organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,4E)-N-Benzyl-2-cyano-5-phenyl­penta-2,4-dienamide

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: lixlcwnu@yahoo.com.cn

(Received 28 August 2011; accepted 6 September 2011; online 14 September 2011)

In the title compound, C19H16N2O, the mol­ecule adopts an E configuration about the two C=C double bonds. The dihedral angle between the phenyl rings is 88.89 (8)°. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N and C—H⋯O hydrogen bonds into chains running parallel to [130].

Related literature

For the use of malononitrile-containing compounds as building blocks in organic synthesis, see: Liu et al. (2002[Liu, Y., Shen, B., Kotora, M., Nakajima, K. & Takahashi, T. (2002). J. Org. Chem. 67, 7019-7028.]); Sepiol & Milart (1985[Sepiol, J. & Milart, P. (1985). Tetrahedron, 41, 5261-5265.]); Zhang et al. (2003[Zhang, B., Zhu, X. Q., Lu, J. Y., He, J., Wang, P. G. & Cheng, J. P. (2003). J. Org. Chem. 68, 3295-3298.]). For a related structure, see: Kang & Chen (2009[Kang, T.-R. & Chen, L.-M. (2009). Acta Cryst. E65, o3164.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N2O

  • Mr = 288.34

  • Monoclinic, C 2/c

  • a = 19.5823 (19) Å

  • b = 5.6386 (8) Å

  • c = 28.450 (3) Å

  • β = 94.912 (9)°

  • V = 3129.8 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 291 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.839, Tmax = 0.889

  • 6165 measured reflections

  • 2789 independent reflections

  • 1843 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.137

  • S = 1.05

  • 2789 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.86 2.25 3.037 (2) 152
C7—H7⋯O1ii 0.93 2.39 3.280 (2) 160
Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of ylidene malononitrile have been studied extensively. From ring closure reactions, compounds containing newly formed five or six-membered rings, such as indans (Zhang et al., 2003), naphthalenes (Liu et al., 2002) and benzenes (Sepiol & Milart, 1985) were obtained. Some crystal structures involving ylidene malononitrile groups have been published, including a recent report from our laboratory (Kang & Chen, 2009). As a part of our interest in the synthesis of complex ring systems, we investigated the title compound, (I), which is a diene reagent in the Diels-Alder reaction. We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles are normal. The two phenyl rings are almost perpendicular, forming a dihedral angle of 88.89 (8)°. Both CC double bonds display an E configuration. In the crystal packing, molecules are connected by intermolecular N—H···N and C—H···O hydrogen bonds (Table 1) to form chains running parallel to the [130] direction.

Related literature top

For the use of malononitrile-containing compounds as building blocks in organic synthesis, see: Liu et al. (2002); Sepiol & Milart (1985); Zhang et al. (2003). For a related structure, see: Kang & Chen (2009).

Experimental top

(2E,4E)-Ethyl 2-cyano-5-phenylpenta-2,4-dienoate (0.454 g, 2 mmol) and phenylmethanamine (0.214 g, 2 mmol) were dissolved in 2-propanol (2 ml). To the solution was added piperidine (0.017 g, 0.2 mmol), then the mixture was stirred for 24 h at 298 K and filtered to obtain a white solid. Recrystallization from hot ethanol afforded the pure compound. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the ethanol solvent.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C, N).

Structure description top

The chemistry of ylidene malononitrile have been studied extensively. From ring closure reactions, compounds containing newly formed five or six-membered rings, such as indans (Zhang et al., 2003), naphthalenes (Liu et al., 2002) and benzenes (Sepiol & Milart, 1985) were obtained. Some crystal structures involving ylidene malononitrile groups have been published, including a recent report from our laboratory (Kang & Chen, 2009). As a part of our interest in the synthesis of complex ring systems, we investigated the title compound, (I), which is a diene reagent in the Diels-Alder reaction. We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles are normal. The two phenyl rings are almost perpendicular, forming a dihedral angle of 88.89 (8)°. Both CC double bonds display an E configuration. In the crystal packing, molecules are connected by intermolecular N—H···N and C—H···O hydrogen bonds (Table 1) to form chains running parallel to the [130] direction.

For the use of malononitrile-containing compounds as building blocks in organic synthesis, see: Liu et al. (2002); Sepiol & Milart (1985); Zhang et al. (2003). For a related structure, see: Kang & Chen (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.
(2E,4E)-N-Benzyl-2-cyano-5-phenylpenta-2,4-dienamide top
Crystal data top
C19H16N2OF(000) = 1216
Mr = 288.34Dx = 1.224 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 1369 reflections
a = 19.5823 (19) Åθ = 3.1–69.3°
b = 5.6386 (8) ŵ = 0.61 mm1
c = 28.450 (3) ÅT = 291 K
β = 94.912 (9)°Needle, yellow
V = 3129.8 (6) Å30.30 × 0.24 × 0.20 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
2789 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1843 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 15.9149 pixels mm-1θmax = 67.1°, θmin = 3.1°
ω scansh = 2321
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 46
Tmin = 0.839, Tmax = 0.889l = 3331
6165 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.3114P]
where P = (Fo2 + 2Fc2)/3
2789 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C19H16N2OV = 3129.8 (6) Å3
Mr = 288.34Z = 8
Monoclinic, C2/cCu Kα radiation
a = 19.5823 (19) ŵ = 0.61 mm1
b = 5.6386 (8) ÅT = 291 K
c = 28.450 (3) Å0.30 × 0.24 × 0.20 mm
β = 94.912 (9)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini ultra
diffractometer
2789 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1843 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.889Rint = 0.027
6165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.05Δρmax = 0.12 e Å3
2789 reflectionsΔρmin = 0.13 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28610 (7)1.1494 (3)0.45363 (5)0.0770 (5)
N20.36754 (9)1.4308 (3)0.45249 (6)0.0650 (5)
H20.40811.47450.46290.078*
N10.50308 (9)1.2707 (4)0.53540 (7)0.0751 (6)
C100.38243 (9)1.1118 (4)0.50910 (7)0.0559 (5)
C50.38487 (10)0.4455 (4)0.62469 (7)0.0596 (5)
C140.33781 (10)1.5116 (4)0.36648 (7)0.0592 (5)
C110.44961 (10)1.1992 (4)0.52414 (7)0.0594 (5)
C80.38929 (10)0.7868 (4)0.56840 (7)0.0627 (6)
H80.43340.82740.58050.075*
C90.35694 (10)0.9231 (4)0.53033 (7)0.0592 (5)
H90.31310.87520.51900.071*
C120.34132 (9)1.2332 (4)0.46947 (7)0.0578 (5)
C70.35797 (10)0.6024 (4)0.58708 (7)0.0609 (5)
H70.31350.57110.57440.073*
C190.31165 (11)1.6639 (5)0.33143 (9)0.0766 (7)
H190.28981.80230.33970.092*
C130.32942 (12)1.5726 (4)0.41717 (8)0.0706 (6)
H13B0.34261.73700.42220.085*
H13A0.28121.56030.42210.085*
C40.45148 (11)0.4587 (5)0.64515 (9)0.0799 (7)
H40.48050.57650.63550.096*
C150.36965 (11)1.3083 (4)0.35289 (8)0.0718 (6)
H150.38751.20150.37560.086*
C60.34295 (11)0.2684 (4)0.64009 (8)0.0679 (6)
H60.29780.25710.62710.081*
C10.36710 (12)0.1092 (5)0.67424 (8)0.0792 (7)
H10.33830.00820.68420.095*
C20.43355 (13)0.1235 (5)0.69361 (9)0.0847 (7)
H2A0.45010.01380.71620.102*
C180.31711 (13)1.6154 (6)0.28437 (9)0.0899 (8)
H180.29861.71970.26140.108*
C160.37529 (14)1.2612 (5)0.30529 (10)0.0889 (8)
H160.39681.12320.29650.107*
C30.47553 (12)0.3004 (6)0.67950 (10)0.0923 (9)
H30.52020.31330.69320.111*
C170.34949 (15)1.4158 (6)0.27158 (10)0.0915 (8)
H170.35401.38480.23990.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0564 (8)0.0861 (12)0.0854 (11)0.0154 (8)0.0120 (7)0.0014 (9)
N20.0644 (10)0.0644 (12)0.0641 (11)0.0098 (9)0.0066 (8)0.0037 (9)
N10.0593 (11)0.0816 (14)0.0830 (13)0.0103 (10)0.0031 (9)0.0061 (11)
C100.0512 (10)0.0589 (13)0.0574 (11)0.0039 (9)0.0046 (9)0.0090 (10)
C50.0566 (11)0.0641 (13)0.0577 (12)0.0048 (10)0.0033 (9)0.0068 (11)
C140.0547 (11)0.0582 (13)0.0638 (13)0.0093 (10)0.0003 (9)0.0040 (11)
C110.0554 (11)0.0611 (13)0.0614 (12)0.0032 (10)0.0023 (9)0.0057 (11)
C80.0519 (11)0.0733 (15)0.0623 (13)0.0059 (10)0.0023 (9)0.0048 (11)
C90.0495 (10)0.0668 (14)0.0608 (12)0.0053 (10)0.0029 (9)0.0101 (11)
C120.0519 (11)0.0636 (13)0.0573 (12)0.0025 (10)0.0019 (9)0.0085 (11)
C70.0511 (11)0.0680 (14)0.0629 (12)0.0034 (10)0.0001 (9)0.0076 (11)
C190.0719 (14)0.0764 (16)0.0806 (16)0.0030 (12)0.0017 (12)0.0066 (14)
C130.0757 (14)0.0616 (14)0.0729 (15)0.0023 (11)0.0032 (11)0.0045 (12)
C40.0620 (13)0.0937 (19)0.0823 (16)0.0152 (13)0.0035 (12)0.0148 (15)
C150.0827 (15)0.0593 (14)0.0733 (15)0.0022 (12)0.0069 (12)0.0006 (12)
C60.0634 (12)0.0743 (15)0.0650 (14)0.0088 (11)0.0009 (10)0.0010 (12)
C10.0856 (16)0.0811 (17)0.0708 (15)0.0211 (13)0.0057 (12)0.0018 (14)
C20.0906 (17)0.0924 (19)0.0690 (15)0.0053 (15)0.0060 (13)0.0134 (15)
C180.0853 (17)0.109 (2)0.0735 (17)0.0067 (16)0.0059 (13)0.0159 (17)
C160.110 (2)0.0765 (18)0.0836 (19)0.0086 (15)0.0259 (15)0.0155 (16)
C30.0691 (14)0.114 (2)0.0909 (19)0.0113 (15)0.0134 (13)0.0168 (18)
C170.105 (2)0.101 (2)0.0694 (16)0.0202 (18)0.0087 (15)0.0075 (17)
Geometric parameters (Å, º) top
O1—C121.230 (2)C19—H190.9300
N2—C121.334 (3)C13—H13B0.9700
N2—C131.442 (3)C13—H13A0.9700
N2—H20.8600C4—C31.377 (3)
N1—C111.142 (2)C4—H40.9300
C10—C91.341 (3)C15—C161.394 (3)
C10—C111.435 (3)C15—H150.9300
C10—C121.494 (3)C6—C11.377 (3)
C5—C41.384 (3)C6—H60.9300
C5—C61.387 (3)C1—C21.371 (3)
C5—C71.452 (3)C1—H10.9300
C14—C151.376 (3)C2—C31.374 (4)
C14—C191.381 (3)C2—H2A0.9300
C14—C131.505 (3)C18—C171.356 (4)
C8—C71.340 (3)C18—H180.9300
C8—C91.431 (3)C16—C171.361 (4)
C8—H80.9300C16—H160.9300
C9—H90.9300C3—H30.9300
C7—H70.9300C17—H170.9300
C19—C181.380 (3)
C12—N2—C13121.55 (18)N2—C13—H13A108.1
C12—N2—H2119.2C14—C13—H13A108.1
C13—N2—H2119.2H13B—C13—H13A107.3
C9—C10—C11120.34 (19)C3—C4—C5121.1 (2)
C9—C10—C12120.41 (18)C3—C4—H4119.4
C11—C10—C12119.25 (19)C5—C4—H4119.4
C4—C5—C6117.9 (2)C14—C15—C16120.5 (2)
C4—C5—C7123.1 (2)C14—C15—H15119.8
C6—C5—C7118.96 (19)C16—C15—H15119.8
C15—C14—C19117.7 (2)C1—C6—C5121.0 (2)
C15—C14—C13123.3 (2)C1—C6—H6119.5
C19—C14—C13119.0 (2)C5—C6—H6119.5
N1—C11—C10178.8 (2)C2—C1—C6120.1 (2)
C7—C8—C9121.93 (19)C2—C1—H1119.9
C7—C8—H8119.0C6—C1—H1119.9
C9—C8—H8119.0C1—C2—C3119.7 (2)
C10—C9—C8127.54 (19)C1—C2—H2A120.1
C10—C9—H9116.2C3—C2—H2A120.1
C8—C9—H9116.2C17—C18—C19120.1 (3)
O1—C12—N2122.8 (2)C17—C18—H18120.0
O1—C12—C10120.0 (2)C19—C18—H18120.0
N2—C12—C10117.16 (17)C17—C16—C15120.5 (3)
C8—C7—C5127.99 (19)C17—C16—H16119.8
C8—C7—H7116.0C15—C16—H16119.8
C5—C7—H7116.0C2—C3—C4120.1 (2)
C18—C19—C14121.5 (2)C2—C3—H3120.0
C18—C19—H19119.2C4—C3—H3120.0
C14—C19—H19119.2C18—C17—C16119.8 (3)
N2—C13—C14116.66 (19)C18—C17—H17120.1
N2—C13—H13B108.1C16—C17—H17120.1
C14—C13—H13B108.1
C11—C10—C9—C80.0 (3)C19—C14—C13—N2169.62 (19)
C12—C10—C9—C8179.81 (19)C6—C5—C4—C30.4 (4)
C7—C8—C9—C10179.2 (2)C7—C5—C4—C3177.5 (3)
C13—N2—C12—O16.1 (3)C19—C14—C15—C160.5 (3)
C13—N2—C12—C10174.48 (19)C13—C14—C15—C16179.5 (2)
C9—C10—C12—O15.8 (3)C4—C5—C6—C10.8 (3)
C11—C10—C12—O1174.09 (19)C7—C5—C6—C1177.2 (2)
C9—C10—C12—N2174.82 (19)C5—C6—C1—C20.1 (4)
C11—C10—C12—N25.3 (3)C6—C1—C2—C31.4 (4)
C9—C8—C7—C5178.3 (2)C14—C19—C18—C170.8 (4)
C4—C5—C7—C84.3 (4)C14—C15—C16—C170.1 (4)
C6—C5—C7—C8177.9 (2)C1—C2—C3—C41.8 (4)
C15—C14—C19—C180.1 (3)C5—C4—C3—C20.9 (4)
C13—C14—C19—C18179.2 (2)C19—C18—C17—C161.4 (4)
C12—N2—C13—C1489.9 (3)C15—C16—C17—C181.0 (4)
C15—C14—C13—N211.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.253.037 (2)152
C7—H7···O1ii0.932.393.280 (2)160
Symmetry codes: (i) x+1, y+3, z+1; (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC19H16N2O
Mr288.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)19.5823 (19), 5.6386 (8), 28.450 (3)
β (°) 94.912 (9)
V3)3129.8 (6)
Z8
Radiation typeCu Kα
µ (mm1)0.61
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.839, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
6165, 2789, 1843
Rint0.027
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.05
No. of reflections2789
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.253.037 (2)151.6
C7—H7···O1ii0.932.393.280 (2)160
Symmetry codes: (i) x+1, y+3, z+1; (ii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The author thanks the Testing Centre of Sichuan University for the diffraction measurements and China West Normal University for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKang, T.-R. & Chen, L.-M. (2009). Acta Cryst. E65, o3164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Shen, B., Kotora, M., Nakajima, K. & Takahashi, T. (2002). J. Org. Chem. 67, 7019–7028.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSepiol, J. & Milart, P. (1985). Tetrahedron, 41, 5261–5265.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, B., Zhu, X. Q., Lu, J. Y., He, J., Wang, P. G. & Cheng, J. P. (2003). J. Org. Chem. 68, 3295–3298.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds