inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium deca­borate monohydrate

aCollege of Chemistry & Chemical Engineering, Xianyang Nomal University, Xianyang 712000, People's Republic of China
*Correspondence e-mail: shanxiab@163.com

(Received 9 September 2011; accepted 23 September 2011; online 30 September 2011)

In the crystal structure of the title compound, K2[B10O14(OH)4]·H2O, the polyborate [B10O14(OH)4]2− anions are linked together through their common O atoms, forming a helical chain-like structure. Adjacent chains are further connected into a three-dimensional structure by O—H⋯O hydrogen bonds. The water mol­ecules and potassium cations are located between these chains. Further O—H⋯O hydrogen bonds occur between the anions and the water mol­ecules

Related literature

For phases previously obtained in the K2O—B2O3—H2O system, see: Marezio (1969[Marezio, M. (1969). Acta Cryst. B25, 1787-1795.]); Marezio et al. (1963[Marezio, M., Plettinger, H. A. & Zachariasen, W. H. (1963). Acta Cryst. 16, 975-980.]); Dewey et al. (1975[Dewey, C. F., Cook, W. R., Hodgson, R. T. & Wynne, J. J. (1975). Appl. Phys. Lett. 26, 714-716.]); Salentine (1987[Salentine, C. G. (1987). Inorg. Chem. 26, 128-132.]); Touboul et al. (2003[Touboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327-1342.]); Zhang et al. (2005[Zhang, H. X., Zhang, J., Zheng, S. T. & Yang, G. Y. (2005). Cryst. Growth Des. 5, 157-161.]); Wang et al. (2006[Wang, G. M., Sun, Y. Q., Zheng, S. T. & Yang, G. Y. (2006). Z. Anorg. Allg. Chem. 632, 1586-1590.]); Li et al. (2007[Li, H. J., Liu, Z. H. & Sun, L. M. (2007). Chin. J. Chem. . 25, 1131-1134.]). For a closely related structure, (NH4)2[B10O14(OH)4]·H2O, see: Li et al. (2003[Li, L.-Y., Li, G.-B., Xiong, M., Wang, Y.-X. & Lin, J.-H. (2003). Acta Cryst. C59, i115-i116.]). For the non-linear optical properties of alkali metal borates, see: Mori et al. (1995[Mori, Y., Kuroda, I., Nakajima, S., Sasaki, T. & Nakai, S. (1995). Jpn J. Appl. Phys. 34, 296-298.]).

Experimental

Crystal data
  • K2[B10O14(OH)4]·H2O

  • Mr = 496.35

  • Triclinic, [P \overline 1]

  • a = 7.5612 (7) Å

  • b = 9.2236 (10) Å

  • c = 11.7298 (13) Å

  • α = 99.038 (6)°

  • β = 106.595 (6)°

  • γ = 91.314 (6)°

  • V = 772.26 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 100 K

  • 0.16 × 0.08 × 0.05 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: numerical (SADABS, Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.895, Tmax = 0.962

  • 11219 measured reflections

  • 3148 independent reflections

  • 2141 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.113

  • S = 1.00

  • 3148 reflections

  • 298 parameters

  • 5 restraints

  • All H-atom parameters refined

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O11i 0.88 (2) 1.76 (2) 2.599 (3) 159 (3)
O9—H9⋯O18ii 0.87 (2) 1.98 (2) 2.797 (3) 157 (3)
O11—H11⋯O19iii 0.92 (2) 1.65 (2) 2.553 (3) 167 (3)
O18—H18⋯O5iv 0.89 (2) 2.10 (2) 2.940 (3) 157 (3)
O18—H18⋯O12iv 0.89 (2) 2.66 (3) 3.193 (3) 119 (3)
O19—H19A⋯O6v 0.90 (2) 1.79 (3) 2.678 (3) 169 (3)
O19—H19B⋯O16vi 0.91 (2) 1.79 (3) 2.696 (3) 173 (3)
Symmetry codes: (i) x-1, y-1, z; (ii) x-1, y, z; (iii) x+1, y+1, z; (iv) -x+2, -y+1, -z+2; (v) -x, -y, -z+1; (vi) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Boron can form many compounds because of the complexity of the structures involved. In the past several decades, much interest has focused on studies of alkali metals borates because some of these compounds show interesting physical properties, such as nonlinear optical behavior for CsLiB6O10 (Mori et al., 1995). So far, several phases had been obtained in the K2O—B2O3—H2O system (Marezio et al., 1963; Marezio, 1969; Dewey et al., 1975; Salentine,1987; Touboul et al., 2003; Zhang et al., 2005; Wang et al., 2006; Li et al., 2007). In this paper, we describe the synthesis and the crystal structure of a new potassium borate of K2[B10O14(OH)4].H2O.

Single crystal diffraction has revealed that the title compound crystallizes in the triclinic space group P-1. It is composed of two K+ cation and polyborate anion [B10O14(OH)4]2- (Fig.1), which is closely related to the reported compound of (NH4)2[B10O14(OH)4].H2O (Li et al., 2003).

The [B10O14(OH)4]2- anion could be considered as two [B5O7(OH)2]- cluster linked by the common oxygen atom (O3). Each of the [B5O7(OH)2]- cluster consists of two six-membered rings linked by a common BO4 tetrahedron. Each six-membered ring consists of one BO3 triangle, one BO2(OH) triangle and a common BO4 tetrahedron. The [B10O14(OH)4]2- units are linked together through common oxygen atoms (O17) to neighboring units, forming a 1-D helical chainlike structure (Fig. 2). Adjacent chains are further connected into a three-dimensional structure by O—H···O hydrogen bonds interactions (Fig.3). Water molecules and potassium ions are located among these chains. In addition, there exist O—H···O hydrogen bonds between the oxygen atoms in polyborate anions and Water molecules (Table 1).

Related literature top

For phases previously obtained in the K2O—B2O3—H2O system, see: Marezio (1969); Marezio et al. (1963); Dewey et al. (1975); Salentine (1987); Touboul et al. (2003); Zhang et al. (2005); Wang et al. (2006); Li et al. (2007). For a closely related structure, (NH4)2[B10O14(OH)4].H2O, see: Li et al. (2003). For the non-linear optical properties of alkali metal borates, see: Mori et al. (1995).

Experimental top

All reagents used in the synthesis were of analytic grade and were used without further purification. A mixture of K2TeO4 (0.216 g) and H3BO3 (0.992 g) was sealed in a teflon-lined bomb and heated at 473 K for 5 days and then cooled to room temperature. The resulting colorless and transparent crystals were recovered by washed with deionized water and dried at room temperature.

Refinement top

Hydroxyl and water H atoms were identified from a difference Fourier map and were included in with refined positional parameters.

Structure description top

Boron can form many compounds because of the complexity of the structures involved. In the past several decades, much interest has focused on studies of alkali metals borates because some of these compounds show interesting physical properties, such as nonlinear optical behavior for CsLiB6O10 (Mori et al., 1995). So far, several phases had been obtained in the K2O—B2O3—H2O system (Marezio et al., 1963; Marezio, 1969; Dewey et al., 1975; Salentine,1987; Touboul et al., 2003; Zhang et al., 2005; Wang et al., 2006; Li et al., 2007). In this paper, we describe the synthesis and the crystal structure of a new potassium borate of K2[B10O14(OH)4].H2O.

Single crystal diffraction has revealed that the title compound crystallizes in the triclinic space group P-1. It is composed of two K+ cation and polyborate anion [B10O14(OH)4]2- (Fig.1), which is closely related to the reported compound of (NH4)2[B10O14(OH)4].H2O (Li et al., 2003).

The [B10O14(OH)4]2- anion could be considered as two [B5O7(OH)2]- cluster linked by the common oxygen atom (O3). Each of the [B5O7(OH)2]- cluster consists of two six-membered rings linked by a common BO4 tetrahedron. Each six-membered ring consists of one BO3 triangle, one BO2(OH) triangle and a common BO4 tetrahedron. The [B10O14(OH)4]2- units are linked together through common oxygen atoms (O17) to neighboring units, forming a 1-D helical chainlike structure (Fig. 2). Adjacent chains are further connected into a three-dimensional structure by O—H···O hydrogen bonds interactions (Fig.3). Water molecules and potassium ions are located among these chains. In addition, there exist O—H···O hydrogen bonds between the oxygen atoms in polyborate anions and Water molecules (Table 1).

For phases previously obtained in the K2O—B2O3—H2O system, see: Marezio (1969); Marezio et al. (1963); Dewey et al. (1975); Salentine (1987); Touboul et al. (2003); Zhang et al. (2005); Wang et al. (2006); Li et al. (2007). For a closely related structure, (NH4)2[B10O14(OH)4].H2O, see: Li et al. (2003). For the non-linear optical properties of alkali metal borates, see: Mori et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The asymmetric unit structure of title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The one-dimensional chain structure constructed by [B10O14(OH)4]2- units. B, O and H atoms are shown as yellow, red and green, respectively.
[Figure 3] Fig. 3. Packing View along the c axis of title compound, showing three-dimensional structure constructed by O—H···O hydrogen bonds, where all potassium cations are omitted for clarity. B, O and H atoms are shown as yellow, red and green, respectively.
(I) top
Crystal data top
H6B10K2O19Z = 2
Mr = 496.35F(000) = 492
Triclinic, P1Dx = 2.135 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5612 (7) ÅCell parameters from 1883 reflections
b = 9.2236 (10) Åθ = 2.6–23.1°
c = 11.7298 (13) ŵ = 0.72 mm1
α = 99.038 (6)°T = 100 K
β = 106.595 (6)°Rod, colorless
γ = 91.314 (6)°0.16 × 0.08 × 0.05 mm
V = 772.26 (14) Å3
Data collection top
Bruker APEXII
diffractometer
3148 independent reflections
Radiation source: fine-focus sealed tube2141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 83.33 pixels mm-1θmax = 26.5°, θmin = 1.8°
combination of ω and φ–scansh = 97
Absorption correction: numerical
(SADABS, Sheldrick, 2008a)
k = 1111
Tmin = 0.895, Tmax = 0.962l = 1314
11219 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0546P)2]
where P = (Fo2 + 2Fc2)/3
3148 reflections(Δ/σ)max = 0.002
298 parametersΔρmax = 0.42 e Å3
5 restraintsΔρmin = 0.46 e Å3
Crystal data top
H6B10K2O19γ = 91.314 (6)°
Mr = 496.35V = 772.26 (14) Å3
Triclinic, P1Z = 2
a = 7.5612 (7) ÅMo Kα radiation
b = 9.2236 (10) ŵ = 0.72 mm1
c = 11.7298 (13) ÅT = 100 K
α = 99.038 (6)°0.16 × 0.08 × 0.05 mm
β = 106.595 (6)°
Data collection top
Bruker APEXII
diffractometer
3148 independent reflections
Absorption correction: numerical
(SADABS, Sheldrick, 2008a)
2141 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.962Rint = 0.055
11219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0455 restraints
wR(F2) = 0.113All H-atom parameters refined
S = 1.00Δρmax = 0.42 e Å3
3148 reflectionsΔρmin = 0.46 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Hydroxyl and water H atoms were identified from a difference Fourier map and were included in with refined positional parameters. The thermal parameters of these H atoms were tied to that of the oxygen to which they are bonded. Mild O—H distances restraints were applied. All of the H atoms form good H-bonds to nearby O atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.02003 (11)0.04398 (8)0.24158 (6)0.0193 (2)
K20.57020 (11)0.25524 (8)0.28774 (7)0.0228 (2)
O10.1964 (3)0.0442 (2)0.46853 (19)0.0157 (5)
H10.132 (4)0.108 (3)0.492 (3)0.019*
O20.4077 (3)0.1569 (2)0.51318 (18)0.0135 (5)
O30.6155 (3)0.3561 (2)0.54323 (18)0.0133 (5)
O40.3447 (3)0.0566 (2)0.67480 (18)0.0137 (5)
O50.5940 (3)0.2474 (2)0.71450 (18)0.0129 (5)
O60.4224 (3)0.2380 (2)0.85610 (18)0.0135 (5)
O70.6184 (3)0.1485 (2)1.02546 (18)0.0133 (5)
O80.6280 (3)0.0473 (2)0.82680 (18)0.0137 (5)
O90.4452 (3)0.3433 (2)1.06130 (19)0.0158 (5)
H90.372 (4)0.410 (3)1.037 (3)0.019*
O100.8021 (3)0.5425 (2)0.51410 (18)0.0142 (5)
O110.9851 (3)0.7373 (2)0.48289 (19)0.0162 (5)
H110.948 (4)0.698 (3)0.4022 (17)0.019*
O120.7542 (3)0.5525 (2)0.70700 (18)0.0134 (5)
O130.9867 (3)0.7205 (2)0.67953 (18)0.0148 (5)
O140.8285 (3)0.7940 (2)0.82488 (18)0.0129 (5)
O150.9989 (3)0.7625 (2)1.02361 (18)0.0131 (5)
O161.0478 (3)0.6058 (2)0.85501 (19)0.0144 (5)
O170.7994 (3)0.9505 (2)1.00052 (18)0.0122 (5)
O181.2111 (3)0.5743 (2)1.04997 (19)0.0149 (5)
H181.247 (4)0.615 (3)1.1280 (17)0.018*
O190.0980 (4)0.3366 (3)0.2539 (2)0.0208 (6)
H19A0.213 (4)0.315 (4)0.214 (3)0.025*
H19B0.079 (5)0.424 (3)0.213 (3)0.025*
B10.3158 (5)0.0559 (4)0.5553 (3)0.0130 (8)
B20.5436 (5)0.2550 (4)0.5960 (3)0.0114 (8)
B30.4978 (5)0.1472 (4)0.7673 (3)0.0133 (8)
B40.4912 (5)0.2461 (4)0.9766 (3)0.0130 (8)
B50.6787 (5)0.0482 (4)0.9462 (3)0.0126 (8)
B60.7263 (5)0.4844 (4)0.5928 (3)0.0144 (8)
B70.9241 (5)0.6669 (4)0.5601 (3)0.0145 (8)
B80.9041 (5)0.6680 (4)0.7659 (3)0.0125 (8)
B90.8708 (5)0.8327 (4)0.9451 (3)0.0139 (8)
B101.0838 (5)0.6471 (4)0.9752 (3)0.0131 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0252 (5)0.0164 (4)0.0155 (4)0.0002 (3)0.0045 (3)0.0032 (3)
K20.0245 (5)0.0231 (4)0.0189 (4)0.0053 (3)0.0034 (3)0.0028 (3)
O10.0177 (14)0.0115 (12)0.0170 (12)0.0047 (10)0.0038 (10)0.0028 (9)
O20.0161 (13)0.0119 (12)0.0119 (11)0.0017 (10)0.0038 (10)0.0015 (9)
O30.0137 (13)0.0117 (12)0.0138 (11)0.0025 (10)0.0036 (10)0.0017 (9)
O40.0138 (13)0.0139 (12)0.0123 (12)0.0025 (10)0.0025 (10)0.0020 (9)
O50.0150 (13)0.0118 (12)0.0123 (11)0.0014 (10)0.0044 (10)0.0029 (9)
O60.0152 (13)0.0134 (12)0.0129 (12)0.0023 (10)0.0050 (10)0.0031 (9)
O70.0124 (13)0.0140 (12)0.0136 (12)0.0031 (10)0.0040 (10)0.0015 (9)
O80.0143 (13)0.0132 (12)0.0132 (12)0.0028 (10)0.0038 (10)0.0016 (9)
O90.0181 (14)0.0137 (12)0.0169 (12)0.0052 (10)0.0065 (10)0.0030 (10)
O100.0174 (14)0.0122 (12)0.0134 (12)0.0025 (10)0.0065 (10)0.0000 (9)
O110.0186 (14)0.0148 (12)0.0155 (12)0.0012 (10)0.0061 (11)0.0016 (10)
O120.0131 (13)0.0116 (12)0.0150 (12)0.0032 (9)0.0045 (10)0.0010 (9)
O130.0171 (14)0.0125 (12)0.0150 (12)0.0008 (10)0.0048 (10)0.0031 (9)
O140.0136 (13)0.0116 (12)0.0132 (12)0.0015 (9)0.0039 (10)0.0014 (9)
O150.0136 (13)0.0108 (12)0.0141 (12)0.0041 (10)0.0028 (10)0.0015 (9)
O160.0141 (13)0.0128 (12)0.0146 (12)0.0021 (10)0.0019 (10)0.0017 (9)
O170.0135 (13)0.0101 (11)0.0126 (11)0.0015 (9)0.0037 (9)0.0010 (9)
O180.0161 (14)0.0143 (12)0.0128 (12)0.0027 (10)0.0023 (10)0.0013 (10)
O190.0255 (16)0.0176 (13)0.0182 (13)0.0077 (12)0.0048 (11)0.0015 (10)
B10.012 (2)0.0091 (18)0.020 (2)0.0032 (16)0.0077 (17)0.0047 (15)
B20.008 (2)0.0087 (18)0.018 (2)0.0039 (15)0.0052 (16)0.0012 (15)
B30.012 (2)0.014 (2)0.014 (2)0.0037 (16)0.0050 (16)0.0009 (15)
B40.012 (2)0.0109 (19)0.017 (2)0.0034 (16)0.0061 (16)0.0010 (15)
B50.011 (2)0.0112 (19)0.016 (2)0.0019 (16)0.0053 (16)0.0002 (15)
B60.012 (2)0.0109 (19)0.020 (2)0.0038 (16)0.0038 (17)0.0052 (16)
B70.010 (2)0.0108 (19)0.023 (2)0.0028 (15)0.0047 (17)0.0036 (16)
B80.011 (2)0.0099 (19)0.016 (2)0.0008 (15)0.0042 (16)0.0014 (15)
B90.012 (2)0.0108 (19)0.020 (2)0.0033 (15)0.0054 (16)0.0030 (16)
B100.012 (2)0.0094 (19)0.017 (2)0.0020 (16)0.0031 (16)0.0034 (15)
Geometric parameters (Å, º) top
K1—O12.615 (2)O8—B51.341 (4)
K1—O17i2.835 (2)O8—B31.469 (4)
K1—O15i2.841 (2)O8—K1iii2.990 (2)
K1—O192.861 (3)O8—K2iii3.052 (2)
K1—O14ii2.862 (2)O9—B41.358 (4)
K1—O13ii2.988 (2)O9—K2viii2.808 (2)
K1—O8iii2.990 (2)O9—H90.865 (18)
K1—O4iv3.185 (2)O10—B61.383 (4)
K1—B9i3.335 (4)O10—B71.390 (4)
K1—B9ii3.402 (4)O11—B71.366 (4)
K1—B8ii3.521 (4)O11—H110.918 (18)
K1—B5iii3.589 (4)O12—B61.342 (4)
K1—H12.97 (3)O12—B81.472 (4)
K1—H19A2.95 (4)O12—K2ii3.069 (2)
K2—O9v2.808 (2)O13—B71.350 (4)
K2—O32.913 (2)O13—B81.468 (4)
K2—O14ii2.918 (2)O13—K1ii2.988 (2)
K2—O4iii3.033 (2)O13—K2vi3.260 (2)
K2—O8iii3.052 (2)O14—B91.340 (4)
K2—O12ii3.069 (2)O14—B81.469 (4)
K2—O7v3.205 (2)O14—K1ii2.862 (2)
K2—O13vi3.260 (2)O14—K2ii2.918 (2)
K2—B4v3.513 (4)O15—B91.383 (4)
K2—B8ii3.568 (4)O15—B101.385 (4)
K2—K1vii4.5268 (12)O15—K1ix2.840 (2)
O1—B11.358 (4)O16—B101.347 (4)
O1—H10.881 (18)O16—B81.473 (4)
O2—B11.380 (4)O17—B91.379 (4)
O2—B21.389 (4)O17—B5x1.392 (4)
O3—B61.378 (4)O17—K1ix2.835 (2)
O3—B21.378 (4)O18—B101.370 (4)
O4—B11.355 (4)O18—H180.892 (18)
O4—B31.473 (4)O19—H19A0.90 (2)
O4—K2iii3.033 (2)O19—H19B0.91 (2)
O4—K1iv3.185 (2)B4—K2viii3.513 (4)
O5—B21.346 (4)B5—O17xi1.392 (4)
O5—B31.474 (4)B5—K1iii3.589 (4)
O6—B41.349 (4)B8—K1ii3.521 (4)
O6—B31.483 (4)B8—K2ii3.567 (4)
O7—B51.386 (4)B9—K1ix3.335 (4)
O7—B41.396 (4)B9—K1ii3.402 (4)
O7—K2viii3.205 (2)
O1—K1—O17i174.90 (7)B4v—K2—B8ii85.73 (9)
O1—K1—O15i133.58 (7)O9v—K2—K1vii102.67 (5)
O17i—K1—O15i48.29 (6)O3—K2—K1vii110.21 (5)
O1—K1—O1982.07 (7)O14ii—K2—K1vii128.57 (5)
O17i—K1—O1995.19 (7)O4iii—K2—K1vii44.62 (4)
O15i—K1—O1969.42 (7)O8iii—K2—K1vii74.44 (4)
O1—K1—O14ii106.78 (7)O12ii—K2—K1vii174.44 (5)
O17i—K1—O14ii76.92 (6)O7v—K2—K1vii59.57 (4)
O15i—K1—O14ii95.24 (6)O13vi—K2—K1vii41.24 (4)
O19—K1—O14ii163.93 (7)B4v—K2—K1vii82.73 (7)
O1—K1—O13ii84.58 (7)B8ii—K2—K1vii151.92 (6)
O17i—K1—O13ii95.68 (6)O9v—K2—K195.28 (5)
O15i—K1—O13ii137.05 (6)O3—K2—K192.11 (5)
O19—K1—O13ii148.03 (7)O14ii—K2—K133.68 (4)
O14ii—K1—O13ii47.83 (6)O4iii—K2—K168.36 (5)
O1—K1—O8iii92.13 (7)O8iii—K2—K137.13 (4)
O17i—K1—O8iii92.85 (6)O12ii—K2—K169.44 (4)
O15i—K1—O8iii65.98 (6)O7v—K2—K198.32 (4)
O19—K1—O8iii109.80 (7)O13vi—K2—K1148.91 (4)
O14ii—K1—O8iii57.44 (6)B4v—K2—K194.67 (6)
O13ii—K1—O8iii99.57 (6)B8ii—K2—K147.09 (6)
O1—K1—O4iv85.11 (7)K1vii—K2—K1108.49 (2)
O17i—K1—O4iv89.86 (6)B1—O1—K1133.0 (2)
O15i—K1—O4iv114.24 (6)B1—O1—H1118 (2)
O19—K1—O4iv67.25 (6)K1—O1—H1105 (2)
O14ii—K1—O4iv125.91 (6)B1—O2—B2118.7 (3)
O13ii—K1—O4iv82.81 (6)B6—O3—B2131.3 (3)
O8iii—K1—O4iv176.19 (6)B6—O3—K2114.9 (2)
O1—K1—B9i157.71 (9)B2—O3—K2113.08 (18)
O17i—K1—B9i24.12 (8)B1—O4—B3122.0 (3)
O15i—K1—B9i24.22 (8)B1—O4—K2iii105.55 (18)
O19—K1—B9i82.81 (8)B3—O4—K2iii103.33 (17)
O14ii—K1—B9i84.64 (8)B1—O4—K1iv115.2 (2)
O13ii—K1—B9i116.44 (8)B3—O4—K1iv111.89 (18)
O8iii—K1—B9i77.75 (8)K2iii—O4—K1iv93.40 (6)
O4iv—K1—B9i103.92 (8)B2—O5—B3123.1 (3)
O1—K1—B9ii127.37 (8)B4—O6—B3123.6 (3)
O17i—K1—B9ii56.94 (8)B5—O7—B4117.8 (3)
O15i—K1—B9ii73.78 (8)B5—O7—K2viii150.4 (2)
O19—K1—B9ii143.12 (8)B4—O7—K2viii90.76 (18)
O14ii—K1—B9ii22.67 (7)B5—O8—B3123.5 (3)
O13ii—K1—B9ii65.68 (8)B5—O8—K1iii105.5 (2)
O8iii—K1—B9ii54.80 (8)B3—O8—K1iii113.16 (19)
O4iv—K1—B9ii129.01 (8)B5—O8—K2iii105.48 (19)
B9i—K1—B9ii62.00 (11)B3—O8—K2iii102.58 (18)
O1—K1—B8ii98.97 (8)K1iii—O8—K2iii104.84 (6)
O17i—K1—B8ii83.04 (7)B4—O9—K2viii110.0 (2)
O15i—K1—B8ii115.06 (8)B4—O9—H9118 (2)
O19—K1—B8ii170.63 (8)K2viii—O9—H9131 (2)
O14ii—K1—B8ii23.88 (7)B6—O10—B7117.7 (3)
O13ii—K1—B8ii24.34 (7)B7—O11—H11118 (2)
O8iii—K1—B8ii79.52 (8)B6—O12—B8122.0 (3)
O4iv—K1—B8ii103.49 (7)B6—O12—K2ii107.8 (2)
B9i—K1—B8ii98.62 (9)B8—O12—K2ii97.29 (18)
B9ii—K1—B8ii41.76 (8)B7—O13—B8121.6 (3)
O1—K1—B5iii113.22 (8)B7—O13—K1ii117.81 (19)
O17i—K1—B5iii71.76 (7)B8—O13—K1ii98.63 (17)
O15i—K1—B5iii51.42 (7)B7—O13—K2vi99.5 (2)
O19—K1—B5iii111.08 (8)B8—O13—K2vi124.05 (19)
O14ii—K1—B5iii53.30 (7)K1ii—O13—K2vi92.77 (6)
O13ii—K1—B5iii100.87 (7)B9—O14—B8123.0 (3)
O8iii—K1—B5iii21.09 (7)B9—O14—K1ii101.92 (19)
O4iv—K1—B5iii161.47 (7)B8—O14—K1ii104.07 (18)
B9i—K1—B5iii58.07 (9)B9—O14—K2ii111.8 (2)
B9ii—K1—B5iii41.61 (9)B8—O14—K2ii103.88 (18)
B8ii—K1—B5iii77.18 (8)K1ii—O14—K2ii111.90 (7)
O1—K1—H116.6 (4)B9—O15—B10118.2 (3)
O17i—K1—H1158.9 (5)B9—O15—K1ix98.35 (19)
O15i—K1—H1128.2 (6)B10—O15—K1ix142.67 (19)
O19—K1—H167.4 (5)B10—O16—B8123.4 (3)
O14ii—K1—H1122.9 (5)B9—O17—B5x127.9 (3)
O13ii—K1—H194.0 (6)B9—O17—K1ix98.70 (19)
O8iii—K1—H1104.0 (6)B5x—O17—K1ix132.52 (19)
O4iv—K1—H172.8 (6)B10—O18—H18116 (2)
B9i—K1—H1149.0 (5)K1—O19—H19A87 (2)
B9ii—K1—H1143.9 (5)K1—O19—H19B129 (2)
B8ii—K1—H1112.2 (5)H19A—O19—H19B106 (3)
B5iii—K1—H1124.6 (6)O4—B1—O1122.8 (3)
O1—K1—H19A94.6 (6)O4—B1—O2122.0 (3)
O17i—K1—H19A81.8 (6)O1—B1—O2115.2 (3)
O15i—K1—H19A68.3 (7)O5—B2—O3125.8 (3)
O19—K1—H19A17.8 (5)O5—B2—O2121.4 (3)
O14ii—K1—H19A158.6 (6)O3—B2—O2112.9 (3)
O13ii—K1—H19A138.3 (6)O8—B3—O4107.8 (3)
O8iii—K1—H19A122.1 (6)O8—B3—O5109.8 (3)
O4iv—K1—H19A55.7 (6)O4—B3—O5111.9 (3)
B9i—K1—H19A74.9 (6)O8—B3—O6110.3 (3)
B9ii—K1—H19A136.6 (6)O4—B3—O6109.0 (3)
B8ii—K1—H19A154.1 (5)O5—B3—O6108.0 (3)
B5iii—K1—H19A117.3 (7)O6—B4—O9125.4 (3)
H1—K1—H19A78.5 (7)O6—B4—O7121.1 (3)
O9v—K2—O3141.92 (7)O9—B4—O7113.5 (3)
O9v—K2—O14ii65.70 (6)O6—B4—K2viii167.7 (2)
O3—K2—O14ii105.21 (6)O9—B4—K2viii48.70 (16)
O9v—K2—O4iii124.58 (6)O7—B4—K2viii65.83 (16)
O3—K2—O4iii92.81 (6)O8—B5—O7122.7 (3)
O14ii—K2—O4iii98.79 (6)O8—B5—O17xi122.6 (3)
O9v—K2—O8iii88.70 (6)O7—B5—O17xi114.7 (3)
O3—K2—O8iii117.87 (6)O8—B5—K1iii53.38 (16)
O14ii—K2—O8iii56.20 (6)O7—B5—K1iii138.7 (2)
O4iii—K2—O8iii45.99 (6)O17xi—B5—K1iii83.00 (19)
O9v—K2—O12ii72.67 (6)O12—B6—O3123.4 (3)
O3—K2—O12ii75.21 (6)O12—B6—O10121.7 (3)
O14ii—K2—O12ii47.02 (6)O3—B6—O10114.8 (3)
O4iii—K2—O12ii135.50 (6)O13—B7—O11118.4 (3)
O8iii—K2—O12ii102.11 (6)O13—B7—O10122.2 (3)
O9v—K2—O7v44.43 (6)O11—B7—O10119.4 (3)
O3—K2—O7v167.31 (6)O13—B8—O14107.9 (3)
O14ii—K2—O7v87.46 (6)O13—B8—O12112.3 (3)
O4iii—K2—O7v84.39 (6)O14—B8—O12108.8 (3)
O8iii—K2—O7v68.47 (6)O13—B8—O16109.0 (3)
O12ii—K2—O7v115.24 (6)O14—B8—O16111.0 (3)
O9v—K2—O13vi98.63 (7)O12—B8—O16107.9 (3)
O3—K2—O13vi93.83 (6)O13—B8—K1ii57.03 (15)
O14ii—K2—O13vi160.94 (6)O14—B8—K1ii52.05 (14)
O4iii—K2—O13vi80.88 (6)O12—B8—K1ii136.1 (2)
O8iii—K2—O13vi115.44 (6)O16—B8—K1ii115.82 (19)
O12ii—K2—O13vi141.42 (6)O13—B8—K2ii112.4 (2)
O7v—K2—O13vi73.52 (6)O14—B8—K2ii52.56 (15)
O9v—K2—B4v21.30 (7)O12—B8—K2ii58.56 (15)
O3—K2—B4v162.61 (8)O16—B8—K2ii138.4 (2)
O14ii—K2—B4v72.97 (8)K1ii—B8—K2ii85.00 (8)
O4iii—K2—B4v104.57 (7)O14—B9—O17123.1 (3)
O8iii—K2—B4v76.05 (7)O14—B9—O15122.4 (3)
O12ii—K2—B4v92.23 (8)O17—B9—O15114.4 (3)
O7v—K2—B4v23.41 (7)O14—B9—K1ix172.8 (2)
O13vi—K2—B4v88.60 (8)O17—B9—K1ix57.17 (16)
O9v—K2—B8ii71.35 (8)O15—B9—K1ix57.43 (16)
O3—K2—B8ii87.22 (7)O14—B9—K1ii55.40 (16)
O14ii—K2—B8ii23.57 (7)O17—B9—K1ii90.79 (19)
O4iii—K2—B8ii115.36 (8)O15—B9—K1ii123.9 (2)
O8iii—K2—B8ii77.97 (7)K1ix—B9—K1ii118.00 (11)
O12ii—K2—B8ii24.15 (7)O16—B10—O18118.4 (3)
O7v—K2—B8ii105.18 (7)O16—B10—O15121.5 (3)
O13vi—K2—B8ii163.68 (7)O18—B10—O15120.0 (3)
O1—K1—K2—O9v171.23 (7)B8ii—K2—O3—B275.7 (2)
O17i—K1—K2—O9v6.68 (7)K1vii—K2—O3—B281.7 (2)
O15i—K1—K2—O9v56.06 (7)K1—K2—O3—B228.9 (2)
O19—K1—K2—O9v126.23 (9)B3—O4—B1—O1168.5 (3)
O14ii—K1—K2—O9v27.88 (9)K2iii—O4—B1—O151.4 (4)
O13ii—K1—K2—O9v81.77 (7)K1iv—O4—B1—O150.1 (4)
O8iii—K1—K2—O9v80.80 (8)B3—O4—B1—O210.9 (5)
O4iv—K1—K2—O9v105.08 (9)K2iii—O4—B1—O2128.0 (3)
B9i—K1—K2—O9v31.46 (8)K1iv—O4—B1—O2130.5 (3)
B9ii—K1—K2—O9v1.60 (10)K1—O1—B1—O4157.5 (2)
B8ii—K1—K2—O9v58.36 (9)K1—O1—B1—O223.0 (4)
B5iii—K1—K2—O9v54.42 (9)B2—O2—B1—O44.9 (5)
O1—K1—K2—O328.62 (7)B2—O2—B1—O1174.6 (3)
O17i—K1—K2—O3149.28 (6)B3—O5—B2—O3173.0 (3)
O15i—K1—K2—O3161.33 (6)B3—O5—B2—O26.7 (5)
O19—K1—K2—O391.17 (9)B6—O3—B2—O512.3 (6)
O14ii—K1—K2—O3114.72 (9)K2—O3—B2—O5156.9 (3)
O13ii—K1—K2—O360.83 (6)B6—O3—B2—O2167.4 (3)
O8iii—K1—K2—O3136.60 (8)K2—O3—B2—O223.3 (3)
O4iv—K1—K2—O337.52 (9)B1—O2—B2—O53.9 (4)
B9i—K1—K2—O3174.06 (8)B1—O2—B2—O3175.8 (3)
B9ii—K1—K2—O3141.00 (10)B5—O8—B3—O4123.3 (3)
B8ii—K1—K2—O384.24 (9)K1iii—O8—B3—O4107.5 (2)
B5iii—K1—K2—O3162.98 (9)K2iii—O8—B3—O44.9 (3)
O1—K1—K2—O14ii143.35 (9)B5—O8—B3—O5114.5 (3)
O17i—K1—K2—O14ii34.55 (9)K1iii—O8—B3—O514.7 (3)
O15i—K1—K2—O14ii83.94 (9)K2iii—O8—B3—O5127.1 (2)
O19—K1—K2—O14ii154.10 (11)B5—O8—B3—O64.4 (4)
O13ii—K1—K2—O14ii53.89 (9)K1iii—O8—B3—O6133.6 (2)
O8iii—K1—K2—O14ii108.68 (10)K2iii—O8—B3—O6114.0 (2)
O4iv—K1—K2—O14ii77.20 (10)B1—O4—B3—O8113.3 (3)
B9i—K1—K2—O14ii59.34 (10)K2iii—O4—B3—O85.0 (3)
B9ii—K1—K2—O14ii26.28 (11)K1iv—O4—B3—O8104.2 (2)
B8ii—K1—K2—O14ii30.49 (10)B1—O4—B3—O57.6 (4)
B5iii—K1—K2—O14ii82.30 (11)K2iii—O4—B3—O5125.8 (2)
O1—K1—K2—O4iii63.57 (7)K1iv—O4—B3—O5134.9 (2)
O17i—K1—K2—O4iii118.53 (6)B1—O4—B3—O6126.9 (3)
O15i—K1—K2—O4iii69.14 (6)K2iii—O4—B3—O6114.8 (2)
O19—K1—K2—O4iii1.02 (9)K1iv—O4—B3—O615.6 (3)
O14ii—K1—K2—O4iii153.08 (9)B2—O5—B3—O8120.7 (3)
O13ii—K1—K2—O4iii153.02 (6)B2—O5—B3—O41.0 (4)
O8iii—K1—K2—O4iii44.41 (8)B2—O5—B3—O6118.9 (3)
O4iv—K1—K2—O4iii129.71 (10)B4—O6—B3—O811.5 (4)
B9i—K1—K2—O4iii93.75 (8)B4—O6—B3—O4129.8 (3)
B9ii—K1—K2—O4iii126.81 (10)B4—O6—B3—O5108.5 (3)
B8ii—K1—K2—O4iii176.43 (9)B3—O6—B4—O9169.7 (3)
B5iii—K1—K2—O4iii70.79 (9)B3—O6—B4—O711.6 (5)
O1—K1—K2—O8iii107.97 (9)B3—O6—B4—K2viii132.9 (10)
O17i—K1—K2—O8iii74.12 (8)K2viii—O9—B4—O6166.1 (3)
O15i—K1—K2—O8iii24.74 (8)K2viii—O9—B4—O712.7 (3)
O19—K1—K2—O8iii45.42 (10)B5—O7—B4—O63.3 (5)
O14ii—K1—K2—O8iii108.68 (10)K2viii—O7—B4—O6168.5 (3)
O13ii—K1—K2—O8iii162.57 (8)B5—O7—B4—O9177.9 (3)
O4iv—K1—K2—O8iii174.12 (10)K2viii—O7—B4—O910.4 (3)
B9i—K1—K2—O8iii49.34 (9)B5—O7—B4—K2viii171.7 (3)
B9ii—K1—K2—O8iii82.40 (11)B3—O8—B5—O72.9 (5)
B8ii—K1—K2—O8iii139.17 (10)K1iii—O8—B5—O7129.4 (3)
B5iii—K1—K2—O8iii26.38 (10)K2iii—O8—B5—O7119.9 (3)
O1—K1—K2—O12ii101.97 (7)B3—O8—B5—O17xi178.6 (3)
O17i—K1—K2—O12ii75.94 (6)K1iii—O8—B5—O17xi49.1 (4)
O15i—K1—K2—O12ii125.32 (6)K2iii—O8—B5—O17xi61.6 (3)
O19—K1—K2—O12ii164.51 (9)B3—O8—B5—K1iii132.3 (3)
O14ii—K1—K2—O12ii41.38 (8)K2iii—O8—B5—K1iii110.65 (13)
O13ii—K1—K2—O12ii12.51 (6)B4—O7—B5—O83.9 (5)
O8iii—K1—K2—O12ii150.06 (8)K2viii—O7—B5—O8166.9 (2)
O4iv—K1—K2—O12ii35.82 (8)B4—O7—B5—O17xi177.5 (3)
B9i—K1—K2—O12ii100.72 (8)K2viii—O7—B5—O17xi14.5 (6)
B9ii—K1—K2—O12ii67.66 (9)B4—O7—B5—K1iii73.8 (4)
B8ii—K1—K2—O12ii10.89 (9)K2viii—O7—B5—K1iii123.2 (3)
B5iii—K1—K2—O12ii123.68 (9)B8—O12—B6—O3165.6 (3)
O1—K1—K2—O7v144.12 (7)K2ii—O12—B6—O383.5 (3)
O17i—K1—K2—O7v37.98 (6)B8—O12—B6—O1017.2 (5)
O15i—K1—K2—O7v11.41 (6)K2ii—O12—B6—O1093.8 (3)
O19—K1—K2—O7v81.57 (9)B2—O3—B6—O1215.1 (6)
O14ii—K1—K2—O7v72.53 (8)K2—O3—B6—O12175.8 (2)
O13ii—K1—K2—O7v126.43 (6)B2—O3—B6—O10167.5 (3)
O8iii—K1—K2—O7v36.14 (8)K2—O3—B6—O101.6 (4)
O4iv—K1—K2—O7v149.74 (8)B7—O10—B6—O126.3 (5)
B9i—K1—K2—O7v13.20 (8)B7—O10—B6—O3176.2 (3)
B9ii—K1—K2—O7v46.26 (9)B8—O13—B7—O11169.1 (3)
B8ii—K1—K2—O7v103.02 (9)K1ii—O13—B7—O1147.5 (4)
B5iii—K1—K2—O7v9.76 (9)K2vi—O13—B7—O1150.7 (3)
O1—K1—K2—O13vi72.35 (10)B8—O13—B7—O1011.6 (5)
O17i—K1—K2—O13vi109.75 (9)K1ii—O13—B7—O10133.2 (3)
O15i—K1—K2—O13vi60.36 (9)K2vi—O13—B7—O10128.6 (3)
O19—K1—K2—O13vi9.80 (12)B6—O10—B7—O138.2 (5)
O14ii—K1—K2—O13vi144.30 (11)B6—O10—B7—O11172.5 (3)
O13ii—K1—K2—O13vi161.81 (12)B7—O13—B8—O14118.7 (3)
O8iii—K1—K2—O13vi35.62 (10)K1ii—O13—B8—O1411.6 (3)
O4iv—K1—K2—O13vi138.49 (10)K2vi—O13—B8—O14110.9 (2)
B9i—K1—K2—O13vi84.97 (11)B7—O13—B8—O121.2 (4)
B9ii—K1—K2—O13vi118.03 (12)K1ii—O13—B8—O12131.5 (2)
B8ii—K1—K2—O13vi174.79 (12)K2vi—O13—B8—O12129.2 (2)
B5iii—K1—K2—O13vi62.00 (11)B7—O13—B8—O16120.7 (3)
O1—K1—K2—B4v167.40 (8)K1ii—O13—B8—O16109.0 (2)
O17i—K1—K2—B4v14.70 (8)K2vi—O13—B8—O169.7 (3)
O15i—K1—K2—B4v34.69 (8)B7—O13—B8—K1ii130.3 (3)
O19—K1—K2—B4v104.85 (10)K2vi—O13—B8—K1ii99.29 (16)
O14ii—K1—K2—B4v49.25 (10)B7—O13—B8—K2ii62.6 (3)
O13ii—K1—K2—B4v103.14 (8)K1ii—O13—B8—K2ii67.70 (15)
O8iii—K1—K2—B4v59.43 (9)K2vi—O13—B8—K2ii166.99 (8)
O4iv—K1—K2—B4v126.46 (9)B9—O14—B8—O13127.0 (3)
B9i—K1—K2—B4v10.08 (9)K1ii—O14—B8—O1312.4 (3)
B9ii—K1—K2—B4v22.97 (11)K2ii—O14—B8—O13104.9 (2)
B8ii—K1—K2—B4v79.74 (10)B9—O14—B8—O12110.9 (3)
B5iii—K1—K2—B4v33.05 (10)K1ii—O14—B8—O12134.4 (2)
O1—K1—K2—B8ii112.86 (10)K2ii—O14—B8—O1217.1 (3)
O17i—K1—K2—B8ii65.04 (9)B9—O14—B8—O167.6 (4)
O15i—K1—K2—B8ii114.43 (9)K1ii—O14—B8—O16107.0 (2)
O19—K1—K2—B8ii175.41 (11)K2ii—O14—B8—O16135.7 (2)
O14ii—K1—K2—B8ii30.49 (10)B9—O14—B8—K1ii114.6 (3)
O13ii—K1—K2—B8ii23.40 (9)K2ii—O14—B8—K1ii117.26 (12)
O8iii—K1—K2—B8ii139.17 (10)B9—O14—B8—K2ii128.1 (3)
O4iv—K1—K2—B8ii46.71 (11)K1ii—O14—B8—K2ii117.26 (12)
B9i—K1—K2—B8ii89.82 (11)B6—O12—B8—O1312.9 (4)
B9ii—K1—K2—B8ii56.77 (11)K2ii—O12—B8—O13103.4 (2)
B5iii—K1—K2—B8ii112.79 (11)B6—O12—B8—O14132.3 (3)
O1—K1—K2—K1vii83.51 (6)K2ii—O12—B8—O1415.9 (2)
O17i—K1—K2—K1vii98.58 (5)B6—O12—B8—O16107.2 (3)
O15i—K1—K2—K1vii49.20 (5)K2ii—O12—B8—O16136.4 (2)
O19—K1—K2—K1vii20.96 (9)B6—O12—B8—K1ii77.9 (4)
O14ii—K1—K2—K1vii133.14 (8)K2ii—O12—B8—K1ii38.4 (3)
O13ii—K1—K2—K1vii172.97 (5)B6—O12—B8—K2ii116.4 (3)
O8iii—K1—K2—K1vii24.46 (7)B10—O16—B8—O13127.4 (3)
O4iv—K1—K2—K1vii149.66 (7)B10—O16—B8—O148.7 (4)
B9i—K1—K2—K1vii73.80 (7)B10—O16—B8—O12110.5 (3)
B9ii—K1—K2—K1vii106.86 (9)B10—O16—B8—K1ii65.6 (3)
B8ii—K1—K2—K1vii163.63 (8)B10—O16—B8—K2ii48.0 (4)
B5iii—K1—K2—K1vii50.84 (8)B8—O14—B9—O17179.7 (3)
O17i—K1—O1—B1125.6 (7)K1ii—O14—B9—O1764.6 (3)
O15i—K1—O1—B1125.2 (3)K2ii—O14—B9—O1755.1 (4)
O19—K1—O1—B1176.7 (3)B8—O14—B9—O154.2 (5)
O14ii—K1—O1—B110.5 (3)K1ii—O14—B9—O15111.5 (3)
O13ii—K1—O1—B132.4 (3)K2ii—O14—B9—O15128.9 (3)
O8iii—K1—O1—B167.0 (3)B8—O14—B9—K1ix90.4 (19)
O4iv—K1—O1—B1115.6 (3)K1ii—O14—B9—K1ix25 (2)
B9i—K1—O1—B1129.0 (3)K2ii—O14—B9—K1ix145.0 (19)
B9ii—K1—O1—B121.2 (3)B8—O14—B9—K1ii115.7 (3)
B8ii—K1—O1—B112.7 (3)K2ii—O14—B9—K1ii119.68 (15)
B5iii—K1—O1—B167.1 (3)B5x—O17—B9—O141.0 (5)
O9v—K2—O3—B658.7 (2)K1ix—O17—B9—O14171.4 (3)
O14ii—K2—O3—B6128.5 (2)B5x—O17—B9—O15175.3 (3)
O4iii—K2—O3—B6131.6 (2)K1ix—O17—B9—O154.9 (3)
O8iii—K2—O3—B6172.0 (2)B5x—O17—B9—K1ix170.3 (3)
O12ii—K2—O3—B691.9 (2)B5x—O17—B9—K1ii47.0 (3)
O7v—K2—O3—B654.7 (4)K1ix—O17—B9—K1ii123.35 (8)
O13vi—K2—O3—B650.5 (2)B10—O15—B9—O140.8 (5)
B4v—K2—O3—B647.0 (4)K1ix—O15—B9—O14171.4 (3)
B8ii—K2—O3—B6113.1 (2)B10—O15—B9—O17177.1 (3)
K1vii—K2—O3—B689.4 (2)K1ix—O15—B9—O174.9 (3)
K1—K2—O3—B6160.0 (2)B10—O15—B9—K1ix172.2 (3)
O9v—K2—O3—B2130.2 (2)B10—O15—B9—K1ii68.3 (3)
O14ii—K2—O3—B260.3 (2)K1ix—O15—B9—K1ii103.98 (19)
O4iii—K2—O3—B239.5 (2)B8—O16—B10—O18175.3 (3)
O8iii—K2—O3—B20.9 (2)B8—O16—B10—O156.3 (5)
O12ii—K2—O3—B297.0 (2)B9—O15—B10—O161.8 (5)
O7v—K2—O3—B2116.4 (3)K1ix—O15—B10—O16165.4 (2)
O13vi—K2—O3—B2120.6 (2)B9—O15—B10—O18179.8 (3)
B4v—K2—O3—B2141.9 (3)K1ix—O15—B10—O1813.0 (5)
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x, y, z1; (vi) x+2, y+1, z+1; (vii) x+1, y, z; (viii) x, y, z+1; (ix) x+1, y+1, z+1; (x) x, y+1, z; (xi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O11xii0.88 (2)1.76 (2)2.599 (3)159 (3)
O9—H9···O18xiii0.87 (2)1.98 (2)2.797 (3)157 (3)
O11—H11···O19xiv0.92 (2)1.65 (2)2.553 (3)167 (3)
O18—H18···O5xv0.89 (2)2.10 (2)2.940 (3)157 (3)
O18—H18···O12xv0.89 (2)2.66 (3)3.193 (3)119 (3)
O19—H19A···O6iv0.90 (2)1.79 (3)2.678 (3)169 (3)
O19—H19B···O16iii0.91 (2)1.79 (3)2.696 (3)173 (3)
Symmetry codes: (iii) x+1, y, z+1; (iv) x, y, z+1; (xii) x1, y1, z; (xiii) x1, y, z; (xiv) x+1, y+1, z; (xv) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaH6B10K2O19
Mr496.35
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5612 (7), 9.2236 (10), 11.7298 (13)
α, β, γ (°)99.038 (6), 106.595 (6), 91.314 (6)
V3)772.26 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.16 × 0.08 × 0.05
Data collection
DiffractometerBruker APEXII
Absorption correctionNumerical
(SADABS, Sheldrick, 2008a)
Tmin, Tmax0.895, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
11219, 3148, 2141
Rint0.055
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.00
No. of reflections3148
No. of parameters298
No. of restraints5
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.42, 0.46

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O11i0.881 (18)1.76 (2)2.599 (3)159 (3)
O9—H9···O18ii0.865 (18)1.98 (2)2.797 (3)157 (3)
O11—H11···O19iii0.918 (18)1.651 (19)2.553 (3)167 (3)
O18—H18···O5iv0.892 (18)2.10 (2)2.940 (3)157 (3)
O18—H18···O12iv0.892 (18)2.66 (3)3.193 (3)119 (3)
O19—H19A···O6v0.90 (2)1.79 (3)2.678 (3)169 (3)
O19—H19B···O16vi0.91 (2)1.79 (3)2.696 (3)173 (3)
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+2, y+1, z+2; (v) x, y, z+1; (vi) x+1, y, z+1.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 20871078).

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDewey, C. F., Cook, W. R., Hodgson, R. T. & Wynne, J. J. (1975). Appl. Phys. Lett. 26, 714–716.  CrossRef CAS Web of Science Google Scholar
First citationLi, L.-Y., Li, G.-B., Xiong, M., Wang, Y.-X. & Lin, J.-H. (2003). Acta Cryst. C59, i115–i116.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, H. J., Liu, Z. H. & Sun, L. M. (2007). Chin. J. Chem. . 25, 1131–1134.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarezio, M. (1969). Acta Cryst. B25, 1787–1795.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMarezio, M., Plettinger, H. A. & Zachariasen, W. H. (1963). Acta Cryst. 16, 975–980.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMori, Y., Kuroda, I., Nakajima, S., Sasaki, T. & Nakai, S. (1995). Jpn J. Appl. Phys. 34, 296–298.  CrossRef Web of Science Google Scholar
First citationSalentine, C. G. (1987). Inorg. Chem. 26, 128–132.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTouboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327–1342.  Web of Science CrossRef CAS Google Scholar
First citationWang, G. M., Sun, Y. Q., Zheng, S. T. & Yang, G. Y. (2006). Z. Anorg. Allg. Chem. 632, 1586–1590.  Web of Science CrossRef CAS Google Scholar
First citationZhang, H. X., Zhang, J., Zheng, S. T. & Yang, G. Y. (2005). Cryst. Growth Des. 5, 157–161.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds