metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Bis­(4-methyl-1,3-thia­zol-2-yl-κN)methane]­tri­carbonyl­di­chlorido­tungsten(II)

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
*Correspondence e-mail: ce.strasser@gmx.net

(Received 8 September 2011; accepted 18 September 2011; online 30 September 2011)

The title compound, [WCl2(C9H10N2S2)(CO)3], is a hepta­coordinate tungsten(II) complex with a capped–octa­hedral coordination sphere in which one CO ligand caps a face formed by a chloro ligand and the two other carbonyls. The chloro ligands are mutually trans positioned at an angle of 156.98 (7)°. The chelating bis­(4-methyl-1,3-thia­zol-2-yl)methane ligand coordinates with the imine N atoms. In the crystal, mol­ecules are linked into chains parallel to [201] by weak C—H⋯O contacts between the CH2 group of the bis­(4-methyl­thia­zol-2-yl)methane ligand and the O atom of the capping CO group.

Related literature

For related compounds, see: Baker et al. (1986[Baker, P. K., Fraser, S. G. & Keys, E. M. (1986). J. Organomet. Chem. 309, 319-321.]); Moss & Smith (1983[Moss, J. R. & Smith, B. J. (1983). S. Afr. J. Chem. 36, 32-35.]); Stiddard (1962[Stiddard, M. H. B. (1962). J. Chem. Soc. pp. 4712-4715.]); Szymanska-Buzar (1989[Szymanska-Buzar, T. (1989). J. Organomet. Chem. 375, 85-89.]); Tripathi et al. (1976[Tripathi, S. C., Srivastava, S. C. & Mani, R. P. (1976). J. Organomet. Chem. 105, 239-243.]). For related structures, see: Baker et al. (1996[Baker, P. K., Muldoon, D. J., Hursthouse, M. B., Coles, S. J., Lavery, A. J. & Shawcross, A. (1996). Z. Naturforsch. B Chem. Sci. 51, 263-266.], 2000[Baker, P. K., Samson, E., Veale, P. L. & Drew, M. G. B. (2000). Polyhedron, 19, 147-153.]); Drew et al. (1988[Drew, M. G. B., Baker, P. K., Armstrong, E. M. & Fraser, S. G. (1988). Polyhedron, 7, 245-247.], 1995[Drew, M. G. B., Baker, P. K., Armstrong, E. M., Fraser, S. G., Muldoon, D. J., Lavery, A. J. & Shawcross, A. (1995). Polyhedron, 14, 617-620.]); Hillhouse et al. (1982[Hillhouse, G. L., Goeden, G. V. & Haymore, B. L. (1982). Inorg. Chem. 21, 2064-2071.]); Shiu et al. (1990[Shiu, K.-B., Liou, K.-S., Wang, S.-L. & Wei, S.-C. (1990). Organometallics, 9, 669-675.]). For the isolation of the title compound, see: Strasser et al. (2009[Strasser, C. E., Cronje, S. & Raubenheimer, H. G. (2009). New J. Chem. 34, 458-469.]).

[Scheme 1]

Experimental

Crystal data
  • [WCl2(C9H10N2S2)(CO)3]

  • Mr = 549.10

  • Monoclinic, P 21 /c

  • a = 8.6876 (17) Å

  • b = 12.912 (2) Å

  • c = 14.851 (3) Å

  • β = 105.550 (3)°

  • V = 1604.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.80 mm−1

  • T = 100 K

  • 0.13 × 0.13 × 0.04 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison WI, USA.]) Tmin = 0.549, Tmax = 0.772

  • 9133 measured reflections

  • 3310 independent reflections

  • 2843 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.099

  • S = 1.07

  • 3310 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 3.92 e Å−3

  • Δρmin = −2.06 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2i 0.99 2.38 3.28 (1) 151
Symmetry code: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison WI, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison WI, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

Heptacoordinate W(II) complexes are common due to the 18–electron configuration at the metal centre. The title compound, shown in Fig. 1, was obtained through unclear side reactions which involve the formation of bis(4–methyl–1,3–thiazol–2–yl)methane from the anionic (4–methyl–1,3–thiazol–2–yl)carbonyl or activated (4–methyl–1,3–thiazol–2-yl)(trichloromethoxycarbonyl)methylene ligands as well as concomitant oxidation of W(0) to W(II).

Complexes of the type [WX2(CO)3(L)2] (X = Cl, Br or I; L = N–donor ligand) have been synthesized by photochemical reaction of e.g. [W(CO)6], CCl4 and 2,2'–bipyridine (bipy) to yield [WCl2(CO)3(bipy)] (Szymanska-Buzar, 1989), oxidation of [W(CO)4(L)2] (Stiddard et al., 1962) or [W(CO)3(CH3CN)3] (Baker et al., 1986) with bromine or iodine or reaction of [WX3(CO)4]- (X = Br or I) with bipy (Moss & Smith, 1983).

This is the first structural determination of a [WX2(CO)3(L)2]–type complex with chloro ligands. Such complexes (X = Cl) with monodentate L = nitriles (Baker et al., 1986) and L = alkylamines (Tripathi et al., 1976) were reported to be highly unstable. It is therefore surprising that for the present compound no decomposition, e.g. decarbonylation (Shiu et al., 1990) was encountered when crystals were briefly exposed to oxygen, room temperature and light during set–up of the X–ray diffraction experiment. The chelating bis(4–methylthiazol–2–yl)methane ligand may exert additional stabilizing properties when compared to the ligands used in the literature.

Crystal and molecular structures of seven–coordinate complexes of the type [WX2(CO)3(RCN)2] (RCN is an organic nitrile) have been reported by Baker et al. (1986, 1996, 2000) and Drew et al. (1988, 1995). The W—N bond distances in these nitrile complexes are shorter than those found in the title compound while other geometrical parameters are similar. The nitrile complexes also exhibit capped–octahedral geometry with trans–disposed iodo ligands. They possess a mirror plane that bisects the molecule while in the title compound the whole molecule is asymmetric; the position of the carbonyl ligands with respect to the bidentate bis(thiazolyl)methane is incompatible with Cs symmetry. Hillhouse et al. (1982) report coordination of a tetraarylphosphazide (PhNNNPPh3) to a dibromotricarbonyltungsten fragment which is different from the title compound and the structures mentioned here in that it contains a set of cis–bromo ligands, possibly caused by the smaller bite angle of the tetraarylphosphazide (N—W—N angle of 56.7 (2)° as opposed to the N1—W1—N2 angle measuring 83.3 (2)° in the title compound). Finally, a geometrically very similar complex to the one reported here but utilizing a bis(azolyl)methane ligand was prepared by Shiu et al., (1990) [WBr2(CO)3(CH2R2)] (R = 3,4,5–trimethyl–1H–pyrazol–1–yl–κN2).

The significantly longer W1—Cl2 bond (2.528 (2)Å) in the title compound is adjacent to the capping CO ligand while the W1—Cl1 bond is undisturbed by a capping ligand and measures 2.4708 (17)Å. The same effect is observed to a variable degree in all structures mentioned here for comparison. The individual molecules of the title compound are arranged into chains parallel to the [2 0 1] line by weak C—H···O contacts between the CH2 group of the bis(4–methylthiazol–2–yl)methane ligand and O2 of the capping CO group.

Related literature top

For related compounds, see: Baker et al. (1986); Moss & Smith (1983); Stiddard (1962); Szymanska-Buzar (1989); Tripathi et al. (1976). For related structures, see: Baker et al. (1996, 2000); Drew et al. (1988, 1995); Hillhouse et al. (1982); Shiu et al. (1990). For the isolation of the title compound, see: Strasser et al. (2009).

Experimental top

A crystal of the tile compound was isolated when tetramethylammonium pentacarbonyl[(4–methyl–1,3–thiazol–5–yl)carbonyl]tungstate(1-) was treated with bis(trichloromethyl)carbonate and pyridine to obtain the carbyne complex [W(CC4H4NS)Cl(CO)2(py)2] by oxide abstraction (Strasser et al., 2009). Decomposition concomitant with development of a green colour was noticed; the reaction mixture was chromatographed on Florisil at 243 K using CH2Cl2/acetonitrile mixtures and an yellow fraction was obtained containing the title compound which was crystallized from CH2Cl2/pentane at 253 K.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95Å, 0.99Å and 0.98Å for CH, CH2 and CH3 groups, respectively) and constrained to ride on their parent atoms; Uiso(H) values were set at 1.2Ueq(C) for CH– and CH2–groups and 1.5Ueq(C) for CH3–groups.

The maximum residual electron density of 3.92 e×Å-3 is located 0.79Å near W1.

Structure description top

Heptacoordinate W(II) complexes are common due to the 18–electron configuration at the metal centre. The title compound, shown in Fig. 1, was obtained through unclear side reactions which involve the formation of bis(4–methyl–1,3–thiazol–2–yl)methane from the anionic (4–methyl–1,3–thiazol–2–yl)carbonyl or activated (4–methyl–1,3–thiazol–2-yl)(trichloromethoxycarbonyl)methylene ligands as well as concomitant oxidation of W(0) to W(II).

Complexes of the type [WX2(CO)3(L)2] (X = Cl, Br or I; L = N–donor ligand) have been synthesized by photochemical reaction of e.g. [W(CO)6], CCl4 and 2,2'–bipyridine (bipy) to yield [WCl2(CO)3(bipy)] (Szymanska-Buzar, 1989), oxidation of [W(CO)4(L)2] (Stiddard et al., 1962) or [W(CO)3(CH3CN)3] (Baker et al., 1986) with bromine or iodine or reaction of [WX3(CO)4]- (X = Br or I) with bipy (Moss & Smith, 1983).

This is the first structural determination of a [WX2(CO)3(L)2]–type complex with chloro ligands. Such complexes (X = Cl) with monodentate L = nitriles (Baker et al., 1986) and L = alkylamines (Tripathi et al., 1976) were reported to be highly unstable. It is therefore surprising that for the present compound no decomposition, e.g. decarbonylation (Shiu et al., 1990) was encountered when crystals were briefly exposed to oxygen, room temperature and light during set–up of the X–ray diffraction experiment. The chelating bis(4–methylthiazol–2–yl)methane ligand may exert additional stabilizing properties when compared to the ligands used in the literature.

Crystal and molecular structures of seven–coordinate complexes of the type [WX2(CO)3(RCN)2] (RCN is an organic nitrile) have been reported by Baker et al. (1986, 1996, 2000) and Drew et al. (1988, 1995). The W—N bond distances in these nitrile complexes are shorter than those found in the title compound while other geometrical parameters are similar. The nitrile complexes also exhibit capped–octahedral geometry with trans–disposed iodo ligands. They possess a mirror plane that bisects the molecule while in the title compound the whole molecule is asymmetric; the position of the carbonyl ligands with respect to the bidentate bis(thiazolyl)methane is incompatible with Cs symmetry. Hillhouse et al. (1982) report coordination of a tetraarylphosphazide (PhNNNPPh3) to a dibromotricarbonyltungsten fragment which is different from the title compound and the structures mentioned here in that it contains a set of cis–bromo ligands, possibly caused by the smaller bite angle of the tetraarylphosphazide (N—W—N angle of 56.7 (2)° as opposed to the N1—W1—N2 angle measuring 83.3 (2)° in the title compound). Finally, a geometrically very similar complex to the one reported here but utilizing a bis(azolyl)methane ligand was prepared by Shiu et al., (1990) [WBr2(CO)3(CH2R2)] (R = 3,4,5–trimethyl–1H–pyrazol–1–yl–κN2).

The significantly longer W1—Cl2 bond (2.528 (2)Å) in the title compound is adjacent to the capping CO ligand while the W1—Cl1 bond is undisturbed by a capping ligand and measures 2.4708 (17)Å. The same effect is observed to a variable degree in all structures mentioned here for comparison. The individual molecules of the title compound are arranged into chains parallel to the [2 0 1] line by weak C—H···O contacts between the CH2 group of the bis(4–methylthiazol–2–yl)methane ligand and O2 of the capping CO group.

For related compounds, see: Baker et al. (1986); Moss & Smith (1983); Stiddard (1962); Szymanska-Buzar (1989); Tripathi et al. (1976). For related structures, see: Baker et al. (1996, 2000); Drew et al. (1988, 1995); Hillhouse et al. (1982); Shiu et al. (1990). For the isolation of the title compound, see: Strasser et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Bis(4-methyl-1,3-thiazol-2-yl- κN)methane]tricarbonyldichloridotungsten(II) top
Crystal data top
[WCl2(C9H10N2S2)(CO)3]F(000) = 1040
Mr = 549.10Dx = 2.273 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2900 reflections
a = 8.6876 (17) Åθ = 2.9–26.4°
b = 12.912 (2) ŵ = 7.80 mm1
c = 14.851 (3) ÅT = 100 K
β = 105.550 (3)°Prism, yellow
V = 1604.9 (5) Å30.13 × 0.13 × 0.04 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
3310 independent reflections
Radiation source: fine–focus sealed tube2843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω–scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 910
Tmin = 0.549, Tmax = 0.772k = 1416
9133 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.041P)2 + 16.6008P]
where P = (Fo2 + 2Fc2)/3
3310 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 3.92 e Å3
0 restraintsΔρmin = 2.06 e Å3
Crystal data top
[WCl2(C9H10N2S2)(CO)3]V = 1604.9 (5) Å3
Mr = 549.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6876 (17) ŵ = 7.80 mm1
b = 12.912 (2) ÅT = 100 K
c = 14.851 (3) Å0.13 × 0.13 × 0.04 mm
β = 105.550 (3)°
Data collection top
Bruker APEX CCD
diffractometer
3310 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2843 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.772Rint = 0.037
9133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.041P)2 + 16.6008P]
where P = (Fo2 + 2Fc2)/3
3310 reflectionsΔρmax = 3.92 e Å3
201 parametersΔρmin = 2.06 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.71470 (4)0.28785 (2)0.11943 (2)0.01491 (11)
Cl10.9818 (2)0.29333 (15)0.09055 (14)0.0206 (4)
S10.9434 (2)0.05707 (15)0.36702 (13)0.0172 (4)
O10.7129 (7)0.1221 (5)0.0344 (4)0.0299 (15)
N10.7939 (7)0.1559 (5)0.2219 (4)0.0133 (13)
C10.7098 (10)0.1829 (7)0.0212 (6)0.0224 (18)
Cl20.5130 (2)0.28940 (16)0.21453 (15)0.0252 (4)
S21.0291 (3)0.44059 (16)0.39914 (14)0.0211 (4)
O20.3687 (8)0.2745 (6)0.0173 (5)0.0399 (17)
N20.8330 (7)0.3872 (5)0.2453 (4)0.0133 (13)
C20.4955 (11)0.2788 (7)0.0348 (6)0.0260 (19)
O30.6745 (7)0.4803 (4)0.0140 (4)0.0226 (13)
C30.6882 (9)0.4116 (6)0.0370 (5)0.0148 (15)
C101.0349 (9)0.2488 (6)0.3165 (6)0.0171 (16)
H10B1.10010.24760.27100.020*
H10A1.10780.23830.37960.020*
C110.9176 (9)0.1625 (6)0.2950 (5)0.0132 (15)
C120.7790 (9)0.0001 (6)0.2943 (5)0.0171 (16)
H120.73940.06650.30440.020*
C130.7126 (9)0.0615 (6)0.2203 (5)0.0169 (16)
C140.5711 (9)0.0317 (6)0.1437 (6)0.0202 (17)
H14A0.60490.01530.08740.030*
H14B0.49490.08940.13040.030*
H14C0.52000.02910.16260.030*
C210.9561 (9)0.3533 (6)0.3128 (5)0.0143 (15)
C220.8855 (10)0.5279 (6)0.3436 (6)0.0211 (17)
H220.87380.59550.36630.025*
C230.7924 (10)0.4884 (6)0.2641 (6)0.0182 (16)
C240.6582 (10)0.5456 (6)0.1992 (6)0.0202 (17)
H24A0.63050.60630.23130.030*
H24B0.56500.50000.17970.030*
H24C0.69110.56810.14410.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01665 (17)0.01210 (17)0.01458 (17)0.00270 (13)0.00174 (11)0.00111 (12)
Cl10.0161 (9)0.0220 (10)0.0258 (10)0.0004 (8)0.0093 (8)0.0014 (8)
S10.0171 (9)0.0187 (10)0.0165 (9)0.0016 (8)0.0059 (7)0.0038 (7)
O10.032 (4)0.031 (4)0.031 (3)0.008 (3)0.016 (3)0.011 (3)
N10.014 (3)0.011 (3)0.017 (3)0.001 (2)0.008 (3)0.003 (2)
C10.021 (4)0.019 (4)0.029 (5)0.009 (3)0.011 (4)0.007 (4)
Cl20.0244 (10)0.0221 (10)0.0326 (11)0.0001 (8)0.0137 (9)0.0007 (9)
S20.0273 (11)0.0214 (11)0.0154 (9)0.0090 (8)0.0070 (8)0.0049 (8)
O20.024 (4)0.048 (5)0.042 (4)0.002 (3)0.002 (3)0.010 (3)
N20.014 (3)0.012 (3)0.016 (3)0.000 (2)0.009 (3)0.001 (2)
C20.030 (5)0.030 (5)0.019 (4)0.000 (4)0.007 (4)0.003 (4)
O30.024 (3)0.021 (3)0.025 (3)0.006 (2)0.010 (3)0.004 (2)
C30.016 (4)0.014 (4)0.015 (4)0.008 (3)0.005 (3)0.003 (3)
C100.014 (4)0.016 (4)0.020 (4)0.000 (3)0.003 (3)0.001 (3)
C110.013 (4)0.012 (4)0.015 (4)0.003 (3)0.004 (3)0.001 (3)
C120.019 (4)0.014 (4)0.022 (4)0.003 (3)0.011 (3)0.002 (3)
C130.015 (4)0.016 (4)0.024 (4)0.000 (3)0.012 (3)0.005 (3)
C140.017 (4)0.016 (4)0.028 (4)0.003 (3)0.007 (3)0.005 (3)
C210.014 (4)0.012 (4)0.019 (4)0.004 (3)0.007 (3)0.004 (3)
C220.031 (5)0.014 (4)0.022 (4)0.008 (3)0.015 (4)0.004 (3)
C230.027 (4)0.012 (4)0.022 (4)0.003 (3)0.016 (3)0.001 (3)
C240.026 (4)0.015 (4)0.023 (4)0.003 (3)0.013 (3)0.001 (3)
Geometric parameters (Å, º) top
W1—C11.983 (8)O3—C31.151 (9)
W1—C21.984 (9)C10—C111.487 (11)
W1—C31.989 (8)C10—C211.506 (11)
W1—N12.265 (6)C10—H10B0.9900
W1—N22.273 (6)C10—H10A0.9900
W1—Cl12.4708 (19)C12—C131.354 (11)
W1—Cl22.528 (2)C12—H120.9500
S1—C111.708 (7)C13—C141.484 (11)
S1—C121.710 (8)C14—H14A0.9800
O1—C11.145 (10)C14—H14B0.9800
N1—C111.310 (9)C14—H14C0.9800
N1—C131.405 (10)C22—C231.340 (11)
S2—C211.698 (7)C22—H220.9500
S2—C221.720 (9)C23—C241.493 (11)
O2—C21.165 (11)C24—H24A0.9800
N2—C211.328 (10)C24—H24B0.9800
N2—C231.402 (10)C24—H24C0.9800
C1—W1—C270.5 (4)C21—C10—H10B109.1
C1—W1—C396.9 (3)C11—C10—H10A109.1
C2—W1—C374.0 (3)C21—C10—H10A109.1
C1—W1—N185.6 (3)H10B—C10—H10A107.8
C2—W1—N1116.6 (3)N1—C11—C10126.1 (7)
C3—W1—N1169.2 (3)N1—C11—S1114.1 (6)
C1—W1—N2155.0 (3)C10—C11—S1119.7 (5)
C2—W1—N2134.4 (3)C13—C12—S1111.1 (6)
C3—W1—N290.3 (3)C13—C12—H12124.4
N1—W1—N283.3 (2)S1—C12—H12124.4
C1—W1—Cl174.2 (2)C12—C13—N1113.1 (7)
C2—W1—Cl1132.7 (2)C12—C13—C14123.7 (7)
C3—W1—Cl180.2 (2)N1—C13—C14123.2 (7)
N1—W1—Cl190.47 (16)C13—C14—H14A109.5
N2—W1—Cl183.58 (16)C13—C14—H14B109.5
C1—W1—Cl2122.3 (2)H14A—C14—H14B109.5
C2—W1—Cl270.3 (3)C13—C14—H14C109.5
C3—W1—Cl2110.8 (2)H14A—C14—H14C109.5
N1—W1—Cl276.20 (16)H14B—C14—H14C109.5
N2—W1—Cl276.36 (16)N2—C21—C10126.1 (7)
Cl1—W1—Cl2156.98 (7)N2—C21—S2114.4 (6)
C11—S1—C1290.1 (4)C10—C21—S2119.5 (6)
C11—N1—C13111.6 (6)C23—C22—S2111.2 (6)
C11—N1—W1122.8 (5)C23—C22—H22124.4
C13—N1—W1125.4 (5)S2—C22—H22124.4
O1—C1—W1177.5 (8)C22—C23—N2113.9 (7)
C21—S2—C2289.8 (4)C22—C23—C24124.2 (7)
C21—N2—C23110.6 (6)N2—C23—C24121.8 (7)
C21—N2—W1122.0 (5)C23—C24—H24A109.5
C23—N2—W1127.4 (5)C23—C24—H24B109.5
O2—C2—W1177.8 (8)H24A—C24—H24B109.5
O3—C3—W1176.7 (6)C23—C24—H24C109.5
C11—C10—C21112.6 (6)H24A—C24—H24C109.5
C11—C10—H10B109.1H24B—C24—H24C109.5
C1—W1—N1—C11130.7 (6)W1—N1—C11—S1174.8 (3)
C2—W1—N1—C11163.7 (6)C21—C10—C11—N151.6 (10)
C3—W1—N1—C1126.9 (16)C21—C10—C11—S1131.1 (6)
N2—W1—N1—C1126.9 (6)C12—S1—C11—N10.5 (6)
Cl1—W1—N1—C1156.6 (5)C12—S1—C11—C10177.1 (6)
Cl2—W1—N1—C11104.4 (6)C11—S1—C12—C130.1 (6)
C1—W1—N1—C1354.4 (6)S1—C12—C13—N10.2 (8)
C2—W1—N1—C1311.1 (7)S1—C12—C13—C14178.2 (6)
C3—W1—N1—C13158.2 (12)C11—N1—C13—C120.6 (9)
N2—W1—N1—C13148.0 (6)W1—N1—C13—C12174.8 (5)
Cl1—W1—N1—C13128.6 (5)C11—N1—C13—C14177.8 (7)
Cl2—W1—N1—C1370.4 (5)W1—N1—C13—C146.8 (10)
C1—W1—N2—C2134.2 (10)C23—N2—C21—C10179.1 (7)
C2—W1—N2—C21151.0 (6)W1—N2—C21—C100.6 (10)
C3—W1—N2—C21141.4 (6)C23—N2—C21—S21.0 (8)
N1—W1—N2—C2129.9 (6)W1—N2—C21—S2178.7 (3)
Cl1—W1—N2—C2161.3 (5)C11—C10—C21—N247.1 (10)
Cl2—W1—N2—C21107.3 (6)C11—C10—C21—S2134.8 (6)
C1—W1—N2—C23145.4 (7)C22—S2—C21—N20.8 (6)
C2—W1—N2—C2329.4 (8)C22—S2—C21—C10179.1 (6)
C3—W1—N2—C2338.2 (6)C21—S2—C22—C230.5 (6)
N1—W1—N2—C23150.5 (6)S2—C22—C23—N20.0 (9)
Cl1—W1—N2—C23118.3 (6)S2—C22—C23—C24179.1 (6)
Cl2—W1—N2—C2373.1 (6)C21—N2—C23—C220.6 (9)
C13—N1—C11—C10176.7 (7)W1—N2—C23—C22179.1 (5)
W1—N1—C11—C107.8 (10)C21—N2—C23—C24179.7 (7)
C13—N1—C11—S10.7 (8)W1—N2—C23—C240.0 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.992.383.28 (1)151
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[WCl2(C9H10N2S2)(CO)3]
Mr549.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.6876 (17), 12.912 (2), 14.851 (3)
β (°) 105.550 (3)
V3)1604.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)7.80
Crystal size (mm)0.13 × 0.13 × 0.04
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.549, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
9133, 3310, 2843
Rint0.037
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.099, 1.07
No. of reflections3310
No. of parameters201
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.041P)2 + 16.6008P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.92, 2.06

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.992.383.28 (1)151.3
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

We would like to thank the National Research Foundation (NRF) of South Africa for financial support.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBaker, P. K., Fraser, S. G. & Keys, E. M. (1986). J. Organomet. Chem. 309, 319–321.  CrossRef CAS Web of Science Google Scholar
First citationBaker, P. K., Muldoon, D. J., Hursthouse, M. B., Coles, S. J., Lavery, A. J. & Shawcross, A. (1996). Z. Naturforsch. B Chem. Sci. 51, 263–266.  CAS Google Scholar
First citationBaker, P. K., Samson, E., Veale, P. L. & Drew, M. G. B. (2000). Polyhedron, 19, 147–153.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2002). SADABS and SMART. Bruker AXS Inc., Madison WI, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison WI, USA.  Google Scholar
First citationDrew, M. G. B., Baker, P. K., Armstrong, E. M. & Fraser, S. G. (1988). Polyhedron, 7, 245–247.  CSD CrossRef CAS Web of Science Google Scholar
First citationDrew, M. G. B., Baker, P. K., Armstrong, E. M., Fraser, S. G., Muldoon, D. J., Lavery, A. J. & Shawcross, A. (1995). Polyhedron, 14, 617–620.  CSD CrossRef Web of Science Google Scholar
First citationHillhouse, G. L., Goeden, G. V. & Haymore, B. L. (1982). Inorg. Chem. 21, 2064–2071.  CSD CrossRef CAS Web of Science Google Scholar
First citationMoss, J. R. & Smith, B. J. (1983). S. Afr. J. Chem. 36, 32–35.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiu, K.-B., Liou, K.-S., Wang, S.-L. & Wei, S.-C. (1990). Organometallics, 9, 669–675.  CSD CrossRef CAS Web of Science Google Scholar
First citationStiddard, M. H. B. (1962). J. Chem. Soc. pp. 4712–4715.  CrossRef Web of Science Google Scholar
First citationStrasser, C. E., Cronje, S. & Raubenheimer, H. G. (2009). New J. Chem. 34, 458–469.  Web of Science CSD CrossRef Google Scholar
First citationSzymanska-Buzar, T. (1989). J. Organomet. Chem. 375, 85–89.  CAS Google Scholar
First citationTripathi, S. C., Srivastava, S. C. & Mani, R. P. (1976). J. Organomet. Chem. 105, 239–243.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds