organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(1E)-4-Di­ethyl­amino-2-hy­dr­oxy­benz­­idene]benzohydrazide

aShasun Pharmaceuticals Ltd, Chennai 600 048, India, bDepartment of Chemistry, Government Arts College for Women (Autonomous), Madurai 625 002, India, cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and dDepartment of Chemistry, Government Arts College, Melur 625 106, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, rajagopal18@yahoo.com

(Received 3 September 2011; accepted 7 September 2011; online 14 September 2011)

In the title compound, C18H21N3O2, the dihedral angle between the phenyl and benzene rings is 36.85 (10)°. The methyl C atom of one of the ethyl groups is disordered over two positions with site occupancies of 0.810 (8) and 0.190 (8). The mol­ecular structure is stabilized by a classical intra­molecular O—H⋯N hydrogen bond. The crystal structure exhibits weak inter­molecular N—H⋯O, C—H⋯O and C—H⋯π inter­actions.

Related literature

For the biological activity of Schiff base ligands, see: Kelley et al. (1995[Kelley, J. L., Linn, J. A., Bankston, D. D., Burchall, C. J., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 3676-3679.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Pharm. Acta Helv. 74, 11-17.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]); Tarafder et al. (2002[Tarafder, M. T. H., Kasbollah, A., Saravanan, N., Crouse, K. A., Ali, A. M. & Khor, T. O. (2002). J. Biochem. Mol. Biol. Biophys. 6, 85-91.]). For related strucutures, see: Bahron et al. (2010[Bahron, H., Bakar, S. N. A., Kassim, K., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o883.]); Manvizhi et al. (2010[Manvizhi, K., Ranjith, S., Parthiban, K., Rajagopal, G. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2422.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21N3O2

  • Mr = 311.38

  • Monoclinic, P 21 /c

  • a = 10.591 (5) Å

  • b = 16.733 (6) Å

  • c = 9.671 (5) Å

  • β = 102.316 (5)°

  • V = 1674.4 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.977, Tmax = 0.984

  • 9666 measured reflections

  • 3884 independent reflections

  • 2466 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.203

  • S = 1.05

  • 3884 reflections

  • 222 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N2 0.82 1.92 2.643 (3) 147
N1—H1⋯O1i 0.86 2.10 2.926 (3) 160
C8—H8⋯O1i 0.93 2.50 3.293 (3) 144
C3—H3⋯Cg2ii 0.93 2.97 3.468 (5) 115
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In view of the biological actitivities of Schiff base ligands which are known to exhibit anti–viral, anti–cancer, anti–bacterial, anti–fungal, anti–inflammatory, anti–convulsant and anti–HIV activities (Pandeya et al., 1999; Singh & Dash, 1988; Kelley et al., 1995; Tarafder et al., 2002), we report herein the molecular and crystal structures of the title compound.

The geometric parameters of the molecule of title compound (Fig.1) agree well with the reported similar structures (Bahron et al., 2010; Manvizhi et al., 2010). The dihedral angle between the phenyl ring (C1–C6) and the benzene ring (C9–C14) is 36.85 (10)°. The methyl C18 atom in the ethyl groups is disordered over two positions with site occupancies of 0.810 (8) and 0.190 (8).

The molecular structure is stabilized by weak intramolecular O2—H2A···N2 hydrogen bond and the crystal structure exhibit weak intermolecular N1—H1···O1i, C8—H8···O1i and C3—H3···π (Cg2ii is the centroid of C9–C14 ring) interactions (Fig. 2 & Table 1). Symmetry codes (i) and (ii) are indicated in Table 1.

Related literature top

For the biological activity of Schiff base ligands, see: Kelley et al. (1995); Pandeya et al. (1999); Singh & Dash (1988); Tarafder et al. (2002). For related strucutures, see: Bahron et al. (2010); Manvizhi et al. (2010).

Experimental top

The benzoic acid hydrazide (5 mmol) in methanol (10 ml) was stirred in a round bottom flask followed by drop wise addition of methanolic solution of 4–(diethylamino)salicylaldehyde (5 mmol). The reaction mixture was then refluxed for three hours and upon cooling to 273 K. A pale yellow crystalline solid precipitates from the mixture was separated out. Crystalline product was washed with ice cold ethanol and dried in vacuo over anhydrous CaCl2. Single crystals suitable for the X–ray diffraction were obtained by slow evaporation of a solution of the title compound in DMF at room temperature. Melting point 500 K.

Refinement top

The site occupancy factors for disordered C atom were refined as C18/C18A = 0.810 (8)/0.190 (8). H atoms were positioned geometrically with C—H = 0.93–0.97 Å, O—H = 0.82Å and N—H = 0.86Å and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(O), Uiso(H) = 1.2Ueq(N), Uiso(H) = 1.5Ueq(C) for methyl droups and Uiso(H) = 1.2Ueq(C) for other.

Structure description top

In view of the biological actitivities of Schiff base ligands which are known to exhibit anti–viral, anti–cancer, anti–bacterial, anti–fungal, anti–inflammatory, anti–convulsant and anti–HIV activities (Pandeya et al., 1999; Singh & Dash, 1988; Kelley et al., 1995; Tarafder et al., 2002), we report herein the molecular and crystal structures of the title compound.

The geometric parameters of the molecule of title compound (Fig.1) agree well with the reported similar structures (Bahron et al., 2010; Manvizhi et al., 2010). The dihedral angle between the phenyl ring (C1–C6) and the benzene ring (C9–C14) is 36.85 (10)°. The methyl C18 atom in the ethyl groups is disordered over two positions with site occupancies of 0.810 (8) and 0.190 (8).

The molecular structure is stabilized by weak intramolecular O2—H2A···N2 hydrogen bond and the crystal structure exhibit weak intermolecular N1—H1···O1i, C8—H8···O1i and C3—H3···π (Cg2ii is the centroid of C9–C14 ring) interactions (Fig. 2 & Table 1). Symmetry codes (i) and (ii) are indicated in Table 1.

For the biological activity of Schiff base ligands, see: Kelley et al. (1995); Pandeya et al. (1999); Singh & Dash (1988); Tarafder et al. (2002). For related strucutures, see: Bahron et al. (2010); Manvizhi et al. (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. For disordered ethyl group only major moiety is presented. H atoms are shown as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal structure of title compound, viewed down a axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
N'-[(1E)-4-Diethylamino-2-hydroxybenzylidene]benzohydrazide top
Crystal data top
C18H21N3O2F(000) = 664
Mr = 311.38Dx = 1.235 Mg m3
Monoclinic, P21/cMelting point: 500 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.591 (5) ÅCell parameters from 4483 reflections
b = 16.733 (6) Åθ = 2.9–29.1°
c = 9.671 (5) ŵ = 0.08 mm1
β = 102.316 (5)°T = 295 K
V = 1674.4 (13) Å3Block, pale yellow
Z = 40.28 × 0.24 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3884 independent reflections
Radiation source: fine–focus sealed tube2466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ– and ω–scansθmax = 29.2°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1413
Tmin = 0.977, Tmax = 0.984k = 2218
9666 measured reflectionsl = 1213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.203 w = 1/[σ2(Fo2) + (0.0782P)2 + 0.8512P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3884 reflectionsΔρmax = 0.43 e Å3
222 parametersΔρmin = 0.40 e Å3
6 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (3)
Crystal data top
C18H21N3O2V = 1674.4 (13) Å3
Mr = 311.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.591 (5) ŵ = 0.08 mm1
b = 16.733 (6) ÅT = 295 K
c = 9.671 (5) Å0.28 × 0.24 × 0.20 mm
β = 102.316 (5)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3884 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2466 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.984Rint = 0.031
9666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0726 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
3884 reflectionsΔρmin = 0.40 e Å3
222 parameters
Special details top

Geometry. All s.u.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3790 (2)0.27667 (16)0.7824 (2)0.0476 (6)
C20.2753 (3)0.2435 (2)0.8285 (3)0.0669 (8)
H20.28770.19800.88500.080*
C30.1545 (3)0.2771 (3)0.7914 (5)0.0950 (13)
H30.08490.25380.82070.114*
C40.1374 (4)0.3448 (4)0.7114 (4)0.1128 (17)
H40.05540.36720.68500.135*
C50.2401 (5)0.3807 (3)0.6692 (4)0.1231 (19)
H50.22820.42820.61820.148*
C60.3614 (3)0.3455 (2)0.7031 (3)0.0831 (11)
H60.43050.36840.67220.100*
C70.5058 (2)0.23618 (14)0.8256 (2)0.0416 (5)
C80.7610 (2)0.19544 (16)0.6584 (2)0.0477 (6)
H80.73140.22600.57760.057*
C90.8774 (2)0.14947 (15)0.6699 (2)0.0436 (6)
C100.9440 (2)0.15018 (17)0.5596 (2)0.0510 (6)
H100.91330.18230.48120.061*
C111.0526 (2)0.10543 (18)0.5627 (3)0.0559 (7)
H111.09450.10820.48750.067*
C121.1017 (2)0.05524 (17)0.6782 (3)0.0524 (6)
C131.0364 (2)0.05409 (16)0.7911 (3)0.0512 (6)
H131.06760.02220.86970.061*
C140.9275 (2)0.09940 (15)0.7862 (2)0.0449 (6)
C151.2777 (3)0.0098 (2)0.5648 (3)0.0690 (8)
H15A1.21570.01500.47570.083*
H15B1.32260.04060.56300.083*
C161.3733 (3)0.0763 (2)0.5773 (4)0.0863 (10)
H16A1.32980.12640.57930.129*
H16B1.41400.07510.49760.129*
H16C1.43770.07000.66300.129*
C171.2575 (4)0.0495 (4)0.7989 (4)0.1165 (17)
H17A1.18540.06710.83850.140*0.810 (8)
H17B1.29220.09610.76050.140*0.810 (8)
H17C1.35060.04460.81240.140*0.190 (8)
H17D1.23590.02330.88030.140*0.190 (8)
N10.58174 (18)0.23775 (13)0.73010 (19)0.0478 (5)
H10.55900.26470.65310.057*
N20.69687 (17)0.19532 (13)0.7574 (2)0.0473 (5)
N31.2080 (2)0.00784 (18)0.6801 (3)0.0766 (8)
O10.53870 (16)0.20183 (12)0.93992 (16)0.0574 (5)
O20.86897 (17)0.09411 (12)0.89825 (18)0.0628 (6)
H2A0.80540.12340.88490.094*
C181.3519 (5)0.0184 (4)0.9069 (6)0.121 (2)0.810 (8)
H18A1.31850.02760.94650.182*0.810 (8)
H18B1.42560.00310.86990.182*0.810 (8)
H18C1.37720.05810.97910.182*0.810 (8)
C18A1.241 (2)0.1276 (11)0.827 (2)0.122 (7)0.190 (8)
H18D1.29500.14130.91650.183*0.190 (8)
H18E1.26510.15980.75390.183*0.190 (8)
H18F1.15240.13730.82870.183*0.190 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0438 (13)0.0650 (16)0.0350 (10)0.0059 (11)0.0108 (9)0.0109 (11)
C20.0472 (15)0.072 (2)0.085 (2)0.0064 (14)0.0217 (14)0.0232 (16)
C30.0463 (17)0.121 (3)0.119 (3)0.001 (2)0.0213 (19)0.053 (3)
C40.071 (2)0.185 (5)0.080 (2)0.063 (3)0.0093 (19)0.023 (3)
C50.127 (3)0.170 (4)0.083 (2)0.097 (3)0.047 (2)0.046 (3)
C60.086 (2)0.106 (3)0.0680 (18)0.044 (2)0.0400 (17)0.0290 (18)
C70.0392 (11)0.0510 (14)0.0347 (10)0.0056 (10)0.0080 (9)0.0076 (10)
C80.0398 (12)0.0637 (16)0.0396 (11)0.0020 (11)0.0084 (9)0.0022 (11)
C90.0342 (11)0.0578 (15)0.0393 (11)0.0021 (10)0.0088 (9)0.0000 (10)
C100.0419 (12)0.0728 (18)0.0390 (11)0.0034 (12)0.0102 (10)0.0084 (11)
C110.0470 (14)0.0810 (19)0.0441 (13)0.0054 (13)0.0199 (10)0.0039 (12)
C120.0401 (13)0.0704 (18)0.0479 (13)0.0053 (12)0.0122 (10)0.0003 (12)
C130.0427 (12)0.0659 (17)0.0462 (12)0.0059 (12)0.0122 (10)0.0089 (12)
C140.0386 (12)0.0583 (15)0.0398 (11)0.0051 (11)0.0129 (9)0.0006 (10)
C150.0591 (16)0.081 (2)0.0721 (18)0.0123 (16)0.0255 (14)0.0058 (16)
C160.079 (2)0.093 (3)0.089 (2)0.003 (2)0.0219 (18)0.006 (2)
C170.080 (2)0.200 (5)0.078 (2)0.077 (3)0.0359 (17)0.044 (2)
N10.0394 (10)0.0662 (14)0.0391 (9)0.0089 (9)0.0115 (8)0.0044 (9)
N20.0364 (10)0.0636 (14)0.0422 (10)0.0034 (9)0.0094 (8)0.0003 (9)
N30.0568 (14)0.110 (2)0.0699 (15)0.0288 (14)0.0290 (12)0.0117 (13)
O10.0563 (10)0.0785 (13)0.0387 (9)0.0050 (9)0.0128 (7)0.0050 (8)
O20.0574 (11)0.0875 (14)0.0505 (10)0.0146 (10)0.0272 (8)0.0179 (9)
C180.108 (4)0.140 (5)0.121 (4)0.037 (3)0.036 (2)0.043 (3)
C18A0.110 (17)0.195 (10)0.058 (11)0.065 (16)0.010 (10)0.029 (14)
Geometric parameters (Å, º) top
C1—C61.374 (4)C14—O21.362 (3)
C1—C21.387 (4)C15—N31.464 (3)
C1—C71.483 (3)C15—C161.492 (5)
C2—C31.373 (5)C15—H15A0.9700
C2—H20.9300C15—H15B0.9700
C3—C41.363 (6)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.378 (7)C16—H16C0.9600
C4—H40.9300C17—C18A1.353 (16)
C5—C61.387 (5)C17—C181.384 (7)
C5—H50.9300C17—N31.502 (5)
C6—H60.9300C17—H17A0.9700
C7—O11.229 (3)C17—H17B0.9700
C7—N11.348 (3)C17—H17C0.9700
C8—N21.287 (3)C17—H17D0.9700
C8—C91.437 (3)N1—N21.387 (3)
C8—H80.9300N1—H10.8600
C9—C101.399 (3)O2—H2A0.8200
C9—C141.412 (3)C18—H17C1.0114
C10—C111.367 (3)C18—H17D1.2036
C10—H100.9300C18—H18A0.9600
C11—C121.406 (4)C18—H18B0.9600
C11—H110.9300C18—H18C0.9600
C12—N31.374 (3)C18A—H18D0.9600
C12—C131.411 (3)C18A—H18E0.9600
C13—C141.372 (3)C18A—H18F0.9600
C13—H130.9300
C6—C1—C2119.5 (3)H16A—C16—H16B109.5
C6—C1—C7123.2 (2)C15—C16—H16C109.5
C2—C1—C7117.3 (2)H16A—C16—H16C109.5
C3—C2—C1120.7 (4)H16B—C16—H16C109.5
C3—C2—H2119.7C18A—C17—C18108.4 (9)
C1—C2—H2119.7C18A—C17—N3136.9 (10)
C4—C3—C2119.5 (4)C18—C17—N3114.5 (5)
C4—C3—H3120.3C18A—C17—H17A59.0
C2—C3—H3120.3C18—C17—H17A108.6
C3—C4—C5120.9 (3)N3—C17—H17A108.6
C3—C4—H4119.6C18A—C17—H17B51.1
C5—C4—H4119.6C18—C17—H17B108.6
C4—C5—C6119.6 (4)N3—C17—H17B108.6
C4—C5—H5120.2H17A—C17—H17B107.6
C6—C5—H5120.2C18A—C17—H17C102.8
C1—C6—C5119.8 (3)C18—C17—H17C46.9
C1—C6—H6120.1N3—C17—H17C103.2
C5—C6—H6120.1H17A—C17—H17C146.7
O1—C7—N1122.0 (2)H17B—C17—H17C70.2
O1—C7—C1122.2 (2)C18A—C17—H17D102.4
N1—C7—C1115.8 (2)C18—C17—H17D58.4
N2—C8—C9121.5 (2)N3—C17—H17D103.2
N2—C8—H8119.3H17A—C17—H17D58.3
C9—C8—H8119.3H17B—C17—H17D148.1
C10—C9—C14116.5 (2)H17C—C17—H17D105.2
C10—C9—C8120.0 (2)C7—N1—N2119.22 (19)
C14—C9—C8123.4 (2)C7—N1—H1120.4
C11—C10—C9122.5 (2)N2—N1—H1120.4
C11—C10—H10118.7C8—N2—N1116.09 (19)
C9—C10—H10118.7C12—N3—C15121.5 (2)
C10—C11—C12120.7 (2)C12—N3—C17122.0 (2)
C10—C11—H11119.6C15—N3—C17116.5 (2)
C12—C11—H11119.6C14—O2—H2A109.5
N3—C12—C11121.2 (2)H17C—C18—H17D87.7
N3—C12—C13121.1 (2)C17—C18—H18A109.5
C11—C12—C13117.6 (2)H17C—C18—H18A140.6
C14—C13—C12120.8 (2)H17D—C18—H18A72.1
C14—C13—H13119.6C17—C18—H18B109.5
C12—C13—H13119.6H17C—C18—H18B68.6
O2—C14—C13117.3 (2)H17D—C18—H18B144.4
O2—C14—C9121.0 (2)C17—C18—H18C109.5
C13—C14—C9121.7 (2)H17C—C18—H18C107.8
N3—C15—C16113.5 (3)H17D—C18—H18C102.8
N3—C15—H15A108.9C17—C18A—H18D109.5
C16—C15—H15A108.9C17—C18A—H18E109.5
N3—C15—H15B108.9H18D—C18A—H18E109.5
C16—C15—H15B108.9C17—C18A—H18F109.5
H15A—C15—H15B107.7H18D—C18A—H18F109.5
C15—C16—H16A109.5H18E—C18A—H18F109.5
C15—C16—H16B109.5
C6—C1—C2—C32.3 (4)C12—C13—C14—O2179.0 (2)
C7—C1—C2—C3179.3 (3)C12—C13—C14—C90.8 (4)
C1—C2—C3—C41.6 (5)C10—C9—C14—O2179.5 (2)
C2—C3—C4—C51.0 (6)C8—C9—C14—O22.3 (4)
C3—C4—C5—C62.9 (7)C10—C9—C14—C130.3 (4)
C2—C1—C6—C50.4 (5)C8—C9—C14—C13177.5 (2)
C7—C1—C6—C5178.7 (3)O1—C7—N1—N24.1 (3)
C4—C5—C6—C12.1 (6)C1—C7—N1—N2174.4 (2)
C6—C1—C7—O1145.2 (3)C9—C8—N2—N1175.9 (2)
C2—C1—C7—O133.2 (3)C7—N1—N2—C8176.0 (2)
C6—C1—C7—N136.4 (3)C11—C12—N3—C152.4 (4)
C2—C1—C7—N1145.3 (2)C13—C12—N3—C15178.8 (3)
N2—C8—C9—C10179.3 (2)C11—C12—N3—C17176.6 (4)
N2—C8—C9—C142.1 (4)C13—C12—N3—C172.2 (5)
C14—C9—C10—C110.3 (4)C16—C15—N3—C1282.8 (4)
C8—C9—C10—C11177.6 (3)C16—C15—N3—C1798.1 (4)
C9—C10—C11—C120.8 (4)C18A—C17—N3—C1293.6 (15)
C10—C11—C12—N3177.6 (3)C18—C17—N3—C1292.3 (4)
C10—C11—C12—C131.2 (4)C18A—C17—N3—C1585.5 (15)
N3—C12—C13—C14177.6 (3)C18—C17—N3—C1588.6 (4)
C11—C12—C13—C141.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.821.922.643 (3)147
N1—H1···O1i0.862.102.926 (3)160
C8—H8···O1i0.932.503.293 (3)144
C3—H3···Cg2ii0.932.973.468 (5)115
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H21N3O2
Mr311.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.591 (5), 16.733 (6), 9.671 (5)
β (°) 102.316 (5)
V3)1674.4 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.977, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9666, 3884, 2466
Rint0.031
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.203, 1.05
No. of reflections3884
No. of parameters222
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.40

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.821.922.643 (3)147
N1—H1···O1i0.862.102.926 (3)160
C8—H8···O1i0.932.503.293 (3)144
C3—H3···Cg2ii0.932.973.468 (5)115
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z.
 

Acknowledgements

The authors wish to acknowledge Pondichery University for the data collection.

References

First citationBahron, H., Bakar, S. N. A., Kassim, K., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKelley, J. L., Linn, J. A., Bankston, D. D., Burchall, C. J., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 3676–3679.  CrossRef CAS PubMed Web of Science Google Scholar
First citationManvizhi, K., Ranjith, S., Parthiban, K., Rajagopal, G. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Kasbollah, A., Saravanan, N., Crouse, K. A., Ali, A. M. & Khor, T. O. (2002). J. Biochem. Mol. Biol. Biophys. 6, 85–91.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds