organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(3-Nitro­phen­yl)ethanone (2-methyl­phen­yl)hydrazone

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 9 September 2011; accepted 16 September 2011; online 30 September 2011)

In the title Schiff base compound, C15H15N3O2, the azomethine double bond adopts an E configuration. The dihedral angle between the two aromatic rings is 13.4 (12)°. In the crystal, mol­ecules are arranged in wave-like layers parallel to (100) without any classical hydrogen bonding.

Related literature

For the biological activit of Schiff bases, see: Khan et al. (2009[Khan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795-7801.]); Gerdemann et al. (2002[Gerdemann, C., Eicken, C. & Krebs, B. (2002). Acc. Chem. Res. 35, 183-191.]); Mallikarjun & Sangamesh (1997[Mallikarjun, S. Y. & Sangamesh, A. P. (1997). Transition Met. Chem. 22, 220-224.]); Solomon & Lowery (1993[Solomon, E. I. & Lowery, M. D. (1993). Science, 259, 1575-1581.]). For the role of Schiff bases and Amadori products in the process of glycation, see: Ahmad et al. (2007[Ahmad, M. S., Pischetsrieder, M. & Ahmed, N. (2007). Eur. J. Pharmacol. 561, 32-38.]); Ahmed (2005)[Ahmed, N. (2005). Diabetes Res. Clin. Pract. 67, 3-21.]. For the crystal structures of closely related compounds see: Fun et al. (2008[Fun, H.-K., Adhikari, A., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o2286-o2287.]); Tezcan et al. (2004[Tezcan, H., Tunc, T., Sahin, E. & Yagbasn, R. (2004). Anal. Sci. 20, 137-138.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O2

  • Mr = 269.30

  • Monoclinic, P 21 /n

  • a = 7.4763 (18) Å

  • b = 25.742 (6) Å

  • c = 7.6564 (19) Å

  • β = 110.485 (5)°

  • V = 1380.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.51 × 0.46 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.993

  • 7958 measured reflections

  • 2535 independent reflections

  • 1746 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.176

  • S = 1.04

  • 2535 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases represent an important class of organic compounds, with a wide range of biological properties including antifungal, antibacterial, herbicidal, antiproliferative, cytotoxic, anticonvulsant and anticancer activities (Khan et al., 2009; Gerdemann et al., 2002; Mallikarjun & Sangamesh, 1997; Solomon & Lowery, 1993). They are also known as important intermediates formed during the process of glycation (reaction of protein and glucose) undergoing rearrangement to form more stable Amadori products, which are considered as therapeutic targets to treat diabetes and its complications (Ahmad et al., 2007; Ahmed, 2005). During our on going search for effective antiglycating agents, the title compound was prepared and crystallized.

The structure of title compound (Fig. 1) is not planar, the dihedral angle between the aromatic rings (C1—C6 and C8—C13) being 13.4 (12)°. The azomethine (C7N2) double bond adopts an E configuration, with the N1–N2–C7—C6 torsion angle of 178.38 (16)°. The bond lengths and angle are similar to those observed in other structurally related compounds (Fun et al., 2008; Tezcan et al., 2004). In the crystal structure, the molecules are arranged in wave-like layers parallel to the (100) plane (Fig. 2) without any classical intermolecular hydrogen bonding.

Related literature top

For the biological activit of Schiff bases, see: Khan et al. (2009); Gerdemann et al. (2002); Mallikarjun & Sangamesh (1997); Solomon & Lowery (1993). For the role of Schiff bases and Amadori products in the process of glycation, see: Ahmad et al. (2007); Ahmed (2005). For the crystal structures of the closely related compounds see: Fun et al. (2008); Tezcan et al. (2004).

Experimental top

The synthesis of title compound I was carried out by refluxing a mixture of 3-nitroacetophenone (165 mg, 1 mmol) and 1-(2-methylphenyl)hydrazine hydrochloride (159 mg, 1 mmol) with acetic acid (1 ml) in ethanol (10 ml) for 18 h. The progress of reaction was monitored by TLC. After cooling and filtration the crystalline product was collected, washed with hexane and dried to afford the title compound in 85% yield. Recrystallization from ethanol afforded yellowish crystals suitable for single-crystal X-ray diffraction studies. All chemicals were purchased from Sigma-Aldrich.

Refinement top

H atoms on methyl and methine groups were positioned geometrically with C—H = 0.96 and 0.93 Å respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. The hydrazone H atom was located in a difference Fourier map and refined isotropically. A rotating group model was applied to the methyl groups.

Structure description top

Schiff bases represent an important class of organic compounds, with a wide range of biological properties including antifungal, antibacterial, herbicidal, antiproliferative, cytotoxic, anticonvulsant and anticancer activities (Khan et al., 2009; Gerdemann et al., 2002; Mallikarjun & Sangamesh, 1997; Solomon & Lowery, 1993). They are also known as important intermediates formed during the process of glycation (reaction of protein and glucose) undergoing rearrangement to form more stable Amadori products, which are considered as therapeutic targets to treat diabetes and its complications (Ahmad et al., 2007; Ahmed, 2005). During our on going search for effective antiglycating agents, the title compound was prepared and crystallized.

The structure of title compound (Fig. 1) is not planar, the dihedral angle between the aromatic rings (C1—C6 and C8—C13) being 13.4 (12)°. The azomethine (C7N2) double bond adopts an E configuration, with the N1–N2–C7—C6 torsion angle of 178.38 (16)°. The bond lengths and angle are similar to those observed in other structurally related compounds (Fun et al., 2008; Tezcan et al., 2004). In the crystal structure, the molecules are arranged in wave-like layers parallel to the (100) plane (Fig. 2) without any classical intermolecular hydrogen bonding.

For the biological activit of Schiff bases, see: Khan et al. (2009); Gerdemann et al. (2002); Mallikarjun & Sangamesh (1997); Solomon & Lowery (1993). For the role of Schiff bases and Amadori products in the process of glycation, see: Ahmad et al. (2007); Ahmed (2005). For the crystal structures of the closely related compounds see: Fun et al. (2008); Tezcan et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. Hydrogen atoms are omitted.
(E)-1-(3-Nitrophenyl)ethanone (2-methylphenyl)hydrazone top
Crystal data top
C15H15N3O2F(000) = 568
Mr = 269.30Dx = 1.296 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2070 reflections
a = 7.4763 (18) Åθ = 3.0–24.4°
b = 25.742 (6) ŵ = 0.09 mm1
c = 7.6564 (19) ÅT = 273 K
β = 110.485 (5)°Plate, yellow
V = 1380.3 (6) Å30.51 × 0.46 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2535 independent reflections
Radiation source: fine-focus sealed tube1746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.956, Tmax = 0.993k = 3129
7958 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0991P)2 + 0.0824P]
where P = (Fo2 + 2Fc2)/3
2535 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H15N3O2V = 1380.3 (6) Å3
Mr = 269.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4763 (18) ŵ = 0.09 mm1
b = 25.742 (6) ÅT = 273 K
c = 7.6564 (19) Å0.51 × 0.46 × 0.08 mm
β = 110.485 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2535 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1746 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.993Rint = 0.039
7958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
2535 reflectionsΔρmin = 0.21 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0105 (4)0.25761 (8)0.7851 (3)0.1120 (8)
O20.0998 (3)0.30826 (7)0.5495 (3)0.0983 (6)
N10.2485 (3)0.00558 (7)0.5057 (3)0.0652 (5)
N20.1857 (2)0.05385 (7)0.4420 (2)0.0600 (5)
N30.0373 (3)0.26679 (8)0.6232 (3)0.0753 (6)
C10.0995 (4)0.15320 (9)0.3011 (3)0.0716 (6)
H1B0.13200.12840.22900.086*
C20.0380 (4)0.20121 (10)0.2255 (3)0.0780 (7)
H2B0.02750.20820.10320.094*
C30.0082 (3)0.23888 (9)0.3293 (3)0.0705 (6)
H3A0.04950.27160.27970.085*
C40.0086 (3)0.22673 (8)0.5084 (3)0.0603 (5)
C50.0684 (3)0.17883 (8)0.5874 (3)0.0581 (5)
H5A0.07780.17220.70970.070*
C60.1147 (3)0.14059 (8)0.4826 (3)0.0557 (5)
C70.1796 (3)0.08832 (8)0.5615 (3)0.0548 (5)
C80.3256 (3)0.08197 (8)0.4538 (3)0.0619 (6)
C90.3307 (3)0.12021 (9)0.3286 (4)0.0759 (7)
H9A0.37310.15330.37310.091*
C100.2748 (4)0.11080 (11)0.1401 (4)0.0856 (8)
H10A0.27910.13720.05880.103*
C110.2130 (4)0.06233 (11)0.0734 (3)0.0821 (7)
H11A0.17470.05580.05390.099*
C120.2068 (3)0.02331 (9)0.1923 (3)0.0691 (6)
H12A0.16650.00970.14560.083*
C130.2604 (3)0.03265 (8)0.3823 (3)0.0576 (5)
C140.3872 (4)0.09290 (10)0.6573 (3)0.0836 (7)
H14A0.43760.12750.68140.125*
H14B0.27960.08980.69760.125*
H14C0.48400.06850.72420.125*
C150.2345 (4)0.07845 (9)0.7658 (3)0.0728 (6)
H15A0.35630.06140.81100.109*
H15B0.14010.05670.78770.109*
H15C0.24220.11090.82990.109*
H1N10.285 (4)0.0027 (9)0.622 (4)0.079 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.164 (2)0.0973 (14)0.0794 (12)0.0453 (13)0.0483 (12)0.0098 (10)
O20.1248 (17)0.0622 (11)0.0986 (13)0.0146 (10)0.0274 (11)0.0023 (9)
N10.0681 (13)0.0615 (11)0.0611 (11)0.0066 (9)0.0163 (9)0.0031 (9)
N20.0516 (11)0.0601 (11)0.0647 (10)0.0009 (8)0.0160 (8)0.0015 (8)
N30.0795 (14)0.0627 (12)0.0776 (13)0.0076 (10)0.0199 (10)0.0030 (10)
C10.0782 (16)0.0720 (15)0.0702 (14)0.0032 (11)0.0332 (12)0.0025 (11)
C20.0897 (19)0.0802 (17)0.0677 (14)0.0014 (13)0.0320 (13)0.0129 (12)
C30.0662 (15)0.0631 (14)0.0774 (15)0.0015 (11)0.0192 (11)0.0118 (11)
C40.0520 (13)0.0586 (12)0.0665 (12)0.0038 (9)0.0161 (10)0.0011 (10)
C50.0509 (12)0.0613 (13)0.0574 (11)0.0066 (9)0.0130 (9)0.0002 (9)
C60.0431 (12)0.0613 (12)0.0592 (11)0.0076 (9)0.0134 (9)0.0007 (9)
C70.0432 (11)0.0590 (12)0.0593 (11)0.0054 (9)0.0144 (9)0.0009 (9)
C80.0457 (12)0.0651 (13)0.0742 (13)0.0017 (9)0.0200 (10)0.0006 (10)
C90.0613 (15)0.0673 (15)0.1014 (18)0.0070 (11)0.0315 (13)0.0033 (12)
C100.0767 (18)0.095 (2)0.0891 (18)0.0090 (14)0.0334 (14)0.0222 (14)
C110.0724 (17)0.106 (2)0.0678 (14)0.0161 (14)0.0244 (12)0.0065 (14)
C120.0586 (14)0.0786 (15)0.0685 (13)0.0098 (11)0.0202 (11)0.0034 (11)
C130.0413 (11)0.0634 (13)0.0673 (13)0.0017 (9)0.0180 (9)0.0010 (10)
C140.0877 (19)0.0762 (16)0.0867 (17)0.0121 (13)0.0302 (14)0.0189 (13)
C150.0769 (17)0.0654 (14)0.0697 (14)0.0015 (11)0.0180 (12)0.0036 (10)
Geometric parameters (Å, º) top
O1—N31.207 (2)C7—C151.493 (3)
O2—N31.222 (2)C8—C91.384 (3)
N1—N21.357 (2)C8—C131.401 (3)
N1—C131.389 (3)C8—C141.489 (3)
N1—H1N10.86 (2)C9—C101.376 (3)
N2—C71.286 (2)C9—H9A0.9300
N3—C41.471 (3)C10—C111.366 (4)
C1—C21.374 (3)C10—H10A0.9300
C1—C61.392 (3)C11—C121.367 (3)
C1—H1B0.9300C11—H11A0.9300
C2—C31.372 (3)C12—C131.388 (3)
C2—H2B0.9300C12—H12A0.9300
C3—C41.369 (3)C14—H14A0.9600
C3—H3A0.9300C14—H14B0.9600
C4—C51.377 (3)C14—H14C0.9600
C5—C61.388 (3)C15—H15A0.9600
C5—H5A0.9300C15—H15B0.9600
C6—C71.485 (3)C15—H15C0.9600
N2—N1—C13120.06 (18)C9—C8—C14121.1 (2)
N2—N1—H1N1122.9 (16)C13—C8—C14121.22 (19)
C13—N1—H1N1117.0 (16)C10—C9—C8122.0 (2)
C7—N2—N1118.04 (17)C10—C9—H9A119.0
O1—N3—O2123.0 (2)C8—C9—H9A119.0
O1—N3—C4119.10 (19)C11—C10—C9119.4 (2)
O2—N3—C4117.9 (2)C11—C10—H10A120.3
C2—C1—C6121.9 (2)C9—C10—H10A120.3
C2—C1—H1B119.1C10—C11—C12120.6 (2)
C6—C1—H1B119.1C10—C11—H11A119.7
C3—C2—C1120.5 (2)C12—C11—H11A119.7
C3—C2—H2B119.8C11—C12—C13120.4 (2)
C1—C2—H2B119.8C11—C12—H12A119.8
C4—C3—C2117.7 (2)C13—C12—H12A119.8
C4—C3—H3A121.1C12—C13—N1121.79 (19)
C2—C3—H3A121.1C12—C13—C8120.01 (19)
C3—C4—C5123.11 (19)N1—C13—C8118.19 (19)
C3—C4—N3118.66 (19)C8—C14—H14A109.5
C5—C4—N3118.24 (19)C8—C14—H14B109.5
C4—C5—C6119.32 (19)H14A—C14—H14B109.5
C4—C5—H5A120.3C8—C14—H14C109.5
C6—C5—H5A120.3H14A—C14—H14C109.5
C5—C6—C1117.51 (19)H14B—C14—H14C109.5
C5—C6—C7121.31 (18)C7—C15—H15A109.5
C1—C6—C7121.17 (18)C7—C15—H15B109.5
N2—C7—C6115.08 (17)H15A—C15—H15B109.5
N2—C7—C15124.21 (18)C7—C15—H15C109.5
C6—C7—C15120.72 (17)H15A—C15—H15C109.5
C9—C8—C13117.6 (2)H15B—C15—H15C109.5
C13—N1—N2—C7178.96 (16)C5—C6—C7—N2168.33 (17)
C6—C1—C2—C31.0 (4)C1—C6—C7—N212.2 (3)
C1—C2—C3—C40.3 (4)C5—C6—C7—C1512.3 (3)
C2—C3—C4—C50.2 (3)C1—C6—C7—C15167.1 (2)
C2—C3—C4—N3179.1 (2)C13—C8—C9—C100.2 (3)
O1—N3—C4—C3175.0 (2)C14—C8—C9—C10179.8 (2)
O2—N3—C4—C34.4 (3)C8—C9—C10—C110.2 (4)
O1—N3—C4—C54.4 (3)C9—C10—C11—C120.2 (4)
O2—N3—C4—C5176.2 (2)C10—C11—C12—C131.1 (4)
C3—C4—C5—C60.1 (3)C11—C12—C13—N1177.4 (2)
N3—C4—C5—C6179.27 (18)C11—C12—C13—C81.6 (3)
C4—C5—C6—C10.6 (3)N2—N1—C13—C121.0 (3)
C4—C5—C6—C7179.92 (18)N2—N1—C13—C8179.92 (17)
C2—C1—C6—C51.2 (3)C9—C8—C13—C121.1 (3)
C2—C1—C6—C7179.4 (2)C14—C8—C13—C12179.0 (2)
N1—N2—C7—C6178.38 (16)C9—C8—C13—N1177.85 (18)
N1—N2—C7—C151.0 (3)C14—C8—C13—N12.1 (3)

Experimental details

Crystal data
Chemical formulaC15H15N3O2
Mr269.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)7.4763 (18), 25.742 (6), 7.6564 (19)
β (°) 110.485 (5)
V3)1380.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.51 × 0.46 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.956, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
7958, 2535, 1746
Rint0.039
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.176, 1.04
No. of reflections2535
No. of parameters187
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

 

References

First citationAhmad, M. S., Pischetsrieder, M. & Ahmed, N. (2007). Eur. J. Pharmacol. 561, 32–38.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAhmed, N. (2005). Diabetes Res. Clin. Pract. 67, 3–21.  CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Adhikari, A., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o2286–o2287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGerdemann, C., Eicken, C. & Krebs, B. (2002). Acc. Chem. Res. 35, 183–191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795–7801.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMallikarjun, S. Y. & Sangamesh, A. P. (1997). Transition Met. Chem. 22, 220–224.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolomon, E. I. & Lowery, M. D. (1993). Science, 259, 1575–1581.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTezcan, H., Tunc, T., Sahin, E. & Yagbasn, R. (2004). Anal. Sci. 20, 137–138.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds