organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­amino-6-methyl-1,3,5-triazin-1-ium tetra­fluoro­borate

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
*Correspondence e-mail: tommtrichy@yahoo.co.in

(Received 12 September 2011; accepted 21 September 2011; online 30 September 2011)

In the crystal structure of the title salt, C4H8N5+·BF4, centrosymmetrically related cations undergo base pairing via a pair of N—H⋯N hydrogen bonds, forming an R22(8) ring motif. The cations and anions inter­act via N—H⋯F hydrogen bonds, generating supra­molecular layers parallel to ([\overline{1}]20), which are in turn linked into a three-dimensional network, forming rings of R66(24) graph-set motif. The crystal structure is further stabilized by ππ stacking inter­actions [centroid–centroid distance = 3.3361 (12) Å].

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For related structures, see: Conant et al. (1964[Conant, J. W., Corrigan, L. I. & Sparks, R. A. (1964). Acta Cryst. 17, 1085.]); Gokul Raj etal. (2006[Gokul Raj, S., Ramesh Kumar, G., Raghavalu, T., Mohan, R. & Jayavel, R. (2006). Acta Cryst. E62, o1178-o1180.]); Zimmermann et al. (1963[Zimmermann, I. C., Barlow, M. & McCullough, J. D. (1963). Acta Cryst. 16, 883-887.]); Hemamalini et al. (2005[Hemamalini, M., Muthiah, P. T. & Lynch, D. E. (2005). Acta Cryst. E61, o4107-o4109.]); Balasubramani et al. (2007[Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o2966.]); Li et al. (2011[Li, X., Huang, X. & Li, K. (2011). Acta Cryst. E67, o1061.]). For ππ stacking inter­actions, see: Hunter (1994[Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8N5+·BF4

  • Mr = 212.96

  • Triclinic, [P \overline 1]

  • a = 6.9982 (3) Å

  • b = 8.2887 (4) Å

  • c = 8.5353 (4) Å

  • α = 63.931 (2)°

  • β = 83.209 (3)°

  • γ = 85.057 (3)°

  • V = 441.29 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 296 K

  • 0.06 × 0.05 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.990, Tmax = 0.993

  • 8850 measured reflections

  • 2196 independent reflections

  • 1842 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.203

  • S = 1.09

  • 2196 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯F1 0.86 1.90 2.758 (2) 173
N2—H2A⋯F2i 0.86 2.01 2.800 (4) 152
N2—H2B⋯F4ii 0.86 2.02 2.877 (4) 177
N4—H4A⋯F3iii 0.86 2.34 3.047 (3) 139
N4—H4B⋯N5iv 0.86 2.18 3.038 (3) 178
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x, y, z+1; (iii) x-1, y, z+1; (iv) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Only a limited number of tetrafluoroborate salts like hydrazinium fluoroborate (Conant et al., 1964), L-Histidinium tetrafluoroborate (Gokul Raj et al., 2006), trimethloxosulfonium fluoroborate (Zimmermann et al., 1963) have been reported in the literature. From our laboratory, we have reported the crystal structure of trimethoprim tetrafluoroborate (Hemamalini et al., 2005) and pyrimethamine tetrafluoroborate (Balasubramani et al., 2007), and have analysed their hydrogen bonding patterns. The present investigation concerns the supramolecular patterns exhibited by acetoguanaminium fluoroborate.

The asymmetric unit of the title salt contains one 2,4-diamino-6-methyl-1,3,5-triazin-1-ium (acetoguanaminium) cation and one tetrafluoroborate anion as shown in Fig. 1. The acetoguanaminium cation is protonated at N1. Protonation of the triazine base on the N1 atom is reflected by an increase of the C1—N2—C6 bond angle (119.77 (17)°) with respect to the other C—N—C angles (mean value 115.94 (18)°). The tetrafluoroborate anion shows a slightly distorted tetrahedral geometry (Li et al., 2011). In the asymmetric unit, the acetoguanaminium cation interacts with the tetrafluoroborate anion via a nearly linear N—H···F hydrogen bond (Fig. 1, Table 1). Centrosymmetrically-related cations are paired through a pair of N—H···N hydrogen bonds to form a robust R22(8) ring motif (Etter, 1990; Bernstein et al., 1995) by linking an H atom of the 4-amino group with the N5 atom of the inversion related cation (Table 1). Base pairs are interlinked by R44(16) ring motifs formed by two of N—H···F hydrogen bonds (Fig. 2; Table 1). The combination of the complementary base pairs (R22(8)) and R44(16) motifs generates a supramolecular ribbons parallel to the [211] direction. Adjacent ribbons are interconnected by the alternating occurrence of two different ring motifs such as R44(12) and R66(28) forming a supramolecular sheet parallel to the (120) plane as shown in Fig. 2. There is a supramolecular hydrogen bonded ladder generated by the alternating arrangement of R44(16) and R44(12) ring motifs which extends along c axis. Adjacent sheets are interlinked via N—H···F hydrogen bond to form rings with graph set R66(24) as shown in Fig. 3. These rings propagate along the b axis and generates a three dimensional supramolecular network. The structure is further stabilized by nearly face to face π-π stacking interactions between acetoguanaminium rings, with interplanar distance of 3.333 Å, centroid- to-centroid distance of 3.3361 (12)Å and slip angle of 2.46° (Hunter, 1994). In addition, anion-π contacts are also observed between the acetoguanaminium ring and the F2 and F4 atoms of tetrafluoroborate anion (Cg1···F2i = 3.654 (3) Å; Cg1···F4i = 3.178 (3) Å; Cg1 is the centroid of the N1–N3/C2/C4/C6 ring; symmetry code: (i) 1-x, 2-y, 1-z).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For related structures, see: Conant et al. (1964); Gokul Raj etal. (2006); Zimmermann et al. (1963); Hemamalini et al. (2005); Balasubramani et al. (2007); Li et al. (2011). For ππ stacking interactions, see: Hunter (1994).

Experimental top

A hot ethanolic solutions of 2,4-diamino-6-methyl-1,3,5-triazine (acetoguanamine; 31 mg; Aldrich) and tetrafluoroboric acid (220 mg of 40% solution; Aldrich) were mixed in a 1:1 molar ratio. The resulting solution was warmed over a water bath for a few minutes and then kept at room temperature for crystallization. After a few days, colourless prismatic crystals suitable for X-ray analysis were obtained.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(N) or 1.5 Ueq(C).

Structure description top

Only a limited number of tetrafluoroborate salts like hydrazinium fluoroborate (Conant et al., 1964), L-Histidinium tetrafluoroborate (Gokul Raj et al., 2006), trimethloxosulfonium fluoroborate (Zimmermann et al., 1963) have been reported in the literature. From our laboratory, we have reported the crystal structure of trimethoprim tetrafluoroborate (Hemamalini et al., 2005) and pyrimethamine tetrafluoroborate (Balasubramani et al., 2007), and have analysed their hydrogen bonding patterns. The present investigation concerns the supramolecular patterns exhibited by acetoguanaminium fluoroborate.

The asymmetric unit of the title salt contains one 2,4-diamino-6-methyl-1,3,5-triazin-1-ium (acetoguanaminium) cation and one tetrafluoroborate anion as shown in Fig. 1. The acetoguanaminium cation is protonated at N1. Protonation of the triazine base on the N1 atom is reflected by an increase of the C1—N2—C6 bond angle (119.77 (17)°) with respect to the other C—N—C angles (mean value 115.94 (18)°). The tetrafluoroborate anion shows a slightly distorted tetrahedral geometry (Li et al., 2011). In the asymmetric unit, the acetoguanaminium cation interacts with the tetrafluoroborate anion via a nearly linear N—H···F hydrogen bond (Fig. 1, Table 1). Centrosymmetrically-related cations are paired through a pair of N—H···N hydrogen bonds to form a robust R22(8) ring motif (Etter, 1990; Bernstein et al., 1995) by linking an H atom of the 4-amino group with the N5 atom of the inversion related cation (Table 1). Base pairs are interlinked by R44(16) ring motifs formed by two of N—H···F hydrogen bonds (Fig. 2; Table 1). The combination of the complementary base pairs (R22(8)) and R44(16) motifs generates a supramolecular ribbons parallel to the [211] direction. Adjacent ribbons are interconnected by the alternating occurrence of two different ring motifs such as R44(12) and R66(28) forming a supramolecular sheet parallel to the (120) plane as shown in Fig. 2. There is a supramolecular hydrogen bonded ladder generated by the alternating arrangement of R44(16) and R44(12) ring motifs which extends along c axis. Adjacent sheets are interlinked via N—H···F hydrogen bond to form rings with graph set R66(24) as shown in Fig. 3. These rings propagate along the b axis and generates a three dimensional supramolecular network. The structure is further stabilized by nearly face to face π-π stacking interactions between acetoguanaminium rings, with interplanar distance of 3.333 Å, centroid- to-centroid distance of 3.3361 (12)Å and slip angle of 2.46° (Hunter, 1994). In addition, anion-π contacts are also observed between the acetoguanaminium ring and the F2 and F4 atoms of tetrafluoroborate anion (Cg1···F2i = 3.654 (3) Å; Cg1···F4i = 3.178 (3) Å; Cg1 is the centroid of the N1–N3/C2/C4/C6 ring; symmetry code: (i) 1-x, 2-y, 1-z).

For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For related structures, see: Conant et al. (1964); Gokul Raj etal. (2006); Zimmermann et al. (1963); Hemamalini et al. (2005); Balasubramani et al. (2007); Li et al. (2011). For ππ stacking interactions, see: Hunter (1994).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showning 30% probability displacement ellipsoids. The dashed line indicate a hydrogen bond.
[Figure 2] Fig. 2. A view of supramolecular layers parallel to the (120) plane formed via N—H···F and N—H···N hydrogen bonds [symmetry codes: (i) x, y, 1+z; (ii) 2-x, 2-y, 1-z; (iv) -x, 1-y, 2-z].
[Figure 3] Fig. 3. : A view of rings propagating along the b axis formed via N—H···F hydrogen bonds [symmetry codes: (i) x, y, 1+z; (iii) -1+x, y, 1+z].
2,4-diamino-6-methyl-1,3,5-triazin-1-ium tetrafluoroborate top
Crystal data top
C4H8N5+·BF4Z = 2
Mr = 212.96F(000) = 216
Triclinic, P1Dx = 1.603 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9982 (3) ÅCell parameters from 2196 reflections
b = 8.2887 (4) Åθ = 2.7–28.4°
c = 8.5353 (4) ŵ = 0.16 mm1
α = 63.931 (2)°T = 296 K
β = 83.209 (3)°Prism, colourless
γ = 85.057 (3)°0.06 × 0.05 × 0.04 mm
V = 441.29 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2196 independent reflections
Radiation source: fine-focus sealed tube1842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 28.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.990, Tmax = 0.993k = 1111
8850 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1041P)2 + 0.234P]
where P = (Fo2 + 2Fc2)/3
2196 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C4H8N5+·BF4γ = 85.057 (3)°
Mr = 212.96V = 441.29 (4) Å3
Triclinic, P1Z = 2
a = 6.9982 (3) ÅMo Kα radiation
b = 8.2887 (4) ŵ = 0.16 mm1
c = 8.5353 (4) ÅT = 296 K
α = 63.931 (2)°0.06 × 0.05 × 0.04 mm
β = 83.209 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2196 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1842 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.993Rint = 0.022
8850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.09Δρmax = 0.52 e Å3
2196 reflectionsΔρmin = 0.54 e Å3
128 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5137 (2)0.7576 (2)0.7766 (2)0.0388 (5)
N20.6729 (3)0.8579 (3)0.9371 (3)0.0502 (6)
N30.3894 (2)0.7141 (2)1.0587 (2)0.0408 (5)
N40.1028 (3)0.5754 (3)1.1593 (2)0.0524 (6)
N50.2262 (2)0.6115 (2)0.8873 (2)0.0392 (5)
C20.5241 (3)0.7772 (3)0.9261 (3)0.0376 (5)
C40.2430 (3)0.6367 (3)1.0340 (3)0.0373 (5)
C60.3630 (3)0.6734 (3)0.7627 (3)0.0380 (5)
C70.3631 (4)0.6521 (4)0.5987 (3)0.0569 (8)
F10.7776 (3)0.9140 (2)0.4910 (2)0.0732 (6)
F21.0031 (4)0.9604 (5)0.2703 (4)0.1389 (14)
F30.9060 (4)0.6845 (3)0.4382 (3)0.1076 (9)
F40.7146 (3)0.8835 (4)0.2567 (3)0.1057 (10)
B10.8547 (3)0.8604 (3)0.3634 (3)0.0433 (6)
H10.602300.798400.691600.0470*
H2A0.759900.898500.850500.0600*
H2B0.683000.869901.030800.0600*
H4A0.106200.585401.255000.0630*
H4B0.007500.525201.145600.0630*
H7A0.283400.554700.619600.0850*
H7B0.492300.626700.561300.0850*
H7C0.313700.761100.509200.0850*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0350 (8)0.0420 (8)0.0385 (8)0.0107 (6)0.0081 (6)0.0177 (7)
N20.0418 (9)0.0603 (11)0.0509 (10)0.0202 (8)0.0034 (7)0.0250 (9)
N30.0361 (8)0.0496 (9)0.0389 (8)0.0098 (7)0.0015 (6)0.0209 (7)
N40.0405 (9)0.0788 (13)0.0457 (10)0.0223 (9)0.0106 (7)0.0340 (10)
N50.0337 (8)0.0458 (9)0.0423 (9)0.0083 (6)0.0024 (6)0.0232 (7)
C20.0340 (9)0.0364 (9)0.0413 (10)0.0052 (7)0.0006 (7)0.0158 (7)
C40.0325 (9)0.0412 (9)0.0383 (9)0.0044 (7)0.0013 (7)0.0180 (7)
C60.0362 (9)0.0396 (9)0.0398 (9)0.0040 (7)0.0017 (7)0.0196 (8)
C70.0583 (14)0.0756 (16)0.0474 (12)0.0189 (12)0.0079 (10)0.0366 (12)
F10.0826 (11)0.0843 (11)0.0659 (10)0.0301 (9)0.0316 (8)0.0493 (9)
F20.125 (2)0.192 (3)0.123 (2)0.109 (2)0.0860 (17)0.095 (2)
F30.166 (2)0.0741 (12)0.0727 (12)0.0422 (14)0.0214 (13)0.0284 (10)
F40.0973 (16)0.153 (2)0.0885 (14)0.0280 (15)0.0463 (12)0.0688 (15)
B10.0425 (11)0.0504 (12)0.0362 (10)0.0069 (9)0.0042 (8)0.0191 (9)
Geometric parameters (Å, º) top
F1—B11.386 (3)N5—C41.376 (3)
F2—B11.331 (4)N1—H10.8600
F3—B11.345 (4)N2—H2A0.8600
F4—B11.361 (3)N2—H2B0.8600
N1—C21.366 (3)N4—H4B0.8600
N1—C61.357 (3)N4—H4A0.8600
N2—C21.319 (3)C6—C71.486 (4)
N3—C41.338 (3)C7—H7B0.9600
N3—C21.325 (3)C7—H7C0.9600
N4—C41.313 (3)C7—H7A0.9600
N5—C61.294 (3)
F1···N12.758 (2)C2···F4i3.014 (4)
F1···C6i3.282 (3)C2···N5iv3.339 (3)
F2···N2ii2.800 (4)C2···C4iv3.561 (4)
F3···N4iii3.047 (3)C2···C6iv3.591 (4)
F3···N4iv3.149 (3)C4···N1iv3.353 (3)
F3···F3v3.000 (4)C4···C2iv3.561 (4)
F4···C2i3.014 (4)C6···F1i3.282 (3)
F4···N2vi2.877 (4)C6···N3iv3.317 (3)
F4···N1i3.167 (4)C6···C2iv3.591 (4)
F1···H7Ci2.7100C6···H4Bx3.0300
F1···H11.9000B1···H12.9900
F2···H2Aii2.0100H1···H2A2.2900
F3···H4Aiv2.5900H1···H7B2.3700
F3···H7Avii2.7200H1···B12.9900
F3···H4Aiii2.3400H1···F11.9000
F4···H2Bvi2.0200H2A···F2ii2.0100
N1···F4i3.167 (4)H2A···H12.2900
N1···C4iv3.353 (3)H2B···F4viii2.0200
N1···F12.758 (2)H4A···F3iv2.5900
N2···F4viii2.877 (4)H4A···F3ix2.3400
N2···F2ii2.800 (4)H4B···H7Ax2.5900
N3···C6iv3.317 (3)H4B···N5x2.1800
N4···F3ix3.047 (3)H4B···C6x3.0300
N4···F3iv3.149 (3)H7A···F3vii2.7200
N4···N5x3.038 (3)H7A···H4Bx2.5900
N5···N4x3.038 (3)H7B···H12.3700
N5···C2iv3.339 (3)H7C···F1i2.7100
N5···H4Bx2.1800
C2—N1—C6119.77 (17)N3—C4—N4118.8 (2)
C2—N3—C4116.00 (18)N1—C6—C7117.1 (2)
C4—N5—C6115.89 (18)N5—C6—C7121.1 (2)
C6—N1—H1120.00N1—C6—N5121.9 (2)
C2—N1—H1120.00C6—C7—H7A109.00
C2—N2—H2A120.00C6—C7—H7B109.00
H2A—N2—H2B120.00C6—C7—H7C109.00
C2—N2—H2B120.00H7A—C7—H7B109.00
H4A—N4—H4B120.00H7A—C7—H7C109.00
C4—N4—H4B120.00H7B—C7—H7C109.00
C4—N4—H4A120.00F1—B1—F2110.0 (3)
N1—C2—N2118.6 (2)F1—B1—F3109.8 (2)
N2—C2—N3120.5 (2)F1—B1—F4107.9 (2)
N1—C2—N3120.9 (2)F2—B1—F3111.7 (3)
N3—C4—N5125.55 (19)F2—B1—F4109.6 (2)
N4—C4—N5115.7 (2)F3—B1—F4107.8 (3)
C6—N1—C2—N2179.3 (2)C2—N3—C4—N4178.4 (2)
C6—N1—C2—N30.4 (3)C2—N3—C4—N52.8 (3)
C2—N1—C6—N50.6 (3)C6—N5—C4—N31.9 (3)
C2—N1—C6—C7178.4 (2)C6—N5—C4—N4179.3 (2)
C4—N3—C2—N12.0 (3)C4—N5—C6—N10.1 (3)
C4—N3—C2—N2179.1 (2)C4—N5—C6—C7179.0 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x+1, y, z1; (iv) x+1, y+1, z+2; (v) x+2, y+1, z+1; (vi) x, y, z1; (vii) x+1, y+1, z+1; (viii) x, y, z+1; (ix) x1, y, z+1; (x) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F10.861.902.758 (2)173
N2—H2A···F2ii0.862.012.800 (4)152
N2—H2B···F4viii0.862.022.877 (4)177
N4—H4A···F3ix0.862.343.047 (3)139
N4—H4B···N5x0.862.183.038 (3)178
Symmetry codes: (ii) x+2, y+2, z+1; (viii) x, y, z+1; (ix) x1, y, z+1; (x) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC4H8N5+·BF4
Mr212.96
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.9982 (3), 8.2887 (4), 8.5353 (4)
α, β, γ (°)63.931 (2), 83.209 (3), 85.057 (3)
V3)441.29 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.06 × 0.05 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.990, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
8850, 2196, 1842
Rint0.022
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.203, 1.09
No. of reflections2196
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.54

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F10.861.902.758 (2)173
N2—H2A···F2i0.862.012.800 (4)152
N2—H2B···F4ii0.862.022.877 (4)177
N4—H4A···F3iii0.862.343.047 (3)139
N4—H4B···N5iv0.862.183.038 (3)178
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y, z+1; (iii) x1, y, z+1; (iv) x, y+1, z+2.
 

Acknowledgements

The authors thank the DST-India (FIST programme) for the use of the diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India.

References

First citationBalasubramani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o2966.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConant, J. W., Corrigan, L. I. & Sparks, R. A. (1964). Acta Cryst. 17, 1085.  CrossRef IUCr Journals Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGokul Raj, S., Ramesh Kumar, G., Raghavalu, T., Mohan, R. & Jayavel, R. (2006). Acta Cryst. E62, o1178–o1180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M., Muthiah, P. T. & Lynch, D. E. (2005). Acta Cryst. E61, o4107–o4109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.  CrossRef CAS Web of Science Google Scholar
First citationLi, X., Huang, X. & Li, K. (2011). Acta Cryst. E67, o1061.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZimmermann, I. C., Barlow, M. & McCullough, J. D. (1963). Acta Cryst. 16, 883–887.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds