.31 (6)°. The O atom of the aldehyde group is displaced significantly from the phenyl ring plane by 0.226 (2) Å. The methyl acrylate group adopts an E conformation. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(24) loops.

Related literature

For applications of acrylate derivatives, see: De Fraine & Martin (1991[De Fraine, P. J. & Martin, A. (1991). US Patent 5 055 471.]). For a related structure, see: Gong et al. (2008[Gong, H.-B., Wang, J., Liu, Y. & Wang, L. (2008). Acta Cryst. E64, o2373.]). For E-conformation aspects, see: Dunitz & Schweizer (1982[Dunitz, J. D. & Schweizer, B. W. (1982). Helv. Chim. Acta, 65, 1547-1554.]). For resonance effects of acrylate, see: Merlino (1971[Merlino, S. (1971). Acta Cryst. B27, 2491-2492.]); Varghese et al. (1986[Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544-1546.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14Cl2O4

  • Mr = 365.19

  • Monoclinic, P 21 /n

  • a = 17.8151 (7) Å

  • b = 4.9870 (2) Å

  • c = 18.8418 (8) Å

  • β = 97.834 (2)°

  • V = 1658.36 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 295 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 20245 measured reflections

  • 5036 independent reflections

  • 3310 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.149

  • S = 1.08

  • 5036 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1i 0.93 2.49 3.143 (3) 128
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenyl acrylates and their derivatives are important compounds because of their agrochemical and medical applications (De Fraine & Martin, 1991). The title compound, C18H14Cl2O4, consists of a methyl acrylate group, a benzaldehyde group and a dichlorophenyl group as illustrated in (Fig. 1). The acrylate unit is essentially planar with a maximum deviation of -0.017 (2)Å for the C9 atom and forms a dihedral angle of 36.76 (7)° with the phenyl ring (C13–C18). The mean planes formed by the methyl acrylate unit and the phenyl ring (C1–C6) are almost orthogonal to each other, with a dihedral angle of 83.31 (6)°. The interplanar angle between the two phenyl rings (C1–C6) and (C13–C18) is 87.09 (6)°, which shows that they are also almost perpendicular to each other.

The molecules of the title compound display a Z–configuration about the C9C12 double bond. The methyl acrylate moiety adopts an extended E–conformation with torsion angles close to 180° as evident from the torsion angles C12–C9–C10–O3 = 177.6 (2)°, C12–C9–C10–O4 = -1.9 (3)°, C9–C10–O4–C11 = 173.79 (19)°, and C8–C9–C10–O4 = -175.07 (18)°. The extended conformation is supported by the fact that the bond angles involving carbonyl O atoms are invariably expanded (Dunitz & Schweizer, 1982). The title compound exhibits structural similarities with the already reported related structure (Gong et al., 2008).

The significant difference in the length of the C10—O4 = 1.332 (3)Å and C11—O4 = 1.438 (3)Å bonds is attributed to a partial contribution from the O-–C = O+–C resonance structure of the O3C10—O4—C11 group (Merlino, 1971). This feature, commonly observed in the carboxylic ester group of the substituents in various compounds gives average values of 1.340Å and 1.447Å respectively for these bonds (Varghese et al., 1986).

The crystal packing is stabilized by intermolecular non–classical C—H···O hydrogen bonds with the symmetry code: (i) -x+1, -y+1, -z, which links the molecules into centrosymmetric dimers with graph–set descriptor of R22(24) (Bernstein et al., 1995). The packing view of the title compound is shown in Fig. 2.

Related literature top

For applications of acrylate derivatives, see: De Fraine & Martin (1991). For a related structure, see: Gong et al. (2008). For E-conformation aspects, see: Dunitz & Schweizer (1982). For resonance effects of acrylate, see: Merlino (1971); Varghese et al. (1986). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of salicylaldehyde (3.1 mmol, 0.38 g) and potassium carbonate (3.41 mmol, 0.47 g) in acetonitrile solvent (10 ml) was stirred for 15 minutes at room temperature. To this solution, (Z)–methyl–2–(bromomethyl)–3–(2,4–dichlorophenyl)acrylate (3.1 mmol, 1 g) was added dropwise. After the completion of the reaction as indicated by TLC, acetonitrile was evaporated. Ethylacetate (15 ml) and water (15 ml) were added to the crude mass and extracted. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product which was purified through pad of silica gel (100–200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colourless solid (1 g, 89%). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93Å to 0.97Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Structure description top

Phenyl acrylates and their derivatives are important compounds because of their agrochemical and medical applications (De Fraine & Martin, 1991). The title compound, C18H14Cl2O4, consists of a methyl acrylate group, a benzaldehyde group and a dichlorophenyl group as illustrated in (Fig. 1). The acrylate unit is essentially planar with a maximum deviation of -0.017 (2)Å for the C9 atom and forms a dihedral angle of 36.76 (7)° with the phenyl ring (C13–C18). The mean planes formed by the methyl acrylate unit and the phenyl ring (C1–C6) are almost orthogonal to each other, with a dihedral angle of 83.31 (6)°. The interplanar angle between the two phenyl rings (C1–C6) and (C13–C18) is 87.09 (6)°, which shows that they are also almost perpendicular to each other.

The molecules of the title compound display a Z–configuration about the C9C12 double bond. The methyl acrylate moiety adopts an extended E–conformation with torsion angles close to 180° as evident from the torsion angles C12–C9–C10–O3 = 177.6 (2)°, C12–C9–C10–O4 = -1.9 (3)°, C9–C10–O4–C11 = 173.79 (19)°, and C8–C9–C10–O4 = -175.07 (18)°. The extended conformation is supported by the fact that the bond angles involving carbonyl O atoms are invariably expanded (Dunitz & Schweizer, 1982). The title compound exhibits structural similarities with the already reported related structure (Gong et al., 2008).

The significant difference in the length of the C10—O4 = 1.332 (3)Å and C11—O4 = 1.438 (3)Å bonds is attributed to a partial contribution from the O-–C = O+–C resonance structure of the O3C10—O4—C11 group (Merlino, 1971). This feature, commonly observed in the carboxylic ester group of the substituents in various compounds gives average values of 1.340Å and 1.447Å respectively for these bonds (Varghese et al., 1986).

The crystal packing is stabilized by intermolecular non–classical C—H···O hydrogen bonds with the symmetry code: (i) -x+1, -y+1, -z, which links the molecules into centrosymmetric dimers with graph–set descriptor of R22(24) (Bernstein et al., 1995). The packing view of the title compound is shown in Fig. 2.

For applications of acrylate derivatives, see: De Fraine & Martin (1991). For a related structure, see: Gong et al. (2008). For E-conformation aspects, see: Dunitz & Schweizer (1982). For resonance effects of acrylate, see: Merlino (1971); Varghese et al. (1986). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitary radius.
[Figure 2] Fig. 2. Part of crystal structure of the title compound, showing the formation of R22(24) dimers viewed down b–axis. Dashed lines indicates C—H···O intermolecular interactions with the symmetry code: (i) -x+1, -y+1, -z.
(Z)-Methyl 3-(2,4-dichlorophenyl)-2-[(2-formylphenoxy)methyl]acrylate top
Crystal data top
C18H14Cl2O4F(000) = 752
Mr = 365.19Dx = 1.463 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5036 reflections
a = 17.8151 (7) Åθ = 1.5–30.6°
b = 4.9870 (2) ŵ = 0.41 mm1
c = 18.8418 (8) ÅT = 295 K
β = 97.834 (2)°Block, colourless
V = 1658.36 (12) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3310 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 30.6°, θmin = 1.5°
ω and φ scansh = 2525
20245 measured reflectionsk = 73
5036 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0511P)2 + 1.2391P]
where P = (Fo2 + 2Fc2)/3
5036 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C18H14Cl2O4V = 1658.36 (12) Å3
Mr = 365.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.8151 (7) ŵ = 0.41 mm1
b = 4.9870 (2) ÅT = 295 K
c = 18.8418 (8) Å0.20 × 0.20 × 0.20 mm
β = 97.834 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3310 reflections with I > 2σ(I)
20245 measured reflectionsRint = 0.032
5036 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.08Δρmax = 0.44 e Å3
5036 reflectionsΔρmin = 0.31 e Å3
218 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.50976 (11)0.5072 (5)0.12201 (11)0.0361 (5)
C20.44223 (13)0.4038 (6)0.15665 (13)0.0485 (6)
H20.39660.47320.14610.058*
C30.44138 (15)0.2022 (6)0.20587 (15)0.0570 (7)
H30.39570.13700.22930.068*
C40.50939 (15)0.0966 (6)0.22037 (13)0.0535 (7)
H40.50910.04300.25320.064*
C50.57791 (13)0.1942 (5)0.18709 (12)0.0433 (5)
H50.62330.11990.19680.052*
C60.57799 (11)0.4045 (5)0.13900 (10)0.0330 (4)
C70.50730 (12)0.7188 (5)0.06754 (13)0.0448 (5)
H70.55250.79960.04800.054*
C80.71317 (11)0.4083 (5)0.11953 (11)0.0352 (5)
H8A0.71380.39530.17080.042*
H8B0.71900.22950.09930.042*
C90.77651 (11)0.5838 (4)0.08667 (10)0.0320 (4)
C100.80027 (12)0.7915 (5)0.13589 (11)0.0363 (5)
C110.89107 (15)1.1174 (6)0.15499 (15)0.0550 (7)
H11A0.92131.02110.18490.083*
H11B0.92191.24780.12720.083*
H11C0.85031.20650.18440.083*
C120.81596 (11)0.5482 (5)0.02196 (10)0.0341 (4)
H120.85570.66720.00900.041*
C130.80390 (11)0.3428 (5)0.03113 (10)0.0336 (4)
C140.86531 (11)0.2247 (5)0.07368 (11)0.0385 (5)
C150.85715 (12)0.0298 (5)0.12376 (11)0.0406 (5)
H150.89920.04650.15100.049*
C160.78493 (12)0.0490 (5)0.13245 (11)0.0355 (4)
C170.72198 (12)0.0627 (5)0.09273 (12)0.0396 (5)
H170.67360.00760.09940.048*
C180.73194 (11)0.2575 (5)0.04289 (11)0.0379 (5)
H180.68950.33430.01630.046*
O10.44948 (10)0.7910 (5)0.04748 (11)0.0678 (6)
O20.64275 (7)0.5222 (3)0.10540 (8)0.0383 (4)
O30.76863 (12)0.8266 (4)0.19514 (9)0.0619 (5)
O40.86052 (9)0.9328 (4)0.10778 (9)0.0506 (4)
Cl10.77343 (4)0.29394 (13)0.19535 (3)0.04866 (17)
Cl20.95702 (3)0.3180 (2)0.06295 (4)0.0730 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0322 (9)0.0358 (12)0.0396 (10)0.0000 (9)0.0021 (8)0.0067 (9)
C20.0342 (11)0.0538 (16)0.0554 (14)0.0046 (11)0.0011 (9)0.0064 (12)
C30.0452 (13)0.0623 (19)0.0596 (15)0.0194 (13)0.0069 (11)0.0025 (14)
C40.0615 (16)0.0502 (17)0.0471 (13)0.0177 (13)0.0015 (11)0.0084 (12)
C50.0444 (12)0.0437 (14)0.0416 (11)0.0037 (10)0.0055 (9)0.0036 (10)
C60.0311 (9)0.0340 (12)0.0329 (9)0.0020 (8)0.0007 (7)0.0038 (8)
C70.0311 (10)0.0473 (15)0.0557 (13)0.0040 (10)0.0045 (9)0.0018 (11)
C80.0306 (9)0.0370 (12)0.0381 (10)0.0034 (8)0.0058 (8)0.0056 (9)
C90.0297 (9)0.0323 (11)0.0355 (9)0.0038 (8)0.0095 (7)0.0019 (8)
C100.0395 (10)0.0320 (12)0.0390 (10)0.0048 (9)0.0113 (8)0.0029 (9)
C110.0554 (15)0.0443 (16)0.0707 (17)0.0052 (12)0.0279 (13)0.0070 (13)
C120.0302 (9)0.0358 (12)0.0370 (10)0.0040 (8)0.0067 (7)0.0030 (9)
C130.0321 (9)0.0367 (13)0.0321 (9)0.0015 (8)0.0052 (7)0.0017 (8)
C140.0274 (9)0.0489 (14)0.0390 (10)0.0018 (9)0.0038 (8)0.0005 (10)
C150.0346 (10)0.0477 (15)0.0382 (11)0.0044 (10)0.0008 (8)0.0040 (10)
C160.0402 (10)0.0320 (12)0.0348 (9)0.0008 (9)0.0073 (8)0.0011 (8)
C170.0306 (9)0.0428 (14)0.0466 (11)0.0009 (9)0.0095 (8)0.0032 (10)
C180.0288 (9)0.0443 (14)0.0410 (10)0.0051 (9)0.0058 (8)0.0053 (9)
O10.0378 (9)0.0831 (16)0.0839 (14)0.0108 (10)0.0135 (9)0.0210 (12)
O20.0259 (6)0.0416 (9)0.0468 (8)0.0029 (6)0.0022 (6)0.0116 (7)
O30.0852 (14)0.0552 (13)0.0422 (9)0.0142 (10)0.0025 (9)0.0084 (9)
O40.0436 (9)0.0537 (12)0.0549 (10)0.0114 (8)0.0081 (7)0.0109 (8)
Cl10.0563 (3)0.0425 (4)0.0483 (3)0.0043 (3)0.0113 (2)0.0107 (3)
Cl20.0285 (3)0.1081 (7)0.0808 (5)0.0100 (3)0.0017 (3)0.0344 (5)
Geometric parameters (Å, º) top
C1—C21.387 (3)C10—O31.193 (3)
C1—C61.396 (3)C10—O41.332 (3)
C1—C71.477 (3)C11—O41.438 (3)
C2—C31.367 (4)C11—H11A0.9600
C2—H20.9300C11—H11B0.9600
C3—C41.382 (4)C11—H11C0.9600
C3—H30.9300C12—C131.468 (3)
C4—C51.383 (3)C12—H120.9300
C4—H40.9300C13—C141.396 (3)
C5—C61.386 (3)C13—C181.397 (3)
C5—H50.9300C14—C151.376 (3)
C6—O21.370 (2)C14—Cl21.737 (2)
C7—O11.200 (3)C15—C161.376 (3)
C7—H70.9300C15—H150.9300
C8—O21.435 (2)C16—C171.378 (3)
C8—C91.494 (3)C16—Cl11.733 (2)
C8—H8A0.9700C17—C181.379 (3)
C8—H8B0.9700C17—H170.9300
C9—C121.334 (3)C18—H180.9300
C9—C101.490 (3)
C2—C1—C6118.8 (2)O3—C10—C9123.1 (2)
C2—C1—C7119.1 (2)O4—C10—C9113.71 (18)
C6—C1—C7122.06 (19)O4—C11—H11A109.5
C3—C2—C1121.4 (2)O4—C11—H11B109.5
C3—C2—H2119.3H11A—C11—H11B109.5
C1—C2—H2119.3O4—C11—H11C109.5
C2—C3—C4119.0 (2)H11A—C11—H11C109.5
C2—C3—H3120.5H11B—C11—H11C109.5
C4—C3—H3120.5C9—C12—C13127.44 (19)
C3—C4—C5121.3 (3)C9—C12—H12116.3
C3—C4—H4119.3C13—C12—H12116.3
C5—C4—H4119.3C14—C13—C18116.4 (2)
C4—C5—C6119.0 (2)C14—C13—C12120.66 (18)
C4—C5—H5120.5C18—C13—C12122.91 (18)
C6—C5—H5120.5C15—C14—C13122.98 (19)
O2—C6—C5123.51 (19)C15—C14—Cl2117.26 (16)
O2—C6—C1116.20 (19)C13—C14—Cl2119.75 (17)
C5—C6—C1120.28 (19)C14—C15—C16118.11 (19)
O1—C7—C1122.8 (2)C14—C15—H15120.9
O1—C7—H7118.6C16—C15—H15120.9
C1—C7—H7118.6C15—C16—C17121.6 (2)
O2—C8—C9108.75 (17)C15—C16—Cl1118.83 (17)
O2—C8—H8A109.9C17—C16—Cl1119.53 (17)
C9—C8—H8A109.9C16—C17—C18118.94 (19)
O2—C8—H8B109.9C16—C17—H17120.5
C9—C8—H8B109.9C18—C17—H17120.5
H8A—C8—H8B108.3C17—C18—C13121.90 (19)
C12—C9—C10120.18 (19)C17—C18—H18119.0
C12—C9—C8125.1 (2)C13—C18—H18119.0
C10—C9—C8114.33 (17)C6—O2—C8116.56 (16)
O3—C10—O4123.2 (2)C10—O4—C11116.43 (19)
C6—C1—C2—C31.0 (4)C9—C12—C13—C14143.0 (2)
C7—C1—C2—C3178.0 (2)C9—C12—C13—C1838.0 (3)
C1—C2—C3—C41.1 (4)C18—C13—C14—C151.5 (3)
C2—C3—C4—C51.2 (4)C12—C13—C14—C15179.4 (2)
C3—C4—C5—C60.8 (4)C18—C13—C14—Cl2179.99 (17)
C4—C5—C6—O2177.4 (2)C12—C13—C14—Cl20.9 (3)
C4—C5—C6—C13.0 (3)C13—C14—C15—C160.7 (4)
C2—C1—C6—O2177.3 (2)Cl2—C14—C15—C16179.27 (18)
C7—C1—C6—O23.8 (3)C14—C15—C16—C170.2 (3)
C2—C1—C6—C53.1 (3)C14—C15—C16—Cl1179.91 (18)
C7—C1—C6—C5175.9 (2)C15—C16—C17—C180.3 (4)
C2—C1—C7—O16.2 (4)Cl1—C16—C17—C18179.96 (17)
C6—C1—C7—O1172.7 (2)C16—C17—C18—C130.6 (3)
O2—C8—C9—C1294.7 (2)C14—C13—C18—C171.4 (3)
O2—C8—C9—C1092.5 (2)C12—C13—C18—C17179.5 (2)
C12—C9—C10—O3177.6 (2)C5—C6—O2—C83.0 (3)
C8—C9—C10—O34.4 (3)C1—C6—O2—C8176.68 (18)
C12—C9—C10—O41.9 (3)C9—C8—O2—C6172.41 (17)
C8—C9—C10—O4175.07 (18)O3—C10—O4—C115.7 (3)
C10—C9—C12—C13175.53 (19)C9—C10—O4—C11173.79 (19)
C8—C9—C12—C133.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.493.143 (3)128
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H14Cl2O4
Mr365.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)17.8151 (7), 4.9870 (2), 18.8418 (8)
β (°) 97.834 (2)
V3)1658.36 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20245, 5036, 3310
Rint0.032
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.149, 1.08
No. of reflections5036
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.31

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.493.143 (3)128
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

RG and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, for providing facilities in the department to carry out this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Fraine, P. J. & Martin, A. (1991). US Patent 5 055 471.  Google Scholar
First citationDunitz, J. D. & Schweizer, B. W. (1982). Helv. Chim. Acta, 65, 1547–1554.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGong, H.-B., Wang, J., Liu, Y. & Wang, L. (2008). Acta Cryst. E64, o2373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMerlino, S. (1971). Acta Cryst. B27, 2491–2492.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds