metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(5-methyl­pyrazine-2-carboxyl­ato-κ2N1,O)cobalt(II) dihydrate

aDepartment of Chemistry and Chemical Engineering, Shangluo University, Shangluo 726000, Shaanxi, People's Republic of China, and bCollege of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
*Correspondence e-mail: yangqi@nwu.edu.cn

(Received 6 August 2011; accepted 20 September 2011; online 30 September 2011)

In the title complex, [Co(C6H5N2O2)2(H2O)2]·2H2O, the coordination geometry of the Co2+ cation is distorted octa­hedral, with two N atoms and two O atoms from two 5-methyl­pyrazine-2-carboxyl­ate ligands in the equatorial plane. The two remaining coordination sites are occupied by two water mol­ecules. In addition, there are two uncoordinated water mol­ecules in the asymmetric unit. The crystal structure is stabilized by a network of O—H⋯O and O—H⋯N hydrogen-bonding inter­actions, forming a three-dimensional structure.

Related literature

For related structures, see: Chapman et al. (2002[Chapman, C. T., Ciurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2002). Solid State Sci. 4, 1187-1189.]); Fan et al. (2007[Fan, G., Chen, S.-P. & Gao, S.-L. (2007). Acta Cryst. E63, m772-m773.]); Liu et al. (2007[Liu, F.-Y., Shang, R.-L., Du, L., Zhao, Q.-H. & Fang, R.-B. (2007). Acta Cryst. E63, m120-m122.]); Wang et al. (2008[Wang, F. Q., Mu, W. H., Zheng, X. J., Li, L. C., Fang, D. C. & Jin, L. P. (2008). Inorg. Chem. 47, 5225-5233.]). For their applications, see: Tanase et al. (2006[Tanase, S., Martin, V. S., Van Albada, G. A., DeGelder, R., Bouwman, E. & Reedijk, J. (2006). Polyhedron, 25, 2967-2975.]); Ptasiewicz-Bak & Leciejewicz (2000[Ptasiewicz-Bak, H. & Leciejewicz, J. (2000). Pol. J. Chem. 74, 877-883.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H5N2O2)2(H2O)2]·2H2O

  • Mr = 405.23

  • Monoclinic, P 21 /n

  • a = 10.092 (3) Å

  • b = 13.588 (4) Å

  • c = 12.287 (4) Å

  • β = 102.961 (6)°

  • V = 1642.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 298 K

  • 0.27 × 0.19 × 0.12 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Gottingen, Germany.]) Tmin = 0.797, Tmax = 0.902

  • 8089 measured reflections

  • 2914 independent reflections

  • 2150 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.075

  • S = 1.02

  • 2914 reflections

  • 298 parameters

  • All H-atom parameters refined

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7WA⋯N2i 0.73 (3) 2.27 (3) 2.940 (3) 154 (4)
O7—H7WB⋯O4ii 0.91 (4) 2.02 (4) 2.915 (3) 168 (3)
O6—H6WA⋯O7iii 0.76 (3) 2.09 (3) 2.838 (3) 170 (3)
O6—H6WB⋯O2iv 0.90 (3) 1.88 (3) 2.780 (3) 173 (3)
O8—H8WA⋯N4v 0.78 (4) 2.13 (4) 2.861 (4) 156 (4)
O8—H8WB⋯O2vi 0.72 (3) 2.03 (4) 2.731 (3) 165 (4)
O5—H5WB⋯O8 0.76 (3) 1.90 (3) 2.652 (4) 170 (3)
O5—H5WA⋯O4vii 0.72 (3) 2.02 (3) 2.738 (3) 174 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) x, y, z+1; (iv) -x+1, -y+1, -z+2; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since the mononuclear complex Cu(mpca)2(H2O).3H2O (Hmpca = 2-methylpyrazine-5-carboxylic acid) was reported by Leciejewicz J. (Ptasiewicz-Bak et al., 2000), many complexes based on the Hmpca have been prepared (Fan et al., 2007; Liu et al., 2007). The complex of Hmpca have been extensively investigated and have often been considered for practical use as a class of functional materials (Tanase et al., 2006). We report here the crystal structure of a Co2+ complex, (I)(Figure 1).

Single-crystal analysis shows the complex crystallizes in monoclinic space group P21/n. As shown in Figure 1, the coordination geometry around Co2+ cation can be described a disordered octahedral arrangement with coordination number of 6, where O1, O3, N1 and N3 atoms from two mpca ligands form the equatorial plane, and the axial positions are occupied by O5 and O6 atoms from two coordinated water molecules. Additionally, the complex consists of two uncoordinated water molecules in crystallographic unit. Furthermore, the crystal structure is stabilized by a network of hydrogen-bonding interactions, which O5, O6 atoms from two coordinated water molecules and O7, O8 from two uncoordinated water molecules act as hydrogen-bonding donors to interact with acceptors of O4, O2, N2 and N4 atoms from adjacent ligands, forming a three-dimensional supermolecular structure, as shown in Figure 2.

Related literature top

For related structures, see: Chapman et al. (2002); Fan et al. (2007); Liu et al. (2007); Wang et al. (2008). For their applications, see: Tanase et al. (2006); Ptasiewicz-Bak et al. (2000).

Experimental top

A mixture of CoCl2.H2O (0.188 g, 1 mmol), Hmpca (0.304 g, 1 mmol) and distilled H2O (8 ml) was sealed in a 23 ml Teflon-lined stainless steel vessel, which was heated at 140° C for 2 days and then cooled to room temperature at a rate of 5°C/h. Red crystals were obtained, washed with ethanol (yield 40% based on Co).

Structure description top

Since the mononuclear complex Cu(mpca)2(H2O).3H2O (Hmpca = 2-methylpyrazine-5-carboxylic acid) was reported by Leciejewicz J. (Ptasiewicz-Bak et al., 2000), many complexes based on the Hmpca have been prepared (Fan et al., 2007; Liu et al., 2007). The complex of Hmpca have been extensively investigated and have often been considered for practical use as a class of functional materials (Tanase et al., 2006). We report here the crystal structure of a Co2+ complex, (I)(Figure 1).

Single-crystal analysis shows the complex crystallizes in monoclinic space group P21/n. As shown in Figure 1, the coordination geometry around Co2+ cation can be described a disordered octahedral arrangement with coordination number of 6, where O1, O3, N1 and N3 atoms from two mpca ligands form the equatorial plane, and the axial positions are occupied by O5 and O6 atoms from two coordinated water molecules. Additionally, the complex consists of two uncoordinated water molecules in crystallographic unit. Furthermore, the crystal structure is stabilized by a network of hydrogen-bonding interactions, which O5, O6 atoms from two coordinated water molecules and O7, O8 from two uncoordinated water molecules act as hydrogen-bonding donors to interact with acceptors of O4, O2, N2 and N4 atoms from adjacent ligands, forming a three-dimensional supermolecular structure, as shown in Figure 2.

For related structures, see: Chapman et al. (2002); Fan et al. (2007); Liu et al. (2007); Wang et al. (2008). For their applications, see: Tanase et al. (2006); Ptasiewicz-Bak et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the coordinated environment of the Co2+ atom for complex (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Three dimensional network of the title complex connected through hydrogen bonding.
Diaquabis(5-methylpyrazine-2-carboxylato-κ2N1,O)cobalt(II) dihydrate top
Crystal data top
[Co(C6H5N2O2)2(H2O)2]·2H2OF(000) = 836
Mr = 405.23Dx = 1.639 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3524 reflections
a = 10.092 (3) Åθ = 2.0–25.1°
b = 13.588 (4) ŵ = 1.10 mm1
c = 12.287 (4) ÅT = 298 K
β = 102.961 (6)°Block, red
V = 1642.1 (9) Å30.27 × 0.19 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2914 independent reflections
Radiation source: fine-focus sealed tube2150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1012
Tmin = 0.797, Tmax = 0.902k = 1516
8089 measured reflectionsl = 1014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.035P)2 + 0.2465P]
where P = (Fo2 + 2Fc2)/3
2914 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Co(C6H5N2O2)2(H2O)2]·2H2OV = 1642.1 (9) Å3
Mr = 405.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.092 (3) ŵ = 1.10 mm1
b = 13.588 (4) ÅT = 298 K
c = 12.287 (4) Å0.27 × 0.19 × 0.12 mm
β = 102.961 (6)°
Data collection top
Bruker SMART APEX
diffractometer
2914 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2150 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.902Rint = 0.030
8089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.075All H-atom parameters refined
S = 1.02Δρmax = 0.29 e Å3
2914 reflectionsΔρmin = 0.27 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.24651 (3)0.38090 (2)0.97992 (3)0.03100 (12)
O10.44853 (15)0.40135 (12)1.05505 (13)0.0362 (4)
O30.04518 (15)0.35626 (13)0.90725 (13)0.0366 (4)
O50.2709 (2)0.23572 (17)1.0370 (2)0.0473 (6)
O20.59099 (16)0.44209 (14)1.21396 (14)0.0444 (5)
N10.25942 (18)0.33775 (14)0.81864 (16)0.0300 (5)
O60.23198 (19)0.52962 (15)0.92703 (19)0.0396 (5)
N30.23215 (19)0.42234 (14)1.14178 (16)0.0317 (5)
C10.4749 (2)0.42518 (18)1.1563 (2)0.0341 (6)
N20.2339 (2)0.29075 (15)0.59604 (17)0.0387 (5)
O40.09886 (16)0.30920 (13)0.75154 (14)0.0444 (5)
C80.1372 (2)0.31958 (16)0.75246 (19)0.0295 (5)
C70.0172 (2)0.32855 (17)0.8068 (2)0.0313 (6)
C100.3561 (2)0.30930 (17)0.6620 (2)0.0350 (6)
C20.3548 (2)0.43145 (17)1.21038 (19)0.0318 (6)
C50.1238 (3)0.42804 (19)1.1858 (2)0.0368 (6)
C90.1266 (3)0.2951 (2)0.6420 (2)0.0376 (6)
C120.3680 (3)0.33191 (18)0.7746 (2)0.0348 (6)
C40.1354 (3)0.43880 (19)1.2999 (2)0.0390 (6)
C110.4772 (4)0.3074 (3)0.6119 (3)0.0500 (8)
N40.2575 (2)0.44717 (16)1.36849 (17)0.0445 (6)
C30.3647 (3)0.4445 (2)1.3230 (2)0.0426 (7)
C60.0139 (4)0.4391 (3)1.3499 (3)0.0588 (9)
O70.2904 (2)0.66789 (18)0.10443 (19)0.0497 (5)
O80.2210 (3)0.06357 (19)0.9342 (2)0.0725 (8)
H70.048 (2)0.2800 (17)0.599 (2)0.038 (7)*
H20.042 (2)0.4240 (17)1.141 (2)0.032 (7)*
H60.455 (2)0.3478 (16)0.8176 (19)0.032 (6)*
H10.445 (2)0.4485 (18)1.364 (2)0.040 (8)*
H100.491 (3)0.368 (2)0.576 (3)0.078 (11)*
H40.004 (4)0.374 (3)1.382 (4)0.133 (18)*
H7WA0.289 (3)0.711 (2)0.069 (3)0.066 (13)*
H80.556 (4)0.302 (2)0.662 (3)0.080 (12)*
H50.056 (3)0.441 (2)1.306 (3)0.071 (12)*
H90.475 (3)0.257 (3)0.567 (3)0.075 (11)*
H30.007 (4)0.494 (3)1.396 (3)0.100 (13)*
H7WB0.221 (4)0.673 (2)0.140 (3)0.092 (12)*
H6WA0.251 (3)0.561 (2)0.979 (3)0.050 (11)*
H6WB0.295 (3)0.540 (2)0.886 (3)0.064 (10)*
H8WA0.214 (4)0.021 (3)0.975 (3)0.082 (14)*
H8WB0.186 (3)0.052 (2)0.878 (3)0.065 (12)*
H5WB0.253 (3)0.190 (2)1.000 (3)0.058 (11)*
H5WA0.301 (3)0.224 (2)1.095 (3)0.057 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02774 (19)0.0445 (2)0.02001 (18)0.00081 (15)0.00368 (13)0.00206 (15)
O10.0313 (9)0.0539 (11)0.0236 (9)0.0024 (8)0.0064 (7)0.0035 (8)
O30.0300 (9)0.0571 (12)0.0235 (10)0.0041 (8)0.0075 (7)0.0046 (8)
O50.0590 (14)0.0465 (14)0.0291 (13)0.0018 (10)0.0054 (11)0.0013 (11)
O20.0329 (10)0.0684 (13)0.0293 (10)0.0099 (9)0.0012 (8)0.0023 (9)
N10.0270 (11)0.0376 (11)0.0251 (11)0.0009 (9)0.0055 (9)0.0007 (9)
O60.0378 (11)0.0499 (12)0.0319 (11)0.0019 (9)0.0094 (9)0.0004 (10)
N30.0328 (11)0.0384 (12)0.0243 (11)0.0001 (9)0.0071 (9)0.0015 (9)
C10.0329 (14)0.0412 (15)0.0266 (14)0.0031 (11)0.0034 (11)0.0021 (12)
N20.0441 (13)0.0447 (13)0.0296 (12)0.0051 (10)0.0134 (10)0.0069 (10)
O40.0298 (10)0.0716 (13)0.0303 (10)0.0090 (9)0.0034 (8)0.0097 (9)
C80.0337 (14)0.0301 (13)0.0247 (13)0.0022 (10)0.0064 (11)0.0014 (11)
C70.0307 (14)0.0359 (14)0.0267 (14)0.0003 (11)0.0051 (11)0.0028 (11)
C100.0386 (15)0.0338 (14)0.0350 (15)0.0035 (11)0.0133 (12)0.0008 (11)
C20.0335 (14)0.0353 (14)0.0250 (13)0.0048 (11)0.0034 (11)0.0005 (11)
C50.0340 (15)0.0445 (16)0.0305 (15)0.0024 (12)0.0043 (12)0.0008 (12)
C90.0365 (16)0.0483 (17)0.0280 (15)0.0085 (12)0.0074 (12)0.0077 (12)
C120.0310 (15)0.0411 (15)0.0324 (15)0.0020 (12)0.0071 (12)0.0001 (12)
C40.0448 (16)0.0422 (16)0.0329 (15)0.0039 (12)0.0150 (13)0.0007 (12)
C110.047 (2)0.062 (2)0.046 (2)0.0041 (16)0.0222 (16)0.0038 (18)
N40.0486 (14)0.0618 (16)0.0248 (12)0.0028 (11)0.0119 (11)0.0055 (11)
C30.0395 (17)0.0593 (19)0.0270 (15)0.0079 (14)0.0030 (13)0.0077 (13)
C60.047 (2)0.088 (3)0.047 (2)0.0062 (19)0.0220 (17)0.004 (2)
O70.0454 (13)0.0599 (15)0.0466 (13)0.0050 (10)0.0164 (10)0.0104 (12)
O80.114 (2)0.0578 (16)0.0327 (13)0.0154 (14)0.0111 (14)0.0038 (13)
Geometric parameters (Å, º) top
Co1—O32.0551 (17)C8—C71.514 (3)
Co1—O12.0596 (17)C10—C121.396 (3)
Co1—O52.090 (2)C10—C111.487 (4)
Co1—N12.098 (2)C2—C31.377 (3)
Co1—N32.103 (2)C5—C41.388 (3)
Co1—O62.118 (2)C5—H20.88 (2)
O1—C11.255 (3)C9—H70.88 (2)
O3—C71.260 (3)C12—H60.95 (2)
O5—H5WB0.76 (3)C4—N41.333 (3)
O5—H5WA0.72 (3)C4—C61.490 (4)
O2—C11.247 (3)C11—H100.96 (3)
N1—C121.329 (3)C11—H80.89 (4)
N1—C81.339 (3)C11—H90.88 (3)
O6—H6WA0.76 (3)N4—C31.325 (3)
O6—H6WB0.90 (3)C3—H10.85 (2)
N3—C51.326 (3)C6—H40.98 (4)
N3—C21.337 (3)C6—H50.79 (3)
C1—C21.510 (3)C6—H30.95 (4)
N2—C91.330 (3)O7—H7WA0.73 (3)
N2—C101.339 (3)O7—H7WB0.91 (4)
O4—C71.244 (3)O8—H8WA0.78 (4)
C8—C91.378 (3)O8—H8WB0.72 (3)
O3—Co1—O1178.22 (7)O3—C7—C8115.5 (2)
O3—Co1—O591.29 (8)N2—C10—C12120.3 (2)
O1—Co1—O586.95 (8)N2—C10—C11118.5 (2)
O3—Co1—N178.99 (7)C12—C10—C11121.2 (3)
O1—Co1—N1101.31 (7)N3—C2—C3119.6 (2)
O5—Co1—N191.47 (9)N3—C2—C1116.0 (2)
O3—Co1—N3100.57 (7)C3—C2—C1124.4 (2)
O1—Co1—N379.12 (7)N3—C5—C4121.8 (2)
O5—Co1—N387.90 (9)N3—C5—H2119.1 (15)
N1—Co1—N3179.22 (7)C4—C5—H2119.1 (15)
O3—Co1—O691.63 (7)N2—C9—C8122.6 (2)
O1—Co1—O690.12 (7)N2—C9—H7116.4 (16)
O5—Co1—O6177.05 (9)C8—C9—H7121.0 (16)
N1—Co1—O689.52 (8)N1—C12—C10121.4 (2)
N3—Co1—O691.14 (9)N1—C12—H6120.7 (14)
C1—O1—Co1116.60 (15)C10—C12—H6117.8 (14)
C7—O3—Co1117.16 (14)N4—C4—C5120.3 (2)
Co1—O5—H5WB125 (2)N4—C4—C6117.9 (3)
Co1—O5—H5WA122 (3)C5—C4—C6121.8 (3)
H5WB—O5—H5WA113 (3)C10—C11—H10113.4 (19)
C12—N1—C8118.2 (2)C10—C11—H8114 (2)
C12—N1—Co1129.26 (16)H10—C11—H8101 (3)
C8—N1—Co1112.41 (14)C10—C11—H9111 (2)
Co1—O6—H6WA107 (2)H10—C11—H9111 (3)
Co1—O6—H6WB108.3 (18)H8—C11—H9106 (3)
H6WA—O6—H6WB108 (3)C3—N4—C4117.2 (2)
C5—N3—C2117.9 (2)N4—C3—C2123.0 (2)
C5—N3—Co1129.72 (17)N4—C3—H1120.2 (17)
C2—N3—Co1111.75 (14)C2—C3—H1116.7 (17)
O2—C1—O1125.0 (2)C4—C6—H4109 (3)
O2—C1—C2119.0 (2)C4—C6—H5114 (2)
O1—C1—C2116.0 (2)H4—C6—H599 (3)
C9—N2—C10117.5 (2)C4—C6—H3115 (2)
N1—C8—C9120.0 (2)H4—C6—H3117 (3)
N1—C8—C7115.9 (2)H5—C6—H3102 (3)
C9—C8—C7124.1 (2)H7WA—O7—H7WB108 (3)
O4—C7—O3125.1 (2)H8WA—O8—H8WB111 (4)
O4—C7—C8119.4 (2)
O3—Co1—O1—C178 (2)C12—N1—C8—C7179.3 (2)
O5—Co1—O1—C186.91 (18)Co1—N1—C8—C72.8 (2)
N1—Co1—O1—C1177.79 (17)Co1—O3—C7—O4178.88 (19)
N3—Co1—O1—C11.54 (17)Co1—O3—C7—C81.4 (3)
O6—Co1—O1—C192.68 (18)N1—C8—C7—O4177.4 (2)
O1—Co1—O3—C7100 (2)C9—C8—C7—O43.0 (4)
O5—Co1—O3—C791.29 (18)N1—C8—C7—O32.9 (3)
N1—Co1—O3—C70.04 (17)C9—C8—C7—O3176.7 (2)
N3—Co1—O3—C7179.39 (17)C9—N2—C10—C120.2 (4)
O6—Co1—O3—C789.15 (18)C9—N2—C10—C11178.5 (3)
O3—Co1—N1—C12177.6 (2)C5—N3—C2—C31.1 (4)
O1—Co1—N1—C124.2 (2)Co1—N3—C2—C3170.9 (2)
O5—Co1—N1—C1291.4 (2)C5—N3—C2—C1179.6 (2)
N3—Co1—N1—C12127 (5)Co1—N3—C2—C18.4 (3)
O6—Co1—N1—C1285.8 (2)O2—C1—C2—N3173.5 (2)
O3—Co1—N1—C81.64 (15)O1—C1—C2—N37.6 (3)
O1—Co1—N1—C8179.85 (15)O2—C1—C2—C37.3 (4)
O5—Co1—N1—C892.67 (16)O1—C1—C2—C3171.7 (2)
N3—Co1—N1—C857 (6)C2—N3—C5—C42.8 (4)
O6—Co1—N1—C890.12 (16)Co1—N3—C5—C4167.58 (18)
O3—Co1—N3—C51.9 (2)C10—N2—C9—C81.4 (4)
O1—Co1—N3—C5176.4 (2)N1—C8—C9—N21.7 (4)
O5—Co1—N3—C589.1 (2)C7—C8—C9—N2177.9 (2)
N1—Co1—N3—C553 (6)C8—N1—C12—C101.2 (4)
O6—Co1—N3—C593.7 (2)Co1—N1—C12—C10174.60 (17)
O3—Co1—N3—C2172.67 (16)N2—C10—C12—N11.5 (4)
O1—Co1—N3—C25.55 (16)C11—C10—C12—N1177.1 (3)
O5—Co1—N3—C281.75 (17)N3—C5—C4—N42.3 (4)
N1—Co1—N3—C2117 (5)N3—C5—C4—C6176.2 (3)
O6—Co1—N3—C295.46 (17)C5—C4—N4—C30.1 (4)
Co1—O1—C1—O2178.67 (19)C6—C4—N4—C3178.5 (3)
Co1—O1—C1—C22.4 (3)C4—N4—C3—C21.5 (4)
C12—N1—C8—C90.3 (3)N3—C2—C3—N41.0 (4)
Co1—N1—C8—C9176.80 (19)C1—C2—C3—N4178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7WA···N2i0.73 (3)2.27 (3)2.940 (3)154 (4)
O7—H7WB···O4ii0.91 (4)2.02 (4)2.915 (3)168 (3)
O7—H7WB···O3ii0.91 (4)2.65 (4)3.373 (3)137 (3)
O6—H6WA···O7iii0.76 (3)2.09 (3)2.838 (3)170 (3)
O6—H6WB···O2iv0.90 (3)1.88 (3)2.780 (3)173 (3)
O6—H6WB···O1iv0.90 (3)2.65 (3)3.318 (3)131 (2)
O8—H8WA···N4v0.78 (4)2.13 (4)2.861 (4)156 (4)
O8—H8WB···O2vi0.72 (3)2.03 (4)2.731 (3)165 (4)
O5—H5WB···O80.76 (3)1.90 (3)2.652 (4)170 (3)
O5—H5WA···O4vii0.72 (3)2.02 (3)2.738 (3)174 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z+2; (v) x+1/2, y1/2, z+5/2; (vi) x1/2, y+1/2, z1/2; (vii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C6H5N2O2)2(H2O)2]·2H2O
Mr405.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.092 (3), 13.588 (4), 12.287 (4)
β (°) 102.961 (6)
V3)1642.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.27 × 0.19 × 0.12
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.797, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
8089, 2914, 2150
Rint0.030
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.075, 1.02
No. of reflections2914
No. of parameters298
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7WA···N2i0.73 (3)2.27 (3)2.940 (3)154 (4)
O7—H7WB···O4ii0.91 (4)2.02 (4)2.915 (3)168 (3)
O7—H7WB···O3ii0.91 (4)2.65 (4)3.373 (3)137 (3)
O6—H6WA···O7iii0.76 (3)2.09 (3)2.838 (3)170 (3)
O6—H6WB···O2iv0.90 (3)1.88 (3)2.780 (3)173 (3)
O6—H6WB···O1iv0.90 (3)2.65 (3)3.318 (3)131 (2)
O8—H8WA···N4v0.78 (4)2.13 (4)2.861 (4)156 (4)
O8—H8WB···O2vi0.72 (3)2.03 (4)2.731 (3)165 (4)
O5—H5WB···O80.76 (3)1.90 (3)2.652 (4)170 (3)
O5—H5WA···O4vii0.72 (3)2.02 (3)2.738 (3)174 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z+2; (v) x+1/2, y1/2, z+5/2; (vi) x1/2, y+1/2, z1/2; (vii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the Scientific Research Program funded by Shaanxi Provincial Education Department (No. 11 J K0578), the Natural Science Foundation of Shaanxi Province (Nos. 2010JQ2007 and 2010 J K882) and the Science Foundation of Northwest University (No. 09NW11).

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChapman, C. T., Ciurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2002). Solid State Sci. 4, 1187–1189.  Web of Science CSD CrossRef CAS Google Scholar
First citationFan, G., Chen, S.-P. & Gao, S.-L. (2007). Acta Cryst. E63, m772–m773.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, F.-Y., Shang, R.-L., Du, L., Zhao, Q.-H. & Fang, R.-B. (2007). Acta Cryst. E63, m120–m122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (2000). Pol. J. Chem. 74, 877–883.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanase, S., Martin, V. S., Van Albada, G. A., DeGelder, R., Bouwman, E. & Reedijk, J. (2006). Polyhedron, 25, 2967–2975.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, F. Q., Mu, W. H., Zheng, X. J., Li, L. C., Fang, D. C. & Jin, L. P. (2008). Inorg. Chem. 47, 5225–5233.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds