metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tetra­kis­(hexa­methyl­phospho­ramide-κO)bis­­(nitrato-κ2O,O′)samarium(III)] [silver(I)-di-μ-sulfido-tungstate(VI)-di-μ-sulfido]]

aMolecular Materials Research Center, Scientific Research Academy, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: zjf260@ujs.edu.cn

(Received 26 August 2011; accepted 1 September 2011; online 14 September 2011)

The Sm atom in the cation of the title salt, {[Sm(NO3)2(C6H18N3OP)4][AgS4W]}n, is coordinated by eight O atoms derived from two chelating nitrate anions, and four hexamethylphos­phoramide ligand, defining a distorted square-antiprismatic geometry. The anions self-assemble into polymeric chains via W—S—Ag bridges having a [AgS4W] repeat unit; the W—Ag—W and Ag—W—Ag angles are 161.657 (17) and 153.978 (9)°, respectively. The title complex is isostructural with the Y, Yb, Eu, Nd, La and Dy isomorphs.

Related literature

For one-dimensional Mo(W)/S/Ag anionic polymers and their properties, see: Niu et al. (2004[Niu, Y. Y., Zheng, H. G., Hou, H. W. & Xin, X. Q. (2004). Coord. Chem. Rev. 248, 169-183.]); Zhang, Song & Wang (2007[Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111-141.]). For the structure of isotypic Y, Yb, Eu, Nd, La and Dy complexes, see: Zhang, Cao et al. (2007[Zhang, J.-F., Cao, Y., Qian, J. & Zhang, C. (2007). Acta Cryst. E63, m2248-m2249.]); Zhang (2011[Zhang, J. (2011). Acta Cryst. E67, m1206-m1207.]); Cao et al. (2007[Cao, Y., Zhang, J.-F., Qian, J. & Zhang, C. (2007). Acta Cryst. E63, m2076-m2077.]); Zhang, Qian et al. (2007[Zhang, J., Qian, J., Cao, Y. & Zhang, C. (2007). Acta Cryst. E63, m2386-m2387.]); Tang, Zhang & Zhang (2008[Tang, G., Zhang, J. & Zhang, C. (2008). Acta Cryst. E64, m478.]); Tang, Zhang, Zhang & Lu (2008[Tang, G., Zhang, J., Zhang, C. & Lu, L. (2008). Acta Cryst. E64, m399-m400.]); Zhang (2010[Zhang, J. (2010). Acta Cryst. E66, m1479.]).

[Scheme 1]

Experimental

Crystal data
  • [Sm(NO3)2(C6H18N3OP)4][AgS4W]

  • Mr = 1411.19

  • Monoclinic, P 21 /c

  • a = 15.817 (3) Å

  • b = 29.768 (6) Å

  • c = 11.372 (2) Å

  • β = 91.03 (3)°

  • V = 5353.5 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.92 mm−1

  • T = 293 K

  • 0.2 × 0.16 × 0.1 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.476, Tmax = 0.676

  • 24655 measured reflections

  • 9738 independent reflections

  • 9057 reflections with I > 2σ(I)

  • Rint = 0.022

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.03

  • 9738 reflections

  • 532 parameters

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −1.06 e Å−3

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

One-dimensional Mo(W)/S/Ag anionic polymers have attracted much attention for their configurational isomerism (Niu et al., 2004) and unique properties as functional materials, such as third-order nonlinear optical (NLO) materials (Zhang, Song & Wang, 2007). Different solvent-coordinated rare-earth cations proved effective to obtain various configurations of anionic chains (Niu et al., 2004). The title compound {[Sm(hmp)4(NO3)2][WS4Ag]}n (hmp = hexamethylphosphoramide) with a wave-like anionic chain was prepared by following such route using Sm(III)-hmp complex as counterion.

The title complex is isostructural with Y (Zhang, Cao et al., 2007; Zhang, 2011), Yb (Cao et al., 2007), Eu (Zhang, Qian et al., 2007), Nd (Tang, Zhang & Zhang, 2008), La (Tang, Zhang, Zhang & Lu, 2008) and Dy (Zhang, 2010) isomorphs. The Sm atom in the cation is coordinated by eight O atoms from two nitrate and four hmp ligands. In possession of two nitrate ligands, the cation in the title compound is univalent (Fig. 1), which leads to an anionic chain with a univalent repeat unit. As illustrated in Fig. 2, the anionic chain in the title compound has a distorted linear configuration with W—Ag—W and Ag—W—Ag angles of 161.657 (17) and 153.978 (9) °, respectively.

Related literature top

For one-dimensional Mo(W)/S/Ag anionic polymers and their properties, see: Niu et al. (2004); Zhang, Song & Wang (2007). For the structure of isotypic Y, Yb, Eu, Nd, La and Dy complexes, see: Zhang, Cao et al. (2007); Zhang (2011); Cao et al. (2007); Zhang, Qian et al. (2007); Tang, Zhang & Zhang (2008); Tang, Zhang, Zhang & Lu (2008); Zhang (2010).

Experimental top

1 mmol AgI was added to a solution of [NH4]2WS4 (1 mmol in 10 ml hmp) with thorough stirring for 30 minutes. The solution underwent an additional stirring for two minute, then 0.5 mmol Sm(NO3)3.6H2O was added. After filtration the orange filtrate was carefully laid on the surface with 12 ml i-PrOH. Orange block crystals were obtained after about one week.

Refinement top

H atoms were positioned geometrically and refined with riding model, with Uiso = 1.5Ueq and C—H = 0.96 Å.

Structure description top

One-dimensional Mo(W)/S/Ag anionic polymers have attracted much attention for their configurational isomerism (Niu et al., 2004) and unique properties as functional materials, such as third-order nonlinear optical (NLO) materials (Zhang, Song & Wang, 2007). Different solvent-coordinated rare-earth cations proved effective to obtain various configurations of anionic chains (Niu et al., 2004). The title compound {[Sm(hmp)4(NO3)2][WS4Ag]}n (hmp = hexamethylphosphoramide) with a wave-like anionic chain was prepared by following such route using Sm(III)-hmp complex as counterion.

The title complex is isostructural with Y (Zhang, Cao et al., 2007; Zhang, 2011), Yb (Cao et al., 2007), Eu (Zhang, Qian et al., 2007), Nd (Tang, Zhang & Zhang, 2008), La (Tang, Zhang, Zhang & Lu, 2008) and Dy (Zhang, 2010) isomorphs. The Sm atom in the cation is coordinated by eight O atoms from two nitrate and four hmp ligands. In possession of two nitrate ligands, the cation in the title compound is univalent (Fig. 1), which leads to an anionic chain with a univalent repeat unit. As illustrated in Fig. 2, the anionic chain in the title compound has a distorted linear configuration with W—Ag—W and Ag—W—Ag angles of 161.657 (17) and 153.978 (9) °, respectively.

For one-dimensional Mo(W)/S/Ag anionic polymers and their properties, see: Niu et al. (2004); Zhang, Song & Wang (2007). For the structure of isotypic Y, Yb, Eu, Nd, La and Dy complexes, see: Zhang, Cao et al. (2007); Zhang (2011); Cao et al. (2007); Zhang, Qian et al. (2007); Tang, Zhang & Zhang (2008); Tang, Zhang, Zhang & Lu (2008); Zhang (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation in the title compound, with 30% probability displacement ellipsoids. All H atoms have been omitted.
[Figure 2] Fig. 2. The structure of a portion of the anionic chain in the title compound, with 30% probability displacement ellipsoids. Symmetry code: (i) x, -y + 1/2, z - 1/2.
catena-Poly[[tetrakis(hexamethylphosphoramide-κO)bis(nitrato- κ2O,O')samarium(III)] [silver(I)-di-µ-sulfido-tungstate(VI)-di-µ-sulfido]] top
Crystal data top
[Sm(NO3)2(C6H18N3OP)4][AgS4W]F(000) = 2804.0
Mr = 1411.19Dx = 1.751 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22427 reflections
a = 15.817 (3) Åθ = 3.0–29.1°
b = 29.768 (6) ŵ = 3.92 mm1
c = 11.372 (2) ÅT = 293 K
β = 91.03 (3)°Block, orange
V = 5353.5 (18) Å30.2 × 0.16 × 0.1 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
9738 independent reflections
Radiation source: fine-focus sealed tube9057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
dtprofit.ref scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 1914
Tmin = 0.476, Tmax = 0.676k = 3535
24655 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0345P)2 + 16.4718P]
where P = (Fo2 + 2Fc2)/3
9738 reflections(Δ/σ)max = 0.001
532 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 1.06 e Å3
Crystal data top
[Sm(NO3)2(C6H18N3OP)4][AgS4W]V = 5353.5 (18) Å3
Mr = 1411.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.817 (3) ŵ = 3.92 mm1
b = 29.768 (6) ÅT = 293 K
c = 11.372 (2) Å0.2 × 0.16 × 0.1 mm
β = 91.03 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
9738 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
9057 reflections with I > 2σ(I)
Tmin = 0.476, Tmax = 0.676Rint = 0.022
24655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0345P)2 + 16.4718P]
where P = (Fo2 + 2Fc2)/3
9738 reflectionsΔρmax = 1.16 e Å3
532 parametersΔρmin = 1.06 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.737078 (14)0.082698 (7)0.82970 (2)0.02352 (7)
P10.69501 (9)0.03068 (4)0.69384 (12)0.0347 (3)
P20.51916 (8)0.13456 (4)0.82656 (11)0.0288 (3)
P30.79653 (11)0.14726 (5)1.10222 (14)0.0467 (4)
P40.96063 (8)0.09563 (4)0.73301 (13)0.0335 (3)
O10.7061 (2)0.01700 (11)0.7267 (3)0.0348 (8)
O20.59965 (19)0.10824 (11)0.8257 (3)0.0311 (8)
O30.7729 (2)0.12756 (11)0.9874 (3)0.0366 (8)
O40.8783 (2)0.08027 (11)0.7821 (3)0.0364 (8)
O50.7995 (2)0.02572 (12)0.9719 (3)0.0395 (9)
O60.6671 (2)0.04009 (12)0.9942 (3)0.0368 (8)
O70.7350 (3)0.00096 (15)1.1273 (4)0.0596 (12)
O80.7511 (2)0.15923 (11)0.7355 (3)0.0396 (9)
O90.7221 (2)0.10477 (12)0.6171 (3)0.0396 (9)
O100.7223 (4)0.17283 (16)0.5515 (4)0.0772 (16)
N10.7339 (3)0.02158 (14)1.0343 (4)0.0376 (10)
N20.7320 (3)0.14657 (15)0.6320 (4)0.0423 (11)
N30.7169 (3)0.03673 (15)0.5547 (4)0.0448 (12)
N40.7591 (4)0.06646 (16)0.7605 (5)0.0589 (15)
N50.6019 (4)0.0476 (2)0.7318 (6)0.0703 (18)
N60.4419 (2)0.09986 (15)0.8524 (4)0.0338 (10)
N70.5222 (3)0.17346 (16)0.9285 (5)0.0464 (12)
N80.5024 (3)0.15940 (18)0.7019 (4)0.0485 (12)
N90.8986 (5)0.1380 (2)1.1266 (7)0.090 (2)
N100.7788 (5)0.19980 (17)1.1016 (5)0.0719 (19)
N110.7432 (6)0.1236 (2)1.2050 (5)0.089 (2)
N121.0359 (3)0.07061 (17)0.8063 (5)0.0503 (13)
N130.9587 (3)0.0852 (2)0.5901 (5)0.0572 (14)
N140.9844 (3)0.14859 (16)0.7372 (5)0.0534 (14)
C10.7225 (5)0.0823 (2)0.5013 (6)0.067 (2)
H1A0.73580.07960.41960.101*
H1B0.66930.09750.50870.101*
H1C0.76590.09930.54110.101*
C20.6989 (5)0.0014 (2)0.4712 (6)0.0655 (19)
H2A0.71620.01070.39440.098*
H2B0.72930.02530.49390.098*
H2C0.63930.00480.46970.098*
C30.7518 (7)0.0816 (3)0.8757 (8)0.101 (3)
H3A0.79760.10170.89420.152*
H3B0.69900.09710.88390.152*
H3C0.75380.05640.92840.152*
C40.8489 (6)0.0704 (3)0.7282 (9)0.107 (3)
H4A0.87610.09260.77700.161*
H4B0.87650.04190.73950.161*
H4C0.85250.07910.64720.161*
C50.5332 (4)0.0162 (3)0.7495 (7)0.070 (2)
H5A0.48310.03250.77010.105*
H5B0.52270.00040.67840.105*
H5C0.54820.00420.81180.105*
C60.5771 (6)0.0950 (3)0.7156 (8)0.107 (4)
H6A0.52000.09910.74080.160*
H6B0.61420.11390.76150.160*
H6C0.58090.10290.63410.160*
C70.3539 (3)0.1094 (2)0.8175 (5)0.0477 (15)
H7A0.31840.08490.84080.072*
H7B0.35000.11310.73370.072*
H7C0.33570.13650.85510.072*
C80.4516 (4)0.0658 (2)0.9449 (5)0.0459 (14)
H8A0.40090.04830.94900.069*
H8B0.46200.08041.01910.069*
H8C0.49840.04660.92730.069*
C90.4536 (4)0.1839 (2)1.0070 (6)0.0572 (17)
H9A0.47030.20801.05850.086*
H9B0.44040.15781.05290.086*
H9C0.40460.19270.96170.086*
C100.5905 (4)0.2073 (2)0.9267 (7)0.0650 (19)
H10A0.58380.22780.99100.098*
H10B0.58760.22360.85380.098*
H10C0.64430.19260.93410.098*
C110.5143 (5)0.1364 (3)0.5944 (6)0.079 (2)
H11A0.50150.15620.52990.118*
H11B0.47740.11080.59060.118*
H11C0.57190.12660.58990.118*
C120.4619 (5)0.2038 (3)0.6899 (8)0.084 (3)
H12A0.45820.21190.60820.125*
H12B0.49490.22580.73190.125*
H12C0.40610.20260.72170.125*
C130.9369 (5)0.0953 (3)1.1123 (9)0.096 (3)
H13A0.99580.09721.13400.144*
H13B0.93140.08611.03160.144*
H13C0.90960.07371.16160.144*
C140.9560 (7)0.1710 (4)1.1831 (10)0.135 (5)
H14A1.01150.15831.19130.202*
H14B0.93520.17871.25940.202*
H14C0.95840.19761.13550.202*
C150.8064 (5)0.22735 (19)1.0012 (6)0.0614 (19)
H15A0.79140.25821.01440.092*
H15B0.77900.21690.93040.092*
H15C0.86660.22490.99380.092*
C160.7532 (8)0.2255 (3)1.2080 (7)0.122 (5)
H16A0.74620.25661.18800.183*
H16B0.79610.22261.26830.183*
H16C0.70080.21381.23620.183*
C170.6521 (6)0.1215 (3)1.1937 (8)0.099 (3)
H17A0.62950.10701.26170.149*
H17B0.63670.10471.12450.149*
H17C0.62950.15131.18740.149*
C180.7897 (10)0.1068 (4)1.3136 (8)0.168 (7)
H18A0.75000.09421.36730.252*
H18B0.81910.13131.35090.252*
H18C0.82970.08411.29160.252*
C191.0227 (4)0.0278 (2)0.8622 (7)0.072 (2)
H19A1.07400.01840.90120.108*
H19B1.00670.00590.80380.108*
H19C0.97860.03050.91870.108*
C201.1249 (4)0.0812 (3)0.7889 (8)0.092 (3)
H20A1.15940.06310.84050.139*
H20B1.13460.11240.80590.139*
H20C1.13930.07520.70880.139*
C210.9098 (4)0.0469 (3)0.5462 (7)0.072 (2)
H21A0.91440.04510.46230.108*
H21B0.85150.05070.56620.108*
H21C0.93120.01980.58130.108*
C221.0333 (5)0.0942 (4)0.5197 (7)0.093 (3)
H22A1.02160.08620.43920.140*
H22B1.08010.07670.54920.140*
H22C1.04720.12550.52440.140*
C230.9529 (5)0.1811 (3)0.6518 (9)0.094 (3)
H23A0.97490.21030.67080.141*
H23B0.89220.18180.65350.141*
H23C0.97060.17260.57460.141*
C241.0127 (6)0.1689 (3)0.8474 (8)0.099 (3)
H24A1.02420.20020.83510.149*
H24B1.06330.15410.87500.149*
H24C0.96940.16570.90490.149*
W10.214355 (12)0.272009 (6)0.022422 (15)0.02289 (6)
Ag10.21554 (3)0.234663 (14)0.21751 (3)0.04033 (11)
S10.21500 (10)0.19943 (4)0.01873 (11)0.0386 (3)
S20.21225 (9)0.31505 (4)0.13519 (11)0.0332 (3)
S30.10070 (9)0.28668 (5)0.12896 (12)0.0397 (3)
S40.32849 (8)0.28805 (5)0.12238 (11)0.0397 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.01783 (12)0.01705 (12)0.03568 (14)0.00005 (9)0.00088 (10)0.00038 (10)
P10.0428 (8)0.0251 (6)0.0365 (7)0.0083 (6)0.0102 (6)0.0077 (6)
P20.0202 (6)0.0330 (7)0.0333 (7)0.0051 (5)0.0012 (5)0.0043 (6)
P30.0650 (11)0.0349 (8)0.0395 (8)0.0128 (7)0.0210 (7)0.0034 (7)
P40.0202 (6)0.0308 (7)0.0497 (8)0.0007 (5)0.0042 (6)0.0067 (6)
O10.038 (2)0.0229 (17)0.044 (2)0.0018 (15)0.0006 (16)0.0052 (16)
O20.0195 (17)0.0330 (18)0.0407 (19)0.0057 (14)0.0002 (14)0.0011 (16)
O30.034 (2)0.0316 (19)0.044 (2)0.0028 (15)0.0102 (16)0.0045 (16)
O40.0193 (17)0.0331 (19)0.057 (2)0.0005 (14)0.0044 (16)0.0074 (17)
O50.0250 (19)0.0344 (19)0.059 (2)0.0006 (15)0.0022 (17)0.0104 (18)
O60.0261 (19)0.0362 (19)0.048 (2)0.0016 (15)0.0019 (16)0.0101 (17)
O70.058 (3)0.064 (3)0.057 (3)0.004 (2)0.008 (2)0.031 (2)
O80.041 (2)0.0272 (18)0.051 (2)0.0057 (16)0.0033 (18)0.0028 (17)
O90.046 (2)0.0301 (19)0.042 (2)0.0039 (16)0.0071 (17)0.0024 (17)
O100.120 (5)0.050 (3)0.060 (3)0.025 (3)0.013 (3)0.034 (2)
N10.039 (3)0.027 (2)0.046 (3)0.0047 (19)0.007 (2)0.007 (2)
N20.039 (3)0.038 (3)0.051 (3)0.007 (2)0.002 (2)0.015 (2)
N30.061 (3)0.038 (3)0.036 (2)0.011 (2)0.009 (2)0.010 (2)
N40.092 (4)0.027 (2)0.058 (3)0.009 (3)0.021 (3)0.007 (2)
N50.058 (4)0.066 (4)0.088 (4)0.031 (3)0.034 (3)0.040 (3)
N60.020 (2)0.043 (2)0.039 (2)0.0006 (18)0.0016 (18)0.002 (2)
N70.037 (3)0.042 (3)0.061 (3)0.006 (2)0.006 (2)0.009 (2)
N80.034 (3)0.070 (3)0.041 (3)0.002 (2)0.007 (2)0.023 (3)
N90.097 (5)0.057 (4)0.113 (6)0.015 (4)0.066 (4)0.008 (4)
N100.136 (6)0.035 (3)0.044 (3)0.009 (3)0.006 (3)0.009 (3)
N110.149 (7)0.069 (4)0.051 (4)0.040 (5)0.003 (4)0.004 (3)
N120.022 (2)0.062 (3)0.067 (3)0.003 (2)0.004 (2)0.040 (3)
N130.037 (3)0.083 (4)0.052 (3)0.012 (3)0.004 (2)0.013 (3)
N140.035 (3)0.040 (3)0.085 (4)0.002 (2)0.014 (3)0.011 (3)
C10.090 (6)0.053 (4)0.059 (4)0.013 (4)0.025 (4)0.026 (3)
C20.087 (5)0.067 (5)0.042 (4)0.001 (4)0.007 (3)0.001 (3)
C30.128 (8)0.080 (6)0.097 (7)0.047 (6)0.018 (6)0.027 (5)
C40.074 (6)0.118 (8)0.131 (9)0.032 (6)0.016 (6)0.037 (7)
C50.039 (4)0.074 (5)0.097 (6)0.001 (3)0.005 (4)0.017 (4)
C60.124 (8)0.084 (6)0.114 (7)0.069 (6)0.062 (6)0.044 (6)
C70.023 (3)0.071 (4)0.049 (3)0.000 (3)0.004 (2)0.004 (3)
C80.036 (3)0.053 (4)0.049 (3)0.004 (3)0.008 (3)0.012 (3)
C90.055 (4)0.058 (4)0.059 (4)0.020 (3)0.014 (3)0.014 (3)
C100.055 (4)0.045 (4)0.096 (6)0.006 (3)0.013 (4)0.017 (4)
C110.064 (5)0.132 (8)0.040 (4)0.007 (5)0.010 (3)0.005 (4)
C120.064 (5)0.078 (5)0.109 (7)0.017 (4)0.014 (5)0.052 (5)
C130.066 (5)0.075 (5)0.144 (9)0.005 (4)0.054 (6)0.022 (6)
C140.132 (10)0.147 (10)0.123 (9)0.068 (8)0.062 (7)0.003 (8)
C150.102 (6)0.030 (3)0.052 (4)0.002 (3)0.001 (4)0.001 (3)
C160.246 (14)0.060 (5)0.061 (5)0.035 (7)0.036 (7)0.039 (4)
C170.116 (8)0.109 (7)0.075 (6)0.042 (6)0.045 (6)0.003 (5)
C180.303 (19)0.158 (11)0.043 (5)0.075 (12)0.014 (8)0.035 (6)
C190.041 (4)0.067 (5)0.107 (6)0.008 (3)0.008 (4)0.046 (4)
C200.029 (4)0.124 (7)0.124 (7)0.003 (4)0.005 (4)0.075 (6)
C210.052 (4)0.098 (6)0.065 (5)0.004 (4)0.004 (3)0.023 (4)
C220.061 (5)0.160 (9)0.060 (5)0.027 (5)0.015 (4)0.008 (5)
C230.053 (5)0.057 (4)0.174 (9)0.010 (4)0.020 (5)0.060 (6)
C240.123 (8)0.076 (6)0.101 (7)0.049 (5)0.037 (6)0.036 (5)
W10.02651 (11)0.02400 (10)0.01807 (10)0.00269 (7)0.00193 (7)0.00178 (7)
Ag10.0602 (3)0.0406 (2)0.02010 (19)0.00097 (19)0.00104 (18)0.00200 (16)
S10.0613 (9)0.0251 (6)0.0294 (6)0.0055 (6)0.0003 (6)0.0031 (5)
S20.0463 (8)0.0273 (6)0.0261 (6)0.0009 (5)0.0009 (5)0.0064 (5)
S30.0315 (7)0.0569 (9)0.0306 (7)0.0133 (6)0.0067 (5)0.0023 (6)
S40.0310 (7)0.0575 (9)0.0307 (7)0.0069 (6)0.0018 (5)0.0040 (6)
Geometric parameters (Å, º) top
Sm1—O32.298 (3)C6—H6A0.9600
Sm1—O22.303 (3)C6—H6B0.9600
Sm1—O42.309 (3)C6—H6C0.9600
Sm1—O12.328 (3)C7—H7A0.9600
Sm1—O92.512 (4)C7—H7B0.9600
Sm1—O82.529 (3)C7—H7C0.9600
Sm1—O62.531 (3)C8—H8A0.9600
Sm1—O52.532 (4)C8—H8B0.9600
Sm1—N22.944 (5)C8—H8C0.9600
Sm1—N12.954 (4)C9—H9A0.9600
P1—O11.477 (3)C9—H9B0.9600
P1—N51.622 (5)C9—H9C0.9600
P1—N31.635 (5)C10—H10A0.9600
P1—N41.646 (6)C10—H10B0.9600
P2—O21.495 (3)C10—H10C0.9600
P2—N81.616 (5)C11—H11A0.9600
P2—N61.631 (4)C11—H11B0.9600
P2—N71.639 (5)C11—H11C0.9600
P3—O31.474 (4)C12—H12A0.9600
P3—N101.589 (6)C12—H12B0.9600
P3—N111.615 (7)C12—H12C0.9600
P3—N91.656 (7)C13—H13A0.9600
P4—O41.498 (3)C13—H13B0.9600
P4—N141.621 (5)C13—H13C0.9600
P4—N121.622 (5)C14—H14A0.9600
P4—N131.654 (6)C14—H14B0.9600
O5—N11.274 (6)C14—H14C0.9600
O6—N11.269 (5)C15—H15A0.9600
O7—N11.223 (6)C15—H15B0.9600
O8—N21.268 (6)C15—H15C0.9600
O9—N21.265 (6)C16—H16A0.9600
O10—N21.211 (6)C16—H16B0.9600
N3—C21.443 (8)C16—H16C0.9600
N3—C11.491 (7)C17—H17A0.9600
N4—C31.391 (10)C17—H17B0.9600
N4—C41.479 (10)C17—H17C0.9600
N5—C51.450 (9)C18—H18A0.9600
N5—C61.475 (9)C18—H18B0.9600
N6—C81.467 (7)C18—H18C0.9600
N6—C71.469 (6)C19—H19A0.9600
N7—C91.452 (7)C19—H19B0.9600
N7—C101.477 (8)C19—H19C0.9600
N8—C111.417 (9)C20—H20A0.9600
N8—C121.473 (8)C20—H20B0.9600
N9—C131.418 (10)C20—H20C0.9600
N9—C141.479 (10)C21—H21A0.9600
N10—C151.477 (8)C21—H21B0.9600
N10—C161.494 (9)C21—H21C0.9600
N11—C171.446 (11)C22—H22A0.9600
N11—C181.512 (12)C22—H22B0.9600
N12—C191.441 (8)C22—H22C0.9600
N12—C201.460 (8)C23—H23A0.9600
N13—C211.462 (9)C23—H23B0.9600
N13—C221.462 (8)C23—H23C0.9600
N14—C231.453 (9)C24—H24A0.9600
N14—C241.454 (10)C24—H24B0.9600
C1—H1A0.9600C24—H24C0.9600
C1—H1B0.9600W1—S32.1936 (14)
C1—H1C0.9600W1—S42.2030 (14)
C2—H2A0.9600W1—S22.2039 (12)
C2—H2B0.9600W1—S12.2105 (14)
C2—H2C0.9600W1—Ag12.9461 (6)
C3—H3A0.9600W1—Ag1i2.9645 (7)
C3—H3B0.9600Ag1—S12.4918 (14)
C3—H3C0.9600Ag1—S22.5698 (14)
C4—H4A0.9600Ag1—S4ii2.6167 (16)
C4—H4B0.9600Ag1—S3ii2.6202 (16)
C4—H4C0.9600Ag1—W1ii2.9645 (7)
C5—H5A0.9600S3—Ag1i2.6202 (16)
C5—H5B0.9600S4—Ag1i2.6167 (16)
C5—H5C0.9600
O3—Sm1—O292.45 (12)N5—C5—H5C109.5
O3—Sm1—O488.58 (13)H5A—C5—H5C109.5
O2—Sm1—O4157.31 (12)H5B—C5—H5C109.5
O3—Sm1—O1158.08 (12)N5—C6—H6A109.5
O2—Sm1—O194.44 (12)N5—C6—H6B109.5
O4—Sm1—O192.95 (12)H6A—C6—H6B109.5
O3—Sm1—O9128.05 (12)N5—C6—H6C109.5
O2—Sm1—O979.75 (12)H6A—C6—H6C109.5
O4—Sm1—O981.80 (13)H6B—C6—H6C109.5
O1—Sm1—O973.74 (12)N6—C7—H7A109.5
O3—Sm1—O877.56 (12)N6—C7—H7B109.5
O2—Sm1—O877.52 (12)H7A—C7—H7B109.5
O4—Sm1—O880.58 (12)N6—C7—H7C109.5
O1—Sm1—O8124.27 (12)H7A—C7—H7C109.5
O9—Sm1—O850.53 (12)H7B—C7—H7C109.5
O3—Sm1—O679.60 (12)N6—C8—H8A109.5
O2—Sm1—O675.82 (12)N6—C8—H8B109.5
O4—Sm1—O6126.53 (12)H8A—C8—H8B109.5
O1—Sm1—O681.97 (12)N6—C8—H8C109.5
O9—Sm1—O6143.84 (12)H8A—C8—H8C109.5
O8—Sm1—O6143.82 (12)H8B—C8—H8C109.5
O3—Sm1—O578.65 (12)N7—C9—H9A109.5
O2—Sm1—O5126.25 (12)N7—C9—H9B109.5
O4—Sm1—O576.16 (12)H9A—C9—H9B109.5
O1—Sm1—O580.49 (12)N7—C9—H9C109.5
O9—Sm1—O5144.96 (12)H9A—C9—H9C109.5
O8—Sm1—O5146.92 (12)H9B—C9—H9C109.5
O6—Sm1—O550.43 (11)N7—C10—H10A109.5
O3—Sm1—N2102.91 (13)N7—C10—H10B109.5
O2—Sm1—N276.03 (13)H10A—C10—H10B109.5
O4—Sm1—N281.64 (13)N7—C10—H10C109.5
O1—Sm1—N298.95 (13)H10A—C10—H10C109.5
O9—Sm1—N225.25 (12)H10B—C10—H10C109.5
O8—Sm1—N225.35 (12)N8—C11—H11A109.5
O6—Sm1—N2151.82 (12)N8—C11—H11B109.5
O5—Sm1—N2157.72 (12)H11A—C11—H11B109.5
O3—Sm1—N175.58 (12)N8—C11—H11C109.5
O2—Sm1—N1100.93 (12)H11A—C11—H11C109.5
O4—Sm1—N1101.28 (13)H11B—C11—H11C109.5
O1—Sm1—N182.68 (12)N8—C12—H12A109.5
O9—Sm1—N1156.37 (12)N8—C12—H12B109.5
O8—Sm1—N1153.01 (12)H12A—C12—H12B109.5
O6—Sm1—N125.26 (11)N8—C12—H12C109.5
O5—Sm1—N125.38 (12)H12A—C12—H12C109.5
N2—Sm1—N1176.61 (13)H12B—C12—H12C109.5
O1—P1—N5109.6 (3)N9—C13—H13A109.5
O1—P1—N3108.9 (2)N9—C13—H13B109.5
N5—P1—N3115.6 (3)H13A—C13—H13B109.5
O1—P1—N4115.9 (3)N9—C13—H13C109.5
N5—P1—N4103.3 (3)H13A—C13—H13C109.5
N3—P1—N4103.6 (3)H13B—C13—H13C109.5
O2—P2—N8111.1 (2)N9—C14—H14A109.5
O2—P2—N6108.1 (2)N9—C14—H14B109.5
N8—P2—N6109.6 (2)H14A—C14—H14B109.5
O2—P2—N7111.1 (2)N9—C14—H14C109.5
N8—P2—N7107.4 (3)H14A—C14—H14C109.5
N6—P2—N7109.5 (2)H14B—C14—H14C109.5
O3—P3—N10110.2 (3)N10—C15—H15A109.5
O3—P3—N11109.9 (3)N10—C15—H15B109.5
N10—P3—N11109.7 (4)H15A—C15—H15B109.5
O3—P3—N9108.2 (3)N10—C15—H15C109.5
N10—P3—N9109.7 (3)H15A—C15—H15C109.5
N11—P3—N9109.1 (4)H15B—C15—H15C109.5
O4—P4—N14119.3 (2)N10—C16—H16A109.5
O4—P4—N12107.6 (2)N10—C16—H16B109.5
N14—P4—N12105.3 (3)H16A—C16—H16B109.5
O4—P4—N13108.0 (2)N10—C16—H16C109.5
N14—P4—N13102.2 (3)H16A—C16—H16C109.5
N12—P4—N13114.8 (3)H16B—C16—H16C109.5
P1—O1—Sm1163.2 (2)N11—C17—H17A109.5
P2—O2—Sm1167.6 (2)N11—C17—H17B109.5
P3—O3—Sm1167.8 (2)H17A—C17—H17B109.5
P4—O4—Sm1158.3 (2)N11—C17—H17C109.5
N1—O5—Sm196.2 (3)H17A—C17—H17C109.5
N1—O6—Sm196.4 (3)H17B—C17—H17C109.5
N2—O8—Sm196.0 (3)N11—C18—H18A109.5
N2—O9—Sm196.9 (3)N11—C18—H18B109.5
O7—N1—O6121.9 (5)H18A—C18—H18B109.5
O7—N1—O5122.1 (5)N11—C18—H18C109.5
O6—N1—O5116.1 (4)H18A—C18—H18C109.5
O7—N1—Sm1171.9 (4)H18B—C18—H18C109.5
O6—N1—Sm158.4 (2)N12—C19—H19A109.5
O5—N1—Sm158.4 (2)N12—C19—H19B109.5
O10—N2—O9121.3 (5)H19A—C19—H19B109.5
O10—N2—O8122.3 (5)N12—C19—H19C109.5
O9—N2—O8116.3 (4)H19A—C19—H19C109.5
O10—N2—Sm1174.3 (4)H19B—C19—H19C109.5
O9—N2—Sm157.9 (2)N12—C20—H20A109.5
O8—N2—Sm158.7 (2)N12—C20—H20B109.5
C2—N3—C1114.1 (5)H20A—C20—H20B109.5
C2—N3—P1120.9 (4)N12—C20—H20C109.5
C1—N3—P1120.6 (4)H20A—C20—H20C109.5
C3—N4—C4107.7 (7)H20B—C20—H20C109.5
C3—N4—P1125.6 (5)N13—C21—H21A109.5
C4—N4—P1121.5 (5)N13—C21—H21B109.5
C5—N5—C6115.8 (6)H21A—C21—H21B109.5
C5—N5—P1121.6 (5)N13—C21—H21C109.5
C6—N5—P1120.3 (5)H21A—C21—H21C109.5
C8—N6—C7114.5 (4)H21B—C21—H21C109.5
C8—N6—P2119.8 (3)N13—C22—H22A109.5
C7—N6—P2122.6 (4)N13—C22—H22B109.5
C9—N7—C10114.7 (5)H22A—C22—H22B109.5
C9—N7—P2125.0 (4)N13—C22—H22C109.5
C10—N7—P2119.0 (4)H22A—C22—H22C109.5
C11—N8—C12114.7 (6)H22B—C22—H22C109.5
C11—N8—P2120.9 (5)N14—C23—H23A109.5
C12—N8—P2123.8 (5)N14—C23—H23B109.5
C13—N9—C14112.7 (8)H23A—C23—H23B109.5
C13—N9—P3123.3 (5)N14—C23—H23C109.5
C14—N9—P3123.4 (7)H23A—C23—H23C109.5
C15—N10—C16115.5 (5)H23B—C23—H23C109.5
C15—N10—P3119.7 (5)N14—C24—H24A109.5
C16—N10—P3123.4 (5)N14—C24—H24B109.5
C17—N11—C18121.9 (9)H24A—C24—H24B109.5
C17—N11—P3119.2 (6)N14—C24—H24C109.5
C18—N11—P3118.8 (8)H24A—C24—H24C109.5
C19—N12—C20113.5 (5)H24B—C24—H24C109.5
C19—N12—P4121.5 (4)S3—W1—S4110.05 (5)
C20—N12—P4122.1 (4)S3—W1—S2108.01 (5)
C21—N13—C22112.5 (6)S4—W1—S2108.55 (5)
C21—N13—P4118.9 (4)S3—W1—S1108.19 (6)
C22—N13—P4120.2 (5)S4—W1—S1108.69 (6)
C23—N14—C24113.4 (7)S2—W1—S1113.33 (5)
C23—N14—P4123.4 (5)S3—W1—Ag1125.32 (4)
C24—N14—P4119.8 (5)S4—W1—Ag1124.62 (4)
N3—C1—H1A109.5S2—W1—Ag157.73 (4)
N3—C1—H1B109.5S1—W1—Ag155.61 (3)
H1A—C1—H1B109.5S3—W1—Ag1i58.81 (4)
N3—C1—H1C109.5S4—W1—Ag1i58.66 (4)
H1A—C1—H1C109.5S2—W1—Ag1i148.29 (4)
H1B—C1—H1C109.5S1—W1—Ag1i98.38 (3)
N3—C2—H2A109.5Ag1—W1—Ag1i153.978 (9)
N3—C2—H2B109.5S1—Ag1—S293.54 (4)
H2A—C2—H2B109.5S1—Ag1—S4ii120.91 (5)
N3—C2—H2C109.5S2—Ag1—S4ii120.21 (5)
H2A—C2—H2C109.5S1—Ag1—S3ii120.75 (5)
H2B—C2—H2C109.5S2—Ag1—S3ii117.31 (5)
N4—C3—H3A109.5S4ii—Ag1—S3ii86.93 (5)
N4—C3—H3B109.5S1—Ag1—W147.06 (3)
H3A—C3—H3B109.5S2—Ag1—W146.48 (3)
N4—C3—H3C109.5S4ii—Ag1—W1137.29 (4)
H3A—C3—H3C109.5S3ii—Ag1—W1135.70 (4)
H3B—C3—H3C109.5S1—Ag1—W1ii151.26 (4)
N4—C4—H4A109.5S2—Ag1—W1ii115.17 (3)
N4—C4—H4B109.5S4ii—Ag1—W1ii45.97 (3)
H4A—C4—H4B109.5S3ii—Ag1—W1ii45.74 (3)
N4—C4—H4C109.5W1—Ag1—W1ii161.657 (17)
H4A—C4—H4C109.5W1—S1—Ag177.33 (4)
H4B—C4—H4C109.5W1—S2—Ag175.78 (4)
N5—C5—H5A109.5W1—S3—Ag1i75.44 (4)
N5—C5—H5B109.5W1—S4—Ag1i75.37 (4)
H5A—C5—H5B109.5
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sm(NO3)2(C6H18N3OP)4][AgS4W]
Mr1411.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.817 (3), 29.768 (6), 11.372 (2)
β (°) 91.03 (3)
V3)5353.5 (18)
Z4
Radiation typeMo Kα
µ (mm1)3.92
Crystal size (mm)0.2 × 0.16 × 0.1
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.476, 0.676
No. of measured, independent and
observed [I > 2σ(I)] reflections
24655, 9738, 9057
Rint0.022
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.03
No. of reflections9738
No. of parameters532
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0345P)2 + 16.4718P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.16, 1.06

Computer programs: CrystalClear (Rigaku, 2007), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu High School (grant No. 10KJB430005) and the Foundation of Jiangsu University (grant No. 08JDG036).

References

First citationCao, Y., Zhang, J.-F., Qian, J. & Zhang, C. (2007). Acta Cryst. E63, m2076–m2077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNiu, Y. Y., Zheng, H. G., Hou, H. W. & Xin, X. Q. (2004). Coord. Chem. Rev. 248, 169–183.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, G., Zhang, J. & Zhang, C. (2008). Acta Cryst. E64, m478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, G., Zhang, J., Zhang, C. & Lu, L. (2008). Acta Cryst. E64, m399–m400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J. (2010). Acta Cryst. E66, m1479.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J. (2011). Acta Cryst. E67, m1206–m1207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J.-F., Cao, Y., Qian, J. & Zhang, C. (2007). Acta Cryst. E63, m2248–m2249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J., Qian, J., Cao, Y. & Zhang, C. (2007). Acta Cryst. E63, m2386–m2387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev. 251, 111–141.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds