organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4a-Hy­droxy-9-(4-hydroxyphenyl)-4,4a,5,6,9,9a-hexa­hydro-3H-xanthene-1,8(2H,7H)-dione

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yulinzhu2002@yahoo.com.cn

(Received 19 August 2011; accepted 19 September 2011; online 30 September 2011)

The title compound, C19H20O5, was synthesized by the reaction of 1,3-cyclo­hexa­nedione and 4-hy­droxy­benzaldehyde in the presence of PdCl2 and thio­urea. The tetra­hydro­pyran ring and the six-membered cyclo­hexene ring adopt envelope conformations, and the six-membered cyclo­hexane ring is in a chair conformation. The crystal packing is stabilized by classical inter­molecular O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions.

Related literature

For applications of related compounds, see: Menchen et al. (2003[Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent 6 583 168.]); Saint-Ruf et al. (1972[Saint-Ruf, G., De, A. & Hieu, H. T. (1972). Bull. Chim. Ther. 7, 83-86.]); Reddy et al. (2009[Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.]); Mehdi et al. (2011[Mehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1719-o1720.]). For the synthesis of related compounds, see: Karade et al. (2007[Karade, H. N., Sathe, M. & Kaushik, M. P. (2007). ARKIVOC, xiii, 252-258.]); Luna et al. (2009[Luna, L. E., Cravero, R. M., Faccio, R., Pardo, H., Mombru, A. W. & Seoane, G. (2009). Eur. J. Org. Chem. pp. 3052-3057.]). For related structures, see: Loh et al. (2011[Loh, W.-S., Fun, H.-K., Reddy, B. P., Vijayakumar, V. & Sarveswari, S. (2011). Acta Cryst. E67, o35-o36.]); Yang et al. (2011[Yang, Y., Lu, W., Lian, C. & Zhu, Y. (2011). Acta Cryst. E67, o2386.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20O5

  • Mr = 328.35

  • Monoclinic, P 21

  • a = 9.014 (4) Å

  • b = 10.242 (4) Å

  • c = 9.289 (4) Å

  • β = 108.194 (4)°

  • V = 814.7 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.981

  • 4840 measured reflections

  • 1876 independent reflections

  • 1652 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.04

  • 1863 reflections

  • 219 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.82 2.07 2.852 (3) 160
O5—H5⋯O2ii 0.82 1.94 2.758 (4) 175
C4—H4B⋯O4iii 0.97 2.50 3.274 (5) 137
C8A—H13⋯O3iv 0.98 2.59 3.535 (4) 161
C12—H18⋯O2ii 0.93 2.55 3.251 (4) 132
Symmetry codes: (i) x+1, y, z+1; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+2]; (iv) [-x, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Xanthenes are an important class of heterocyclic compounds which attract researchers by their spectroscopic and biological properties. Their derivatives had been widely used as dyes, fluorescent materials for visualization and in laser technologies (Menchen et al., 2003; Saint-Ruf et al., 1972; Reddy et al., 2009; Mehdi et al., 2011). Due to their wide range of applications, a well established method used for the construction of xanthene unit was set up, which was a Tandem Michael reaction between 1,3-cyclohexanedione and benzaldehyde (Luna et al., 2009; Karade et al., 2007). The reaction between 1,3-cyclohexanedione and 4-hydroxybenzaldehyde in the presence of thiourea and PdCl2 proceeded to give the title compound in isolated yield 86% (Fig. 1).

The molecular structure of the title compound is illustrated in Fig. 2. There are no unusual bond lengths and angles in the molecule. The tricyclo system is connected with a phenly ring at the C9 position. The tetrahydropyran ring (O1/C4B/C8A/C9/C9A/C4A) and the six-membered cyclohexene ring (C1–C4/C4A/C9A) adopt envelope conformations, the other six-membered cyclohexane ring (C4B/C5–C8/C8A) is in a chair conformation. Other than the published structure 4a-hydroxy-9-(2-methoxyphenyl)-4,4a,5,6,7,8,9,9a-octahydro-3H-xanthene-1,8(2H)-dione or 3,4,4a,5,6,7,9,9a-octahydro-4a-hydroxyl-9-(4-chlorophenyl)-1H-xanthene-1,8(2H)-dione (Loh et al., 2011; Yang et al., 2011), the main structure of this compound is a derivated xanthene–dione fused tricyclo system with a hydroxyl group at its C4b position. The hydroxy group in phenly ring, tetrahydropyran ring with a hydroxyl group and carbonyl O atom allow the formation of two intermolecular O4—H4···O5i and O5—H5···O2ii hydrogen bonds. There are weak intermolecular C4—H4B···O4iii, C8A—H13···O3iv and C12—H18···O2ii interactions which link molecules into chains. Symmetyry codes: (i) x+1, y, z+1; (ii) -x, y+1/2, -z+1; (iii) -x+1, y+1/2, -z+2; (iv) -x, y+1/2, -z+2.

Related literature top

For applications of related compounds, see: Menchen et al. (2003); Saint-Ruf et al. (1972); Reddy et al. (2009); Mehdi et al. (2011). For the synthesis of related compounds, see: Karade et al. (2007); Luna et al. (2009). For related structures, see: Loh et al. (2011); Yang et al. (2011).

Experimental top

A mixture of 1,3-cyclohexanedione (1.12 g, 10 mmol), 4-hydroxybenzaldehyde (0.61 g, 5 mmol), thiourea (0.76 g,10 mmol) and PdCl2 (0.0020 mg) was refluxed in anhydrous acetonitrile (12 ml) at 373 K for 4 h. After being cooled to room temperature, the reaction mixture was poured into water. The white precipitate was filtered off with a silica pad, washed twice with anhydrous ethanol, and the filtrate was then dried under vacuum to yield the product in yield of 86%. Single crystals of the title compound were obtained by slow evaporation from anhydrous ethanol at room temperature to yield colourless, block-shaped crystal.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98Å and O—H = 0.82Å, respectively. The Uiso = 1.2Ueq(C) and Uiso = 1.5Ueq(O). 3350 Friedel pairs were merged during the refinement.

Structure description top

Xanthenes are an important class of heterocyclic compounds which attract researchers by their spectroscopic and biological properties. Their derivatives had been widely used as dyes, fluorescent materials for visualization and in laser technologies (Menchen et al., 2003; Saint-Ruf et al., 1972; Reddy et al., 2009; Mehdi et al., 2011). Due to their wide range of applications, a well established method used for the construction of xanthene unit was set up, which was a Tandem Michael reaction between 1,3-cyclohexanedione and benzaldehyde (Luna et al., 2009; Karade et al., 2007). The reaction between 1,3-cyclohexanedione and 4-hydroxybenzaldehyde in the presence of thiourea and PdCl2 proceeded to give the title compound in isolated yield 86% (Fig. 1).

The molecular structure of the title compound is illustrated in Fig. 2. There are no unusual bond lengths and angles in the molecule. The tricyclo system is connected with a phenly ring at the C9 position. The tetrahydropyran ring (O1/C4B/C8A/C9/C9A/C4A) and the six-membered cyclohexene ring (C1–C4/C4A/C9A) adopt envelope conformations, the other six-membered cyclohexane ring (C4B/C5–C8/C8A) is in a chair conformation. Other than the published structure 4a-hydroxy-9-(2-methoxyphenyl)-4,4a,5,6,7,8,9,9a-octahydro-3H-xanthene-1,8(2H)-dione or 3,4,4a,5,6,7,9,9a-octahydro-4a-hydroxyl-9-(4-chlorophenyl)-1H-xanthene-1,8(2H)-dione (Loh et al., 2011; Yang et al., 2011), the main structure of this compound is a derivated xanthene–dione fused tricyclo system with a hydroxyl group at its C4b position. The hydroxy group in phenly ring, tetrahydropyran ring with a hydroxyl group and carbonyl O atom allow the formation of two intermolecular O4—H4···O5i and O5—H5···O2ii hydrogen bonds. There are weak intermolecular C4—H4B···O4iii, C8A—H13···O3iv and C12—H18···O2ii interactions which link molecules into chains. Symmetyry codes: (i) x+1, y, z+1; (ii) -x, y+1/2, -z+1; (iii) -x+1, y+1/2, -z+2; (iv) -x, y+1/2, -z+2.

For applications of related compounds, see: Menchen et al. (2003); Saint-Ruf et al. (1972); Reddy et al. (2009); Mehdi et al. (2011). For the synthesis of related compounds, see: Karade et al. (2007); Luna et al. (2009). For related structures, see: Loh et al. (2011); Yang et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Palladium(II) chloride catalyzed synthesis of the title compound.
[Figure 2] Fig. 2. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
4a-Hydroxy-9-(4-hydroxyphenyl)-4,4a,5,6,9,9a-hexahydro-3H-xanthene- 1,8(2H,7H)-dione top
Crystal data top
C19H20O5F(000) = 348.0
Mr = 328.35Dx = 1.339 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1885 reflections
a = 9.014 (4) Åθ = 2.4–26.8°
b = 10.242 (4) ŵ = 0.10 mm1
c = 9.289 (4) ÅT = 295 K
β = 108.194 (4)°Block, colourless
V = 814.7 (6) Å30.35 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1876 independent reflections
Radiation source: fine-focus sealed tube1652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ– and ω–scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.967, Tmax = 0.981k = 1312
4840 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.1291P]
where P = (Fo2 + 2Fc2)/3
1863 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.41 e Å3
14 restraintsΔρmin = 0.19 e Å3
Crystal data top
C19H20O5V = 814.7 (6) Å3
Mr = 328.35Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.014 (4) ŵ = 0.10 mm1
b = 10.242 (4) ÅT = 295 K
c = 9.289 (4) Å0.35 × 0.30 × 0.20 mm
β = 108.194 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
1876 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1652 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.981Rint = 0.027
4840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04214 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
1863 reflectionsΔρmin = 0.19 e Å3
219 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C90.1903 (3)0.1561 (2)0.8768 (3)0.0289 (5)
H90.19540.06120.89120.035*
C9A0.3440 (3)0.2024 (3)0.8614 (3)0.0307 (5)
C4A0.4337 (3)0.2922 (3)0.9542 (3)0.0354 (6)
C8A0.1606 (3)0.2192 (3)1.0149 (3)0.0307 (6)
H130.10370.30030.97820.037*
C50.2735 (3)0.3317 (3)1.2653 (3)0.0407 (7)
H5A0.21740.41161.22640.049*
H5B0.37070.35511.34170.049*
C80.0566 (3)0.1394 (3)1.0823 (3)0.0432 (7)
C60.1760 (4)0.2471 (4)1.3358 (4)0.0483 (8)
H6A0.15040.29621.41420.058*
H6B0.23620.17121.38260.058*
C10.4046 (3)0.1347 (3)0.7535 (3)0.0375 (6)
C4B0.3076 (3)0.2586 (3)1.1383 (3)0.0338 (6)
C40.5792 (4)0.3490 (4)0.9360 (4)0.0492 (8)
H4A0.66940.31181.01140.059*
H4B0.58030.44260.95250.059*
C70.0251 (4)0.2026 (4)1.2164 (4)0.0540 (9)
H7A0.02870.14091.26190.065*
H7B0.04280.27741.18200.065*
C20.5553 (4)0.1824 (4)0.7353 (5)0.0656 (11)
H2A0.64030.12900.79710.079*
H2B0.55130.17150.63040.079*
C30.5892 (6)0.3217 (5)0.7787 (6)0.0818 (15)
H3A0.51510.37680.70580.098*
H3B0.69300.34330.77600.098*
O10.4005 (2)0.34289 (19)1.0760 (2)0.0357 (4)
O20.3391 (3)0.0380 (2)0.6848 (3)0.0487 (6)
O40.3938 (2)0.1433 (2)1.1914 (2)0.0435 (5)
H40.47950.16241.25060.065*
O50.3220 (3)0.2708 (3)0.3538 (3)0.0548 (6)
H50.33260.34970.33980.082*
O30.0004 (4)0.0370 (3)1.0282 (3)0.0698 (8)
C130.1962 (3)0.2473 (3)0.4795 (3)0.0340 (6)
C110.0184 (3)0.3158 (3)0.6905 (3)0.0350 (6)
H190.07820.38300.74720.042*
C100.0564 (3)0.1873 (3)0.7339 (3)0.0275 (5)
C140.1588 (3)0.1177 (3)0.5195 (3)0.0376 (6)
H160.21790.05070.46160.045*
C150.0334 (3)0.0891 (3)0.6455 (3)0.0323 (6)
H150.00860.00240.67170.039*
C120.1073 (3)0.3459 (3)0.5641 (3)0.0365 (6)
H180.13120.43250.53670.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.0264 (11)0.0269 (13)0.0275 (13)0.0013 (10)0.0000 (10)0.0017 (10)
C9A0.0270 (11)0.0307 (13)0.0306 (13)0.0014 (10)0.0034 (10)0.0007 (11)
C4A0.0330 (12)0.0342 (14)0.0358 (14)0.0032 (11)0.0062 (11)0.0044 (12)
C8A0.0306 (12)0.0304 (14)0.0278 (13)0.0016 (10)0.0045 (10)0.0013 (11)
C50.0407 (14)0.0428 (17)0.0348 (14)0.0025 (13)0.0064 (11)0.0078 (13)
C80.0421 (14)0.0477 (17)0.0379 (15)0.0097 (14)0.0099 (12)0.0021 (14)
C60.0621 (19)0.0514 (19)0.0340 (15)0.0075 (16)0.0186 (14)0.0012 (14)
C10.0362 (13)0.0389 (15)0.0330 (14)0.0042 (12)0.0044 (11)0.0019 (12)
C4B0.0330 (13)0.0341 (14)0.0301 (14)0.0014 (11)0.0038 (11)0.0037 (11)
C40.0409 (15)0.0504 (18)0.0570 (19)0.0156 (14)0.0165 (14)0.0104 (16)
C70.0548 (19)0.061 (2)0.053 (2)0.0116 (17)0.0268 (16)0.0054 (18)
C20.0526 (19)0.079 (3)0.075 (3)0.0129 (19)0.0353 (19)0.029 (2)
C30.089 (3)0.077 (3)0.105 (3)0.036 (3)0.066 (3)0.027 (3)
O10.0346 (9)0.0329 (10)0.0368 (10)0.0065 (8)0.0074 (8)0.0081 (8)
O20.0484 (12)0.0473 (13)0.0444 (13)0.0007 (10)0.0059 (10)0.0167 (10)
O40.0444 (11)0.0390 (11)0.0378 (11)0.0083 (9)0.0005 (8)0.0008 (9)
O50.0443 (11)0.0498 (14)0.0473 (13)0.0012 (10)0.0190 (9)0.0032 (11)
O30.0865 (18)0.0670 (18)0.0645 (18)0.0429 (15)0.0359 (15)0.0146 (14)
C130.0264 (12)0.0407 (15)0.0285 (13)0.0015 (11)0.0008 (10)0.0030 (11)
C110.0354 (13)0.0309 (14)0.0306 (13)0.0029 (11)0.0014 (10)0.0005 (11)
C100.0235 (11)0.0307 (13)0.0250 (12)0.0002 (10)0.0031 (9)0.0025 (10)
C140.0300 (12)0.0396 (16)0.0351 (14)0.0079 (11)0.0017 (11)0.0065 (12)
C150.0319 (12)0.0268 (13)0.0345 (14)0.0013 (10)0.0050 (11)0.0004 (11)
C120.0384 (13)0.0300 (14)0.0344 (14)0.0038 (11)0.0017 (11)0.0051 (11)
Geometric parameters (Å, º) top
C9—C9A1.513 (3)C4—C31.518 (6)
C9—C101.523 (3)C4—H4A0.9700
C9—C8A1.533 (4)C4—H4B0.9700
C9—H90.9800C7—H7A0.9700
C9A—C4A1.345 (4)C7—H7B0.9700
C9A—C11.458 (4)C2—C31.487 (6)
C4A—O11.360 (3)C2—H2A0.9700
C4A—C41.492 (4)C2—H2B0.9700
C8A—C4B1.512 (3)C3—H3A0.9700
C8A—C81.518 (4)C3—H3B0.9700
C8A—H130.9800O4—H40.8200
C5—C4B1.508 (4)O5—C131.371 (3)
C5—C61.521 (5)O5—H50.8200
C5—H5A0.9700C13—C121.373 (4)
C5—H5B0.9700C13—C141.391 (4)
C8—O31.204 (4)C11—C121.388 (4)
C8—C71.507 (5)C11—C101.388 (4)
C6—C71.532 (5)C11—H190.9300
C6—H6A0.9700C10—C151.387 (4)
C6—H6B0.9700C14—C151.381 (4)
C1—O21.225 (4)C14—H160.9300
C1—C21.502 (5)C15—H150.9300
C4B—O41.416 (4)C12—H180.9300
C4B—O11.443 (3)
C9A—C9—C10110.6 (2)C3—C4—H4A109.5
C9A—C9—C8A110.6 (2)C4A—C4—H4B109.5
C10—C9—C8A110.0 (2)C3—C4—H4B109.5
C9A—C9—H9108.5H4A—C4—H4B108.1
C10—C9—H9108.5C8—C7—C6111.9 (3)
C8A—C9—H9108.5C8—C7—H7A109.2
C4A—C9A—C1119.1 (2)C6—C7—H7A109.2
C4A—C9A—C9122.6 (2)C8—C7—H7B109.2
C1—C9A—C9117.8 (2)C6—C7—H7B109.2
C9A—C4A—O1123.3 (2)H7A—C7—H7B107.9
C9A—C4A—C4124.6 (3)C3—C2—C1113.4 (3)
O1—C4A—C4112.0 (2)C3—C2—H2A108.9
C4B—C8A—C8109.8 (2)C1—C2—H2A108.9
C4B—C8A—C9114.0 (2)C3—C2—H2B108.9
C8—C8A—C9114.2 (2)C1—C2—H2B108.9
C4B—C8A—H13106.0H2A—C2—H2B107.7
C8—C8A—H13106.0C2—C3—C4111.7 (4)
C9—C8A—H13106.0C2—C3—H3A109.3
C4B—C5—C6109.9 (3)C4—C3—H3A109.3
C4B—C5—H5A109.7C2—C3—H3B109.3
C6—C5—H5A109.7C4—C3—H3B109.3
C4B—C5—H5B109.7H3A—C3—H3B107.9
C6—C5—H5B109.7C4A—O1—C4B114.3 (2)
H5A—C5—H5B108.2C4B—O4—H4109.5
O3—C8—C7123.7 (3)C13—O5—H5109.5
O3—C8—C8A122.0 (3)O5—C13—C12122.5 (3)
C7—C8—C8A114.2 (3)O5—C13—C14117.5 (2)
C5—C6—C7111.1 (3)C12—C13—C14120.0 (2)
C5—C6—H6A109.4C12—C11—C10121.2 (3)
C7—C6—H6A109.4C12—C11—H19119.4
C5—C6—H6B109.4C10—C11—H19119.4
C7—C6—H6B109.4C15—C10—C11118.0 (2)
H6A—C6—H6B108.0C15—C10—C9121.4 (2)
O2—C1—C9A121.3 (3)C11—C10—C9120.6 (2)
O2—C1—C2120.7 (3)C15—C14—C13119.6 (3)
C9A—C1—C2117.9 (3)C15—C14—H16120.2
O4—C4B—O1108.4 (2)C13—C14—H16120.2
O4—C4B—C5111.4 (2)C14—C15—C10121.3 (3)
O1—C4B—C5107.6 (2)C14—C15—H15119.3
O4—C4B—C8A107.3 (2)C10—C15—H15119.3
O1—C4B—C8A109.7 (2)C13—C12—C11119.8 (3)
C5—C4B—C8A112.4 (2)C13—C12—H18120.1
C4A—C4—C3110.8 (3)C11—C12—H18120.1
C4A—C4—H4A109.5
C10—C9—C9A—C4A118.8 (3)C9—C8A—C4B—C5174.6 (2)
C8A—C9—C9A—C4A3.4 (3)C9A—C4A—C4—C315.5 (5)
C10—C9—C9A—C168.9 (3)O1—C4A—C4—C3163.9 (3)
C8A—C9—C9A—C1169.0 (2)O3—C8—C7—C6132.1 (4)
C1—C9A—C4A—O1167.6 (3)C8A—C8—C7—C650.7 (4)
C9—C9A—C4A—O14.7 (4)C5—C6—C7—C852.4 (4)
C1—C9A—C4A—C413.1 (4)O2—C1—C2—C3159.2 (4)
C9—C9A—C4A—C4174.7 (3)C9A—C1—C2—C324.1 (5)
C9A—C9—C8A—C4B26.3 (3)C1—C2—C3—C452.2 (6)
C10—C9—C8A—C4B148.8 (2)C4A—C4—C3—C247.4 (5)
C9A—C9—C8A—C8153.6 (2)C9A—C4A—O1—C4B25.7 (4)
C10—C9—C8A—C883.9 (3)C4—C4A—O1—C4B154.9 (2)
C4B—C8A—C8—O3131.1 (3)O4—C4B—O1—C4A62.6 (3)
C9—C8A—C8—O31.7 (4)C5—C4B—O1—C4A176.7 (2)
C4B—C8A—C8—C751.6 (3)C8A—C4B—O1—C4A54.2 (3)
C9—C8A—C8—C7179.0 (3)C12—C11—C10—C151.1 (4)
C4B—C5—C6—C756.4 (4)C12—C11—C10—C9177.3 (2)
C4A—C9A—C1—O2167.8 (3)C9A—C9—C10—C15117.6 (3)
C9—C9A—C1—O24.8 (4)C8A—C9—C10—C15120.0 (2)
C4A—C9A—C1—C28.8 (4)C9A—C9—C10—C1164.0 (3)
C9—C9A—C1—C2178.6 (3)C8A—C9—C10—C1158.4 (3)
C6—C5—C4B—O461.1 (3)O5—C13—C14—C15179.8 (3)
C6—C5—C4B—O1179.8 (2)C12—C13—C14—C150.9 (4)
C6—C5—C4B—C8A59.3 (3)C13—C14—C15—C100.2 (4)
C8—C8A—C4B—O467.0 (3)C11—C10—C15—C141.1 (4)
C9—C8A—C4B—O462.6 (3)C9—C10—C15—C14177.3 (2)
C8—C8A—C4B—O1175.5 (2)O5—C13—C12—C11179.8 (3)
C9—C8A—C4B—O154.9 (3)C14—C13—C12—C110.9 (4)
C8—C8A—C4B—C555.9 (3)C10—C11—C12—C130.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.822.072.852 (3)160
O5—H5···O2ii0.821.942.758 (4)175
C4—H4B···O4iii0.972.503.274 (5)137
C8A—H13···O3iv0.982.593.535 (4)161
C12—H18···O2ii0.932.553.251 (4)132
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1; (iii) x+1, y+1/2, z+2; (iv) x, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC19H20O5
Mr328.35
Crystal system, space groupMonoclinic, P21
Temperature (K)295
a, b, c (Å)9.014 (4), 10.242 (4), 9.289 (4)
β (°) 108.194 (4)
V3)814.7 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.967, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
4840, 1876, 1652
Rint0.027
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.04
No. of reflections1863
No. of parameters219
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.822.072.852 (3)159.5
O5—H5···O2ii0.821.942.758 (4)175.2
C4—H4B···O4iii0.972.503.274 (5)136.5
C8A—H13···O3iv0.982.593.535 (4)161.3
C12—H18···O2ii0.932.553.251 (4)132.4
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1; (iii) x+1, y+1/2, z+2; (iv) x, y+1/2, z+2.
 

Acknowledgements

The authors thank South China Normal University for financial support (grants SCNU G21096).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKarade, H. N., Sathe, M. & Kaushik, M. P. (2007). ARKIVOC, xiii, 252–258.  CrossRef Google Scholar
First citationLoh, W.-S., Fun, H.-K., Reddy, B. P., Vijayakumar, V. & Sarveswari, S. (2011). Acta Cryst. E67, o35–o36.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuna, L. E., Cravero, R. M., Faccio, R., Pardo, H., Mombru, A. W. & Seoane, G. (2009). Eur. J. Org. Chem. pp. 3052–3057.  Web of Science CSD CrossRef Google Scholar
First citationMehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1719–o1720.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMenchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent 6 583 168.  Google Scholar
First citationReddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaint-Ruf, G., De, A. & Hieu, H. T. (1972). Bull. Chim. Ther. 7, 83–86.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Lu, W., Lian, C. & Zhu, Y. (2011). Acta Cryst. E67, o2386.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds