metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetyl­acetonato-κ2O,O′)bis­­[5-meth­­oxy-2-(naphth[1,2-d][1,3]oxazol-2-yl)phenyl-κ2C1,N]iridium(III)

aInstitute of Electric Power, North China University of Water Resources and Electric Power, 450011, Zhengzhou, People's Republic of China, bDepartment of Environment Engineering and Chemistry, Luoyang Institute of Science and Technology, 471023, Luoyang, People's Republic of China, cChemistry Department, Zhengzhou University, 450052, Zhengzhou, People's Republic of China, and dInstitute of Environmental & Municipal Engineering, North China University of Water Resources and Electric Power, 450011, Zhengzhou, People's Republic of China
*Correspondence e-mail: yinguojie000000@yahoo.com.cn

(Received 26 August 2011; accepted 2 September 2011; online 14 September 2011)

In the title compound, [Ir(C18H12NO2)2(C5H7O2)], the Ir atom is O,O′-chelated by the acetyl­acetonate group and C,N-chelated by the 2-aryl­naphth[1,2-d]oxazole groups. The six-coordinate metal atom displays a distorted octa­hedral geometry. Intra­molecular C—H⋯O hydrogen bonds occur. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into columns parallel to the b axis.

Related literature

For the syntheses and reactions of some 2-aryl­naphth[1,2-d]oxazole derivatives, see: Abbady (1979[Abbady, M. A. (1979). Indian J. Chem. Sect. B, 17, 450-453.]). For the syntheses and characterization of phospho­rescent cyclo­metalated iridium complexes, see: Lamansky et al. (2001[Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704-1711.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C18H12NO2)2(C5H7O2)]

  • Mr = 839.88

  • Monoclinic, P 21 /n

  • a = 16.618 (3) Å

  • b = 11.455 (2) Å

  • c = 18.993 (4) Å

  • β = 114.01 (3)°

  • V = 3302.5 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.373, Tmax = 0.495

  • 40039 measured reflections

  • 7866 independent reflections

  • 7275 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.093

  • S = 1.04

  • 7866 reflections

  • 452 parameters

  • H-atom parameters not refined

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Selected bond lengths (Å)

Ir1—C1 1.997 (4)
Ir1—C19 2.004 (4)
Ir1—N1 2.088 (3)
Ir1—N2 2.109 (3)
Ir1—O6 2.144 (3)
Ir1—O5 2.156 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O6 0.93 2.24 3.077 (5) 150
C33—H33A⋯O5 0.93 2.22 3.137 (6) 170
C23—H23A⋯O6i 0.93 2.54 3.419 (6) 157
C27—H27A⋯O2ii 0.93 2.55 3.206 (6) 128
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

According to the study of Lamansky's group in 2001 (Lamansky et al., 2001), the luminous wavelength of complexes would change as the the conjugated system of (C—N) changed. Therefore, the arylnaphthoxazoles ligand was choosed to regulate luminous wavelength of phosphorescent materials, leading to get better electrophosphorescent materials.

The title complex is a mononuclear iridium(III) complex (Fig. 1), in which the environment around the IrIII ion is a distorted octahedral coordination geometry, the coordination conformation of the C, N and O atoms of the ligands adopt the cis-, trans- and cis- respectively, which is consistent with the similar reported complexes (Lamansky et al., 2001). It can be illustrated from the figure that the carbon-metal bond is formed between IrIII ion and the carbon atom on the benzene ring rather than the C atom on the naphthalene ring. It shows from Table 1 that the increase of the bond distance from Ir—C to Ir—N and Ir—O is caused by the increase of the covalent component between the coordination atoms from C to N and O of which the electronegativity decreases gradually. Moreover, there are two five-membered rings formed (Ir1/C1/C6/C7/N1 and Ir1/C19/C24/C25/N2), the average deviation of which are 0.0186 Å and 0.0387 Å, and the dihedral angle they form with their adjacent benzene rings (C1–C6) and (C19–C24) are 3.5 (2)° and 4.9 (3)° respectively. The dihedral angle with their adjacent oxazole heterocycle (N1/O1/C7–17) and (N2/O3/C25–35) are 9.0 (2)° and 8.0 (2)° respectively. The molecular comformation is stabilized by intramolecular C—H···O hydrogen bonds (Table 2). In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) link molecules into columns parallel to the b axis.

Related literature top

For the syntheses and reactions of some 2-arylnaphth[1,2-d]oxazole derivatives, see: Abbady (1979). For the syntheses and characterization of phosphorescent cyclometalated iridium complexes, see: Lamansky et al. (2001).

Experimental top

The ligand 2-arylnaphth[1,2-d]oxazole was prepared according to the literature (Abbady, 1979). The ligand (0.61 g, 2.2 mmol) and IrCl3.3H2O (0.35 g, 1 mmol) were added to 20 ml 2-ethoxyethanol:H2O (3:1, v/v) solution under inert gas atmosphere at 393 K for 24 h, and then the intermediate product, acetylacetonate (10 ml) and Na2CO3 (1.06 g, 10 mmol) were refluxed for 12 h. After cooling to room temperature, the coloured precipitate was filtered and washed with ethanol and water. The crude product was flash chromatographed using a silica/dichloromethane column to yield ca. 40% of the pure title compound after solvent evaporation and drying.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H =0.93–0.96 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

According to the study of Lamansky's group in 2001 (Lamansky et al., 2001), the luminous wavelength of complexes would change as the the conjugated system of (C—N) changed. Therefore, the arylnaphthoxazoles ligand was choosed to regulate luminous wavelength of phosphorescent materials, leading to get better electrophosphorescent materials.

The title complex is a mononuclear iridium(III) complex (Fig. 1), in which the environment around the IrIII ion is a distorted octahedral coordination geometry, the coordination conformation of the C, N and O atoms of the ligands adopt the cis-, trans- and cis- respectively, which is consistent with the similar reported complexes (Lamansky et al., 2001). It can be illustrated from the figure that the carbon-metal bond is formed between IrIII ion and the carbon atom on the benzene ring rather than the C atom on the naphthalene ring. It shows from Table 1 that the increase of the bond distance from Ir—C to Ir—N and Ir—O is caused by the increase of the covalent component between the coordination atoms from C to N and O of which the electronegativity decreases gradually. Moreover, there are two five-membered rings formed (Ir1/C1/C6/C7/N1 and Ir1/C19/C24/C25/N2), the average deviation of which are 0.0186 Å and 0.0387 Å, and the dihedral angle they form with their adjacent benzene rings (C1–C6) and (C19–C24) are 3.5 (2)° and 4.9 (3)° respectively. The dihedral angle with their adjacent oxazole heterocycle (N1/O1/C7–17) and (N2/O3/C25–35) are 9.0 (2)° and 8.0 (2)° respectively. The molecular comformation is stabilized by intramolecular C—H···O hydrogen bonds (Table 2). In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) link molecules into columns parallel to the b axis.

For the syntheses and reactions of some 2-arylnaphth[1,2-d]oxazole derivatives, see: Abbady (1979). For the syntheses and characterization of phosphorescent cyclometalated iridium complexes, see: Lamansky et al. (2001).

Computing details top

Data collection: SMART (Bruker 2001); cell refinement: SAINT (Bruker 2001); data reduction: SAINT (Bruker 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.
(Acetylacetonato-κ2O,O')bis[5-methoxy-2-(naphth[1,2-d][1,3]oxazol-2-yl)phenyl-κ2C1,N]iridium(III) top
Crystal data top
[Ir(C18H12NO2)2(C5H7O2)]F(000) = 1664
Mr = 839.88Dx = 1.689 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 168 reflections
a = 16.618 (3) Åθ = 2.5–26.0°
b = 11.455 (2) ŵ = 4.10 mm1
c = 18.993 (4) ÅT = 293 K
β = 114.01 (3)°Prismatic, yellow
V = 3302.5 (13) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area detector
diffractometer
7866 independent reflections
Radiation source: fine-focus sealed tube7275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
phi and ω scansθmax = 27.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2121
Tmin = 0.373, Tmax = 0.495k = 1514
40039 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters not refined
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.049P)2 + 2.9P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7866 reflectionsΔρmax = 1.19 e Å3
452 parametersΔρmin = 0.79 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000124
Crystal data top
[Ir(C18H12NO2)2(C5H7O2)]V = 3302.5 (13) Å3
Mr = 839.88Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.618 (3) ŵ = 4.10 mm1
b = 11.455 (2) ÅT = 293 K
c = 18.993 (4) Å0.30 × 0.20 × 0.20 mm
β = 114.01 (3)°
Data collection top
Bruker SMART CCD area detector
diffractometer
7866 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
7275 reflections with I > 2σ(I)
Tmin = 0.373, Tmax = 0.495Rint = 0.042
40039 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.093H-atom parameters not refined
S = 1.04Δρmax = 1.19 e Å3
7866 reflectionsΔρmin = 0.79 e Å3
452 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.283405 (9)0.883603 (13)0.016855 (9)0.03107 (8)
C10.2104 (2)0.7556 (4)0.0502 (2)0.0333 (9)
C20.2356 (3)0.6436 (4)0.0595 (3)0.0400 (10)
H2A0.29480.62310.03580.048*
C30.1744 (3)0.5607 (4)0.1037 (3)0.0433 (10)
C40.0850 (3)0.5876 (5)0.1400 (3)0.0497 (12)
H4A0.04470.53230.17010.060*
C50.0575 (3)0.6967 (4)0.1305 (3)0.0485 (12)
H5A0.00200.71600.15400.058*
C60.1186 (3)0.7791 (4)0.0857 (3)0.0390 (10)
C70.0990 (3)0.8925 (4)0.0681 (3)0.0383 (10)
C80.0285 (3)1.0503 (4)0.0648 (3)0.0442 (11)
C90.0388 (4)1.1294 (5)0.0754 (3)0.0572 (15)
H9A0.09771.11100.10380.069*
C100.0131 (4)1.2354 (5)0.0418 (3)0.0608 (15)
H10A0.05601.28990.04510.073*
C110.0772 (4)1.2659 (5)0.0016 (3)0.0545 (13)
C120.1028 (5)1.3789 (5)0.0288 (4)0.0690 (18)
H12A0.05951.43190.02690.083*
C130.1882 (5)1.4127 (5)0.0608 (4)0.0721 (18)
H13A0.20301.48770.08060.086*
C140.2539 (4)1.3346 (5)0.0639 (3)0.0636 (15)
H14A0.31231.35920.08320.076*
C150.2333 (3)1.2218 (4)0.0388 (3)0.0488 (11)
H15A0.27821.17010.04300.059*
C160.1460 (3)1.1836 (4)0.0070 (3)0.0457 (11)
C170.1165 (3)1.0700 (4)0.0234 (3)0.0403 (10)
C180.1518 (4)0.3653 (4)0.1511 (4)0.0623 (15)
H18A0.18530.29650.14970.093*
H18B0.12010.38970.20350.093*
H18C0.11080.34840.12850.093*
C190.3098 (2)0.9591 (3)0.0666 (2)0.0326 (8)
C200.2626 (3)1.0416 (4)0.1207 (2)0.0371 (9)
H20A0.20701.06310.12450.045*
C210.2958 (3)1.0938 (4)0.1699 (3)0.0395 (10)
C220.3789 (3)1.0652 (4)0.1654 (3)0.0437 (10)
H22A0.40141.10230.19700.052*
C230.4275 (3)0.9816 (4)0.1140 (3)0.0423 (10)
H23A0.48250.95990.11150.051*
C240.3936 (3)0.9294 (4)0.0655 (2)0.0353 (9)
C250.4352 (3)0.8390 (4)0.0116 (3)0.0375 (9)
C260.5213 (3)0.6961 (4)0.0445 (3)0.0434 (10)
C270.5894 (3)0.6147 (5)0.0656 (4)0.0567 (14)
H27A0.63180.61630.04530.068*
C280.5899 (3)0.5331 (5)0.1174 (3)0.0580 (14)
H28A0.63370.47630.13270.070*
C290.5257 (3)0.5314 (4)0.1492 (3)0.0490 (12)
C300.5291 (4)0.4462 (5)0.2044 (3)0.0586 (14)
H30A0.57390.39080.22010.070*
C310.4684 (4)0.4443 (5)0.2344 (3)0.0605 (14)
H31A0.47150.38720.27020.073*
C320.4011 (4)0.5264 (5)0.2124 (3)0.0610 (14)
H32A0.36030.52460.23450.073*
C330.3941 (4)0.6101 (4)0.1586 (3)0.0484 (12)
H33A0.34790.66340.14350.058*
C340.4560 (3)0.6157 (4)0.1264 (3)0.0406 (10)
C350.4572 (3)0.7002 (4)0.0720 (3)0.0382 (9)
C360.2760 (4)1.2488 (5)0.2607 (3)0.0625 (15)
H36A0.23041.30020.29330.094*
H36B0.29721.20260.29180.094*
H36C0.32361.29410.22480.094*
C370.2550 (4)0.7829 (6)0.2320 (3)0.0692 (16)
H37A0.22060.71680.20530.104*
H37B0.22060.83100.25070.104*
H37C0.30670.75640.27470.104*
C380.2818 (3)0.8530 (5)0.1775 (3)0.0485 (12)
C390.3321 (4)0.9528 (5)0.2054 (3)0.0566 (13)
H39A0.34400.97330.25610.068*
C400.3666 (3)1.0257 (4)0.1659 (3)0.0436 (11)
C410.4168 (4)1.1320 (5)0.2078 (4)0.0654 (16)
H41A0.43721.17480.17480.098*
H41B0.46631.10810.25340.098*
H41C0.37881.18090.22200.098*
O10.01686 (18)0.9383 (3)0.09431 (19)0.0458 (8)
O20.2092 (2)0.4554 (3)0.1090 (2)0.0568 (9)
O30.50843 (19)0.7840 (3)0.0083 (2)0.0459 (8)
O40.2417 (2)1.1741 (3)0.2197 (2)0.0554 (9)
O50.25520 (19)0.8129 (3)0.10959 (18)0.0422 (7)
O60.35994 (18)1.0133 (3)0.09775 (18)0.0402 (7)
N10.1604 (2)0.9649 (3)0.0240 (2)0.0357 (8)
N20.4017 (2)0.7958 (3)0.0350 (2)0.0332 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02440 (10)0.03730 (12)0.03357 (11)0.00402 (6)0.01390 (7)0.00183 (6)
C10.0253 (19)0.045 (2)0.031 (2)0.0023 (17)0.0132 (16)0.0050 (17)
C20.030 (2)0.049 (3)0.038 (2)0.0034 (19)0.0104 (18)0.0009 (19)
C30.040 (2)0.043 (3)0.051 (3)0.000 (2)0.024 (2)0.004 (2)
C40.036 (2)0.052 (3)0.055 (3)0.005 (2)0.013 (2)0.010 (2)
C50.028 (2)0.057 (3)0.055 (3)0.005 (2)0.011 (2)0.000 (2)
C60.029 (2)0.046 (2)0.041 (2)0.0008 (18)0.0132 (18)0.0030 (19)
C70.026 (2)0.050 (3)0.040 (2)0.0080 (17)0.0146 (18)0.0052 (19)
C80.035 (2)0.056 (3)0.047 (3)0.014 (2)0.023 (2)0.012 (2)
C90.041 (3)0.076 (4)0.062 (3)0.029 (3)0.029 (3)0.026 (3)
C100.062 (3)0.062 (4)0.074 (4)0.032 (3)0.043 (3)0.020 (3)
C110.060 (3)0.054 (3)0.059 (3)0.025 (3)0.033 (3)0.015 (2)
C120.087 (5)0.050 (3)0.075 (4)0.031 (3)0.038 (4)0.009 (3)
C130.097 (5)0.049 (3)0.073 (4)0.011 (3)0.036 (4)0.003 (3)
C140.075 (4)0.046 (3)0.064 (4)0.009 (3)0.023 (3)0.004 (3)
C150.053 (3)0.047 (3)0.048 (3)0.012 (2)0.022 (2)0.006 (2)
C160.052 (3)0.049 (3)0.043 (3)0.015 (2)0.026 (2)0.011 (2)
C170.035 (2)0.047 (3)0.045 (3)0.015 (2)0.023 (2)0.012 (2)
C180.065 (4)0.045 (3)0.076 (4)0.002 (3)0.028 (3)0.009 (3)
C190.0285 (19)0.035 (2)0.037 (2)0.0011 (16)0.0169 (17)0.0007 (17)
C200.037 (2)0.040 (2)0.039 (2)0.0033 (18)0.0199 (18)0.0045 (18)
C210.048 (3)0.039 (2)0.033 (2)0.0000 (19)0.019 (2)0.0004 (18)
C220.051 (3)0.050 (3)0.042 (3)0.006 (2)0.031 (2)0.002 (2)
C230.037 (2)0.051 (3)0.047 (3)0.001 (2)0.025 (2)0.001 (2)
C240.030 (2)0.042 (2)0.038 (2)0.0003 (18)0.0185 (18)0.0013 (18)
C250.0275 (19)0.043 (2)0.043 (2)0.0061 (18)0.0157 (18)0.0017 (19)
C260.033 (2)0.047 (3)0.051 (3)0.0080 (19)0.018 (2)0.001 (2)
C270.039 (3)0.069 (4)0.066 (4)0.020 (2)0.025 (3)0.007 (3)
C280.042 (3)0.060 (3)0.066 (4)0.022 (2)0.017 (3)0.007 (3)
C290.046 (3)0.046 (3)0.046 (3)0.012 (2)0.010 (2)0.001 (2)
C300.056 (3)0.047 (3)0.055 (3)0.015 (2)0.005 (3)0.007 (2)
C310.076 (4)0.046 (3)0.051 (3)0.004 (3)0.018 (3)0.006 (2)
C320.066 (3)0.060 (3)0.061 (4)0.002 (3)0.030 (3)0.007 (3)
C330.049 (3)0.047 (3)0.052 (3)0.003 (2)0.023 (2)0.002 (2)
C340.039 (2)0.038 (2)0.039 (2)0.0028 (18)0.010 (2)0.0010 (18)
C350.027 (2)0.044 (2)0.040 (2)0.0061 (18)0.0105 (17)0.0017 (19)
C360.089 (4)0.058 (3)0.049 (3)0.006 (3)0.037 (3)0.015 (3)
C370.076 (4)0.091 (4)0.052 (3)0.007 (3)0.039 (3)0.014 (3)
C380.042 (3)0.066 (3)0.044 (3)0.020 (2)0.024 (2)0.009 (2)
C390.061 (3)0.066 (3)0.044 (3)0.005 (3)0.022 (2)0.006 (2)
C400.034 (2)0.050 (3)0.042 (3)0.010 (2)0.0107 (19)0.008 (2)
C410.060 (4)0.063 (4)0.065 (4)0.001 (3)0.017 (3)0.016 (3)
O10.0278 (15)0.058 (2)0.0507 (19)0.0074 (14)0.0150 (14)0.0050 (16)
O20.0469 (19)0.0436 (19)0.074 (3)0.0006 (15)0.0181 (18)0.0136 (17)
O30.0318 (15)0.057 (2)0.056 (2)0.0130 (14)0.0247 (14)0.0084 (16)
O40.059 (2)0.055 (2)0.057 (2)0.0100 (17)0.0291 (18)0.0214 (17)
O50.0372 (16)0.0557 (19)0.0395 (17)0.0050 (14)0.0215 (14)0.0086 (14)
O60.0296 (14)0.0452 (17)0.0457 (18)0.0019 (13)0.0151 (13)0.0041 (14)
N10.0253 (16)0.044 (2)0.042 (2)0.0092 (15)0.0175 (15)0.0079 (16)
N20.0238 (16)0.0381 (19)0.0375 (19)0.0057 (14)0.0125 (14)0.0002 (15)
Geometric parameters (Å, º) top
Ir1—C11.997 (4)C21—O41.364 (5)
Ir1—C192.004 (4)C21—C221.387 (6)
Ir1—N12.088 (3)C22—C231.371 (6)
Ir1—N22.109 (3)C22—H22A0.9300
Ir1—O62.144 (3)C23—C241.393 (6)
Ir1—O52.156 (3)C23—H23A0.9300
C1—C21.383 (6)C24—C251.423 (6)
C1—C61.420 (5)C25—N21.318 (5)
C2—C31.395 (6)C25—O31.348 (5)
C2—H2A0.9300C26—C351.365 (6)
C3—O21.359 (5)C26—O31.374 (6)
C3—C41.394 (6)C26—C271.393 (6)
C4—C51.367 (7)C27—C281.355 (8)
C4—H4A0.9300C27—H27A0.9300
C5—C61.394 (6)C28—C291.426 (7)
C5—H5A0.9300C28—H28A0.9300
C6—C71.413 (6)C29—C301.416 (7)
C7—N11.317 (6)C29—C341.433 (6)
C7—O11.354 (5)C30—C311.345 (8)
C8—C171.369 (6)C30—H30A0.9300
C8—O11.382 (6)C31—C321.389 (8)
C8—C91.388 (6)C31—H31A0.9300
C9—C101.356 (8)C32—C331.371 (7)
C9—H9A0.9300C32—H32A0.9300
C10—C111.423 (8)C33—C341.397 (7)
C10—H10A0.9300C33—H33A0.9300
C11—C121.410 (8)C34—C351.421 (6)
C11—C161.440 (6)C35—N21.420 (5)
C12—C131.354 (10)C36—O41.423 (6)
C12—H12A0.9300C36—H36A0.9600
C13—C141.394 (9)C36—H36B0.9600
C13—H13A0.9300C36—H36C0.9600
C14—C151.371 (7)C37—C381.514 (7)
C14—H14A0.9300C37—H37A0.9600
C15—C161.396 (7)C37—H37B0.9600
C15—H15A0.9300C37—H37C0.9600
C16—C171.427 (7)C38—O51.267 (6)
C17—N11.410 (5)C38—C391.388 (8)
C18—O21.412 (6)C39—C401.393 (7)
C18—H18A0.9600C39—H39A0.9300
C18—H18B0.9600C40—O61.261 (5)
C18—H18C0.9600C40—C411.507 (7)
C19—C201.381 (6)C41—H41A0.9600
C19—C241.426 (5)C41—H41B0.9600
C20—C211.399 (6)C41—H41C0.9600
C20—H20A0.9300
C1—Ir1—C1994.82 (16)C23—C22—C21119.4 (4)
C1—Ir1—N180.88 (15)C23—C22—H22A120.3
C19—Ir1—N190.57 (14)C21—C22—H22A120.3
C1—Ir1—N292.18 (14)C22—C23—C24119.4 (4)
C19—Ir1—N281.11 (15)C22—C23—H23A120.3
N1—Ir1—N2168.72 (13)C24—C23—H23A120.3
C1—Ir1—O6174.57 (14)C23—C24—C25125.4 (4)
C19—Ir1—O690.60 (14)C23—C24—C19122.9 (4)
N1—Ir1—O699.37 (13)C25—C24—C19111.6 (4)
N2—Ir1—O688.39 (12)N2—C25—O3114.4 (4)
C1—Ir1—O588.16 (14)N2—C25—C24122.9 (4)
C19—Ir1—O5176.47 (14)O3—C25—C24122.6 (4)
N1—Ir1—O588.03 (12)C35—C26—O3109.8 (4)
N2—Ir1—O5100.70 (12)C35—C26—C27125.6 (5)
O6—Ir1—O586.43 (12)O3—C26—C27124.6 (4)
C2—C1—C6116.0 (4)C28—C27—C26115.8 (5)
C2—C1—Ir1128.7 (3)C28—C27—H27A122.1
C6—C1—Ir1114.8 (3)C26—C27—H27A122.1
C1—C2—C3121.5 (4)C27—C28—C29122.2 (5)
C1—C2—H2A119.2C27—C28—H28A118.9
C3—C2—H2A119.2C29—C28—H28A118.9
O2—C3—C4124.0 (4)C30—C29—C28120.8 (5)
O2—C3—C2114.9 (4)C30—C29—C34118.2 (5)
C4—C3—C2121.1 (4)C28—C29—C34121.0 (5)
C5—C4—C3118.9 (5)C31—C30—C29120.9 (5)
C5—C4—H4A120.5C31—C30—H30A119.6
C3—C4—H4A120.5C29—C30—H30A119.6
C4—C5—C6119.9 (4)C30—C31—C32120.9 (5)
C4—C5—H5A120.0C30—C31—H31A119.6
C6—C5—H5A120.0C32—C31—H31A119.6
C5—C6—C7125.9 (4)C33—C32—C31120.7 (6)
C5—C6—C1122.5 (4)C33—C32—H32A119.6
C7—C6—C1111.7 (4)C31—C32—H32A119.6
N1—C7—O1113.2 (4)C32—C33—C34120.3 (5)
N1—C7—C6122.4 (4)C32—C33—H33A119.8
O1—C7—C6124.4 (4)C34—C33—H33A119.8
C17—C8—O1109.0 (4)C33—C34—C35125.5 (4)
C17—C8—C9125.8 (5)C33—C34—C29119.0 (4)
O1—C8—C9125.2 (5)C35—C34—C29115.5 (4)
C10—C9—C8115.8 (5)C26—C35—N2106.7 (4)
C10—C9—H9A122.1C26—C35—C34119.9 (4)
C8—C9—H9A122.1N2—C35—C34133.4 (4)
C9—C10—C11122.2 (5)O4—C36—H36A109.5
C9—C10—H10A118.9O4—C36—H36B109.5
C11—C10—H10A118.9H36A—C36—H36B109.5
C12—C11—C10121.4 (5)O4—C36—H36C109.5
C12—C11—C16117.5 (5)H36A—C36—H36C109.5
C10—C11—C16121.1 (5)H36B—C36—H36C109.5
C13—C12—C11122.2 (5)C38—C37—H37A109.5
C13—C12—H12A118.9C38—C37—H37B109.5
C11—C12—H12A118.9H37A—C37—H37B109.5
C12—C13—C14119.7 (6)C38—C37—H37C109.5
C12—C13—H13A120.1H37A—C37—H37C109.5
C14—C13—H13A120.1H37B—C37—H37C109.5
C15—C14—C13120.6 (6)O5—C38—C39126.4 (5)
C15—C14—H14A119.7O5—C38—C37115.2 (5)
C13—C14—H14A119.7C39—C38—C37118.4 (5)
C14—C15—C16121.0 (5)C38—C39—C40127.2 (5)
C14—C15—H15A119.5C38—C39—H39A116.4
C16—C15—H15A119.5C40—C39—H39A116.4
C15—C16—C17126.0 (4)O6—C40—C39127.0 (5)
C15—C16—C11118.8 (5)O6—C40—C41115.6 (5)
C17—C16—C11115.1 (4)C39—C40—C41117.4 (5)
C8—C17—N1106.9 (4)C40—C41—H41A109.5
C8—C17—C16119.6 (4)C40—C41—H41B109.5
N1—C17—C16133.5 (4)H41A—C41—H41B109.5
O2—C18—H18A109.5C40—C41—H41C109.5
O2—C18—H18B109.5H41A—C41—H41C109.5
H18A—C18—H18B109.5H41B—C41—H41C109.5
O2—C18—H18C109.5C7—O1—C8104.9 (3)
H18A—C18—H18C109.5C3—O2—C18118.7 (4)
H18B—C18—H18C109.5C25—O3—C26104.3 (3)
C20—C19—C24115.4 (4)C21—O4—C36119.1 (4)
C20—C19—Ir1130.0 (3)C38—O5—Ir1126.4 (3)
C24—C19—Ir1114.4 (3)C40—O6—Ir1126.3 (3)
C19—C20—C21122.0 (4)C7—N1—C17105.9 (3)
C19—C20—H20A119.0C7—N1—Ir1110.1 (3)
C21—C20—H20A119.0C17—N1—Ir1144.0 (3)
O4—C21—C22124.2 (4)C25—N2—C35104.8 (3)
O4—C21—C20115.1 (4)C25—N2—Ir1109.4 (3)
C22—C21—C20120.7 (4)C35—N2—Ir1145.4 (3)
C19—Ir1—C1—C295.3 (4)C29—C30—C31—C320.5 (9)
N1—Ir1—C1—C2174.9 (4)C30—C31—C32—C331.2 (9)
N2—Ir1—C1—C214.0 (4)C31—C32—C33—C341.5 (8)
O5—Ir1—C1—C286.6 (4)C32—C33—C34—C35178.1 (5)
C19—Ir1—C1—C693.0 (3)C32—C33—C34—C291.2 (7)
N1—Ir1—C1—C63.2 (3)C30—C29—C34—C330.5 (7)
N2—Ir1—C1—C6174.2 (3)C28—C29—C34—C33179.5 (5)
O5—Ir1—C1—C685.1 (3)C30—C29—C34—C35178.8 (4)
C6—C1—C2—C32.4 (6)C28—C29—C34—C351.1 (7)
Ir1—C1—C2—C3174.1 (3)O3—C26—C35—N20.4 (5)
C1—C2—C3—O2178.6 (4)C27—C26—C35—N2179.7 (5)
C1—C2—C3—C40.4 (7)O3—C26—C35—C34178.6 (4)
O2—C3—C4—C5180.0 (5)C27—C26—C35—C340.7 (8)
C2—C3—C4—C51.2 (8)C33—C34—C35—C26179.8 (5)
C3—C4—C5—C60.4 (8)C29—C34—C35—C260.9 (6)
C4—C5—C6—C7176.7 (5)C33—C34—C35—N21.1 (8)
C4—C5—C6—C11.8 (8)C29—C34—C35—N2179.6 (4)
C2—C1—C6—C53.2 (7)O5—C38—C39—C403.1 (9)
Ir1—C1—C6—C5176.0 (4)C37—C38—C39—C40176.8 (5)
C2—C1—C6—C7175.6 (4)C38—C39—C40—O61.4 (8)
Ir1—C1—C6—C72.7 (5)C38—C39—C40—C41177.9 (5)
C5—C6—C7—N1178.7 (5)N1—C7—O1—C81.0 (5)
C1—C6—C7—N10.1 (6)C6—C7—O1—C8178.7 (4)
C5—C6—C7—O11.6 (8)C17—C8—O1—C71.4 (5)
C1—C6—C7—O1179.7 (4)C9—C8—O1—C7178.4 (5)
C17—C8—C9—C100.6 (8)C4—C3—O2—C182.7 (8)
O1—C8—C9—C10179.6 (5)C2—C3—O2—C18178.5 (5)
C8—C9—C10—C113.2 (8)N2—C25—O3—C261.3 (5)
C9—C10—C11—C12176.0 (6)C24—C25—O3—C26173.7 (4)
C9—C10—C11—C161.7 (8)C35—C26—O3—C250.5 (5)
C10—C11—C12—C13173.7 (6)C27—C26—O3—C25178.8 (5)
C16—C11—C12—C134.1 (9)C22—C21—O4—C3611.5 (7)
C11—C12—C13—C140.3 (10)C20—C21—O4—C36167.2 (4)
C12—C13—C14—C153.6 (10)C39—C38—O5—Ir12.2 (7)
C13—C14—C15—C162.3 (9)C37—C38—O5—Ir1177.6 (3)
C14—C15—C16—C17177.7 (5)C1—Ir1—O5—C38179.5 (4)
C14—C15—C16—C112.1 (7)N1—Ir1—O5—C3898.6 (4)
C12—C11—C16—C155.2 (7)N2—Ir1—O5—C3888.6 (4)
C10—C11—C16—C15172.5 (5)O6—Ir1—O5—C381.0 (3)
C12—C11—C16—C17178.8 (5)C39—C40—O6—Ir15.7 (6)
C10—C11—C16—C173.5 (7)C41—C40—O6—Ir1173.6 (3)
O1—C8—C17—N13.1 (5)C19—Ir1—O6—C40173.3 (3)
C9—C8—C17—N1176.7 (5)N1—Ir1—O6—C4082.7 (3)
O1—C8—C17—C16174.2 (4)N2—Ir1—O6—C40105.6 (3)
C9—C8—C17—C166.0 (7)O5—Ir1—O6—C404.7 (3)
C15—C16—C17—C8168.7 (5)O1—C7—N1—C172.9 (5)
C11—C16—C17—C87.0 (6)C6—C7—N1—C17176.8 (4)
C15—C16—C17—N17.8 (8)O1—C7—N1—Ir1177.7 (3)
C11—C16—C17—N1176.5 (5)C6—C7—N1—Ir12.6 (5)
C1—Ir1—C19—C2087.0 (4)C8—C17—N1—C73.6 (5)
N1—Ir1—C19—C206.1 (4)C16—C17—N1—C7173.2 (5)
N2—Ir1—C19—C20178.4 (4)C8—C17—N1—Ir1177.4 (4)
O6—Ir1—C19—C2093.3 (4)C16—C17—N1—Ir15.8 (9)
C1—Ir1—C19—C2498.6 (3)C1—Ir1—N1—C73.0 (3)
N1—Ir1—C19—C24179.5 (3)C19—Ir1—N1—C797.8 (3)
N2—Ir1—C19—C247.1 (3)N2—Ir1—N1—C755.6 (8)
O6—Ir1—C19—C2481.1 (3)O6—Ir1—N1—C7171.5 (3)
C24—C19—C20—C211.2 (6)O5—Ir1—N1—C785.4 (3)
Ir1—C19—C20—C21173.2 (3)C1—Ir1—N1—C17175.9 (5)
C19—C20—C21—O4179.5 (4)C19—Ir1—N1—C1781.1 (5)
C19—C20—C21—C220.8 (7)N2—Ir1—N1—C17123.4 (7)
O4—C21—C22—C23179.0 (4)O6—Ir1—N1—C179.6 (5)
C20—C21—C22—C232.4 (7)O5—Ir1—N1—C1795.6 (5)
C21—C22—C23—C241.9 (7)O3—C25—N2—C351.5 (5)
C22—C23—C24—C25177.6 (4)C24—C25—N2—C35173.5 (4)
C22—C23—C24—C190.1 (7)O3—C25—N2—Ir1176.0 (3)
C20—C19—C24—C231.7 (6)C24—C25—N2—Ir11.1 (5)
Ir1—C19—C24—C23173.6 (4)C26—C35—N2—C251.1 (5)
C20—C19—C24—C25176.3 (4)C34—C35—N2—C25177.7 (5)
Ir1—C19—C24—C258.4 (5)C26—C35—N2—Ir1172.0 (4)
C23—C24—C25—N2177.4 (4)C34—C35—N2—Ir16.8 (9)
C19—C24—C25—N24.7 (6)C1—Ir1—N2—C2599.0 (3)
C23—C24—C25—O38.1 (7)C19—Ir1—N2—C254.5 (3)
C19—C24—C25—O3169.8 (4)N1—Ir1—N2—C2547.4 (8)
C35—C26—C27—C280.6 (8)O6—Ir1—N2—C2586.4 (3)
O3—C26—C27—C28178.6 (5)O5—Ir1—N2—C25172.5 (3)
C26—C27—C28—C290.8 (8)C1—Ir1—N2—C3571.7 (5)
C27—C28—C29—C30178.8 (5)C19—Ir1—N2—C35166.3 (5)
C27—C28—C29—C341.2 (8)N1—Ir1—N2—C35123.4 (7)
C28—C29—C30—C31179.8 (5)O6—Ir1—N2—C35102.9 (5)
C34—C29—C30—C310.2 (8)O5—Ir1—N2—C3516.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O60.932.243.077 (5)150
C33—H33A···O50.932.223.137 (6)170
C23—H23A···O6i0.932.543.419 (6)157
C27—H27A···O2ii0.932.553.206 (6)128
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ir(C18H12NO2)2(C5H7O2)]
Mr839.88
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)16.618 (3), 11.455 (2), 18.993 (4)
β (°) 114.01 (3)
V3)3302.5 (13)
Z4
Radiation typeMo Kα
µ (mm1)4.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.373, 0.495
No. of measured, independent and
observed [I > 2σ(I)] reflections
40039, 7866, 7275
Rint0.042
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 1.04
No. of reflections7866
No. of parameters452
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.19, 0.79

Computer programs: SMART (Bruker 2001), SAINT (Bruker 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ir1—C11.997 (4)Ir1—N22.109 (3)
Ir1—C192.004 (4)Ir1—O62.144 (3)
Ir1—N12.088 (3)Ir1—O52.156 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O60.932.243.077 (5)150
C33—H33A···O50.932.223.137 (6)170
C23—H23A···O6i0.932.543.419 (6)157
C27—H27A···O2ii0.932.553.206 (6)128
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z.
 

References

First citationAbbady, M. A. (1979). Indian J. Chem. Sect. B, 17, 450–453.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLamansky, S., Djurovich, P., Murphy, D., Abdel-Razaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds