organic compounds
2,4-Diamino-6-methyl-1,3,5-triazin-1-ium tetrafluoroborate
aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
*Correspondence e-mail: tommtrichy@yahoo.co.in
In the 4H8N5+·BF4−, centrosymmetrically related cations undergo via a pair of N—H⋯N hydrogen bonds, forming an R22(8) ring motif. The cations and anions interact via N—H⋯F hydrogen bonds, generating supramolecular layers parallel to (20), which are in turn linked into a three-dimensional network, forming rings of R66(24) graph-set motif. The is further stabilized by π–π stacking interactions [centroid–centroid distance = 3.3361 (12) Å].
of the title salt, CRelated literature
For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For related structures, see: Conant et al. (1964); Gokul Raj etal. (2006); Zimmermann et al. (1963); Hemamalini et al. (2005); Balasubramani et al. (2007); Li et al. (2011). For π–π stacking interactions, see: Hunter (1994).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
https://doi.org/10.1107/S1600536811038797/rz2638sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811038797/rz2638Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811038797/rz2638Isup3.cml
A hot ethanolic solutions of 2,4-diamino-6-methyl-1,3,5-triazine (acetoguanamine; 31 mg; Aldrich) and tetrafluoroboric acid (220 mg of 40% solution; Aldrich) were mixed in a 1:1 molar ratio. The resulting solution was warmed over a water bath for a few minutes and then kept at room temperature for crystallization. After a few days, colourless prismatic crystals suitable for X-ray analysis were obtained.
All hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(N) or 1.5 Ueq(C).
Only a limited number of tetrafluoroborate salts like hydrazinium fluoroborate (Conant et al., 1964), L-Histidinium tetrafluoroborate (Gokul Raj et al., 2006), trimethloxosulfonium fluoroborate (Zimmermann et al., 1963) have been reported in the literature. From our laboratory, we have reported the
of trimethoprim tetrafluoroborate (Hemamalini et al., 2005) and pyrimethamine tetrafluoroborate (Balasubramani et al., 2007), and have analysed their hydrogen bonding patterns. The present investigation concerns the supramolecular patterns exhibited by acetoguanaminium fluoroborate.The 1] direction. Adjacent ribbons are interconnected by the alternating occurrence of two different ring motifs such as R44(12) and R66(28) forming a supramolecular sheet parallel to the (120) plane as shown in Fig. 2. There is a supramolecular hydrogen bonded ladder generated by the alternating arrangement of R44(16) and R44(12) ring motifs which extends along c axis. Adjacent sheets are interlinked via N—H···F hydrogen bond to form rings with graph set R66(24) as shown in Fig. 3. These rings propagate along the b axis and generates a three dimensional supramolecular network. The structure is further stabilized by nearly face to face π-π stacking interactions between acetoguanaminium rings, with interplanar distance of 3.333 Å, centroid- to-centroid distance of 3.3361 (12)Å and slip angle of 2.46° (Hunter, 1994). In addition, anion-π contacts are also observed between the acetoguanaminium ring and the F2 and F4 atoms of tetrafluoroborate anion (Cg1···F2i = 3.654 (3) Å; Cg1···F4i = 3.178 (3) Å; Cg1 is the centroid of the N1–N3/C2/C4/C6 ring; symmetry code: (i) 1-x, 2-y, 1-z).
of the title salt contains one 2,4-diamino-6-methyl-1,3,5-triazin-1-ium (acetoguanaminium) cation and one tetrafluoroborate anion as shown in Fig. 1. The acetoguanaminium cation is protonated at N1. Protonation of the triazine base on the N1 atom is reflected by an increase of the C1—N2—C6 bond angle (119.77 (17)°) with respect to the other C—N—C angles (mean value 115.94 (18)°). The tetrafluoroborate anion shows a slightly distorted tetrahedral geometry (Li et al., 2011). In the the acetoguanaminium cation interacts with the tetrafluoroborate anion via a nearly linear N—H···F hydrogen bond (Fig. 1, Table 1). Centrosymmetrically-related cations are paired through a pair of N—H···N hydrogen bonds to form a robust R22(8) ring motif (Etter, 1990; Bernstein et al., 1995) by linking an H atom of the 4-amino group with the N5 atom of the inversion related cation (Table 1). Base pairs are interlinked by R44(16) ring motifs formed by two of N—H···F hydrogen bonds (Fig. 2; Table 1). The combination of the complementary base pairs (R22(8)) and R44(16) motifs generates a supramolecular ribbons parallel to the [21For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For related structures, see: Conant et al. (1964); Gokul Raj etal. (2006); Zimmermann et al. (1963); Hemamalini et al. (2005); Balasubramani et al. (2007); Li et al. (2011). For π–π stacking interactions, see: Hunter (1994).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).C4H8N5+·BF4− | Z = 2 |
Mr = 212.96 | F(000) = 216 |
Triclinic, P1 | Dx = 1.603 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9982 (3) Å | Cell parameters from 2196 reflections |
b = 8.2887 (4) Å | θ = 2.7–28.4° |
c = 8.5353 (4) Å | µ = 0.16 mm−1 |
α = 63.931 (2)° | T = 296 K |
β = 83.209 (3)° | Prism, colourless |
γ = 85.057 (3)° | 0.06 × 0.05 × 0.04 mm |
V = 441.29 (4) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 2196 independent reflections |
Radiation source: fine-focus sealed tube | 1842 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
φ and ω scans | θmax = 28.4°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −9→9 |
Tmin = 0.990, Tmax = 0.993 | k = −11→11 |
8850 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.203 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.1041P)2 + 0.234P] where P = (Fo2 + 2Fc2)/3 |
2196 reflections | (Δ/σ)max < 0.001 |
128 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
C4H8N5+·BF4− | γ = 85.057 (3)° |
Mr = 212.96 | V = 441.29 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.9982 (3) Å | Mo Kα radiation |
b = 8.2887 (4) Å | µ = 0.16 mm−1 |
c = 8.5353 (4) Å | T = 296 K |
α = 63.931 (2)° | 0.06 × 0.05 × 0.04 mm |
β = 83.209 (3)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2196 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1842 reflections with I > 2σ(I) |
Tmin = 0.990, Tmax = 0.993 | Rint = 0.022 |
8850 measured reflections |
R[F2 > 2σ(F2)] = 0.066 | 0 restraints |
wR(F2) = 0.203 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.52 e Å−3 |
2196 reflections | Δρmin = −0.54 e Å−3 |
128 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.5137 (2) | 0.7576 (2) | 0.7766 (2) | 0.0388 (5) | |
N2 | 0.6729 (3) | 0.8579 (3) | 0.9371 (3) | 0.0502 (6) | |
N3 | 0.3894 (2) | 0.7141 (2) | 1.0587 (2) | 0.0408 (5) | |
N4 | 0.1028 (3) | 0.5754 (3) | 1.1593 (2) | 0.0524 (6) | |
N5 | 0.2262 (2) | 0.6115 (2) | 0.8873 (2) | 0.0392 (5) | |
C2 | 0.5241 (3) | 0.7772 (3) | 0.9261 (3) | 0.0376 (5) | |
C4 | 0.2430 (3) | 0.6367 (3) | 1.0340 (3) | 0.0373 (5) | |
C6 | 0.3630 (3) | 0.6734 (3) | 0.7627 (3) | 0.0380 (5) | |
C7 | 0.3631 (4) | 0.6521 (4) | 0.5987 (3) | 0.0569 (8) | |
F1 | 0.7776 (3) | 0.9140 (2) | 0.4910 (2) | 0.0732 (6) | |
F2 | 1.0031 (4) | 0.9604 (5) | 0.2703 (4) | 0.1389 (14) | |
F3 | 0.9060 (4) | 0.6845 (3) | 0.4382 (3) | 0.1076 (9) | |
F4 | 0.7146 (3) | 0.8835 (4) | 0.2567 (3) | 0.1057 (10) | |
B1 | 0.8547 (3) | 0.8604 (3) | 0.3634 (3) | 0.0433 (6) | |
H1 | 0.60230 | 0.79840 | 0.69160 | 0.0470* | |
H2A | 0.75990 | 0.89850 | 0.85050 | 0.0600* | |
H2B | 0.68300 | 0.86990 | 1.03080 | 0.0600* | |
H4A | 0.10620 | 0.58540 | 1.25500 | 0.0630* | |
H4B | 0.00750 | 0.52520 | 1.14560 | 0.0630* | |
H7A | 0.28340 | 0.55470 | 0.61960 | 0.0850* | |
H7B | 0.49230 | 0.62670 | 0.56130 | 0.0850* | |
H7C | 0.31370 | 0.76110 | 0.50920 | 0.0850* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0350 (8) | 0.0420 (8) | 0.0385 (8) | −0.0107 (6) | 0.0081 (6) | −0.0177 (7) |
N2 | 0.0418 (9) | 0.0603 (11) | 0.0509 (10) | −0.0202 (8) | 0.0034 (7) | −0.0250 (9) |
N3 | 0.0361 (8) | 0.0496 (9) | 0.0389 (8) | −0.0098 (7) | 0.0015 (6) | −0.0209 (7) |
N4 | 0.0405 (9) | 0.0788 (13) | 0.0457 (10) | −0.0223 (9) | 0.0106 (7) | −0.0340 (10) |
N5 | 0.0337 (8) | 0.0458 (9) | 0.0423 (9) | −0.0083 (6) | 0.0024 (6) | −0.0232 (7) |
C2 | 0.0340 (9) | 0.0364 (9) | 0.0413 (10) | −0.0052 (7) | −0.0006 (7) | −0.0158 (7) |
C4 | 0.0325 (9) | 0.0412 (9) | 0.0383 (9) | −0.0044 (7) | 0.0013 (7) | −0.0180 (7) |
C6 | 0.0362 (9) | 0.0396 (9) | 0.0398 (9) | −0.0040 (7) | 0.0017 (7) | −0.0196 (8) |
C7 | 0.0583 (14) | 0.0756 (16) | 0.0474 (12) | −0.0189 (12) | 0.0079 (10) | −0.0366 (12) |
F1 | 0.0826 (11) | 0.0843 (11) | 0.0659 (10) | −0.0301 (9) | 0.0316 (8) | −0.0493 (9) |
F2 | 0.125 (2) | 0.192 (3) | 0.123 (2) | −0.109 (2) | 0.0860 (17) | −0.095 (2) |
F3 | 0.166 (2) | 0.0741 (12) | 0.0727 (12) | 0.0422 (14) | −0.0214 (13) | −0.0284 (10) |
F4 | 0.0973 (16) | 0.153 (2) | 0.0885 (14) | 0.0280 (15) | −0.0463 (12) | −0.0688 (15) |
B1 | 0.0425 (11) | 0.0504 (12) | 0.0362 (10) | −0.0069 (9) | 0.0042 (8) | −0.0191 (9) |
F1—B1 | 1.386 (3) | N5—C4 | 1.376 (3) |
F2—B1 | 1.331 (4) | N1—H1 | 0.8600 |
F3—B1 | 1.345 (4) | N2—H2A | 0.8600 |
F4—B1 | 1.361 (3) | N2—H2B | 0.8600 |
N1—C2 | 1.366 (3) | N4—H4B | 0.8600 |
N1—C6 | 1.357 (3) | N4—H4A | 0.8600 |
N2—C2 | 1.319 (3) | C6—C7 | 1.486 (4) |
N3—C4 | 1.338 (3) | C7—H7B | 0.9600 |
N3—C2 | 1.325 (3) | C7—H7C | 0.9600 |
N4—C4 | 1.313 (3) | C7—H7A | 0.9600 |
N5—C6 | 1.294 (3) | ||
F1···N1 | 2.758 (2) | C2···F4i | 3.014 (4) |
F1···C6i | 3.282 (3) | C2···N5iv | 3.339 (3) |
F2···N2ii | 2.800 (4) | C2···C4iv | 3.561 (4) |
F3···N4iii | 3.047 (3) | C2···C6iv | 3.591 (4) |
F3···N4iv | 3.149 (3) | C4···N1iv | 3.353 (3) |
F3···F3v | 3.000 (4) | C4···C2iv | 3.561 (4) |
F4···C2i | 3.014 (4) | C6···F1i | 3.282 (3) |
F4···N2vi | 2.877 (4) | C6···N3iv | 3.317 (3) |
F4···N1i | 3.167 (4) | C6···C2iv | 3.591 (4) |
F1···H7Ci | 2.7100 | C6···H4Bx | 3.0300 |
F1···H1 | 1.9000 | B1···H1 | 2.9900 |
F2···H2Aii | 2.0100 | H1···H2A | 2.2900 |
F3···H4Aiv | 2.5900 | H1···H7B | 2.3700 |
F3···H7Avii | 2.7200 | H1···B1 | 2.9900 |
F3···H4Aiii | 2.3400 | H1···F1 | 1.9000 |
F4···H2Bvi | 2.0200 | H2A···F2ii | 2.0100 |
N1···F4i | 3.167 (4) | H2A···H1 | 2.2900 |
N1···C4iv | 3.353 (3) | H2B···F4viii | 2.0200 |
N1···F1 | 2.758 (2) | H4A···F3iv | 2.5900 |
N2···F4viii | 2.877 (4) | H4A···F3ix | 2.3400 |
N2···F2ii | 2.800 (4) | H4B···H7Ax | 2.5900 |
N3···C6iv | 3.317 (3) | H4B···N5x | 2.1800 |
N4···F3ix | 3.047 (3) | H4B···C6x | 3.0300 |
N4···F3iv | 3.149 (3) | H7A···F3vii | 2.7200 |
N4···N5x | 3.038 (3) | H7A···H4Bx | 2.5900 |
N5···N4x | 3.038 (3) | H7B···H1 | 2.3700 |
N5···C2iv | 3.339 (3) | H7C···F1i | 2.7100 |
N5···H4Bx | 2.1800 | ||
C2—N1—C6 | 119.77 (17) | N3—C4—N4 | 118.8 (2) |
C2—N3—C4 | 116.00 (18) | N1—C6—C7 | 117.1 (2) |
C4—N5—C6 | 115.89 (18) | N5—C6—C7 | 121.1 (2) |
C6—N1—H1 | 120.00 | N1—C6—N5 | 121.9 (2) |
C2—N1—H1 | 120.00 | C6—C7—H7A | 109.00 |
C2—N2—H2A | 120.00 | C6—C7—H7B | 109.00 |
H2A—N2—H2B | 120.00 | C6—C7—H7C | 109.00 |
C2—N2—H2B | 120.00 | H7A—C7—H7B | 109.00 |
H4A—N4—H4B | 120.00 | H7A—C7—H7C | 109.00 |
C4—N4—H4B | 120.00 | H7B—C7—H7C | 109.00 |
C4—N4—H4A | 120.00 | F1—B1—F2 | 110.0 (3) |
N1—C2—N2 | 118.6 (2) | F1—B1—F3 | 109.8 (2) |
N2—C2—N3 | 120.5 (2) | F1—B1—F4 | 107.9 (2) |
N1—C2—N3 | 120.9 (2) | F2—B1—F3 | 111.7 (3) |
N3—C4—N5 | 125.55 (19) | F2—B1—F4 | 109.6 (2) |
N4—C4—N5 | 115.7 (2) | F3—B1—F4 | 107.8 (3) |
C6—N1—C2—N2 | 179.3 (2) | C2—N3—C4—N4 | −178.4 (2) |
C6—N1—C2—N3 | 0.4 (3) | C2—N3—C4—N5 | 2.8 (3) |
C2—N1—C6—N5 | 0.6 (3) | C6—N5—C4—N3 | −1.9 (3) |
C2—N1—C6—C7 | −178.4 (2) | C6—N5—C4—N4 | 179.3 (2) |
C4—N3—C2—N1 | −2.0 (3) | C4—N5—C6—N1 | 0.1 (3) |
C4—N3—C2—N2 | 179.1 (2) | C4—N5—C6—C7 | 179.0 (2) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+2, −z+1; (iii) x+1, y, z−1; (iv) −x+1, −y+1, −z+2; (v) −x+2, −y+1, −z+1; (vi) x, y, z−1; (vii) −x+1, −y+1, −z+1; (viii) x, y, z+1; (ix) x−1, y, z+1; (x) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···F1 | 0.86 | 1.90 | 2.758 (2) | 173 |
N2—H2A···F2ii | 0.86 | 2.01 | 2.800 (4) | 152 |
N2—H2B···F4viii | 0.86 | 2.02 | 2.877 (4) | 177 |
N4—H4A···F3ix | 0.86 | 2.34 | 3.047 (3) | 139 |
N4—H4B···N5x | 0.86 | 2.18 | 3.038 (3) | 178 |
Symmetry codes: (ii) −x+2, −y+2, −z+1; (viii) x, y, z+1; (ix) x−1, y, z+1; (x) −x, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C4H8N5+·BF4− |
Mr | 212.96 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 6.9982 (3), 8.2887 (4), 8.5353 (4) |
α, β, γ (°) | 63.931 (2), 83.209 (3), 85.057 (3) |
V (Å3) | 441.29 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.16 |
Crystal size (mm) | 0.06 × 0.05 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.990, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8850, 2196, 1842 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.066, 0.203, 1.09 |
No. of reflections | 2196 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.52, −0.54 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···F1 | 0.86 | 1.90 | 2.758 (2) | 173 |
N2—H2A···F2i | 0.86 | 2.01 | 2.800 (4) | 152 |
N2—H2B···F4ii | 0.86 | 2.02 | 2.877 (4) | 177 |
N4—H4A···F3iii | 0.86 | 2.34 | 3.047 (3) | 139 |
N4—H4B···N5iv | 0.86 | 2.18 | 3.038 (3) | 178 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x, y, z+1; (iii) x−1, y, z+1; (iv) −x, −y+1, −z+2. |
Acknowledgements
The authors thank the DST-India (FIST programme) for the use of the diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India.
References
Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o2966. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Conant, J. W., Corrigan, L. I. & Sparks, R. A. (1964). Acta Cryst. 17, 1085. CrossRef IUCr Journals Web of Science Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Gokul Raj, S., Ramesh Kumar, G., Raghavalu, T., Mohan, R. & Jayavel, R. (2006). Acta Cryst. E62, o1178–o1180. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hemamalini, M., Muthiah, P. T. & Lynch, D. E. (2005). Acta Cryst. E61, o4107–o4109. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109. CrossRef CAS Web of Science Google Scholar
Li, X., Huang, X. & Li, K. (2011). Acta Cryst. E67, o1061. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zimmermann, I. C., Barlow, M. & McCullough, J. D. (1963). Acta Cryst. 16, 883–887. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Only a limited number of tetrafluoroborate salts like hydrazinium fluoroborate (Conant et al., 1964), L-Histidinium tetrafluoroborate (Gokul Raj et al., 2006), trimethloxosulfonium fluoroborate (Zimmermann et al., 1963) have been reported in the literature. From our laboratory, we have reported the crystal structure of trimethoprim tetrafluoroborate (Hemamalini et al., 2005) and pyrimethamine tetrafluoroborate (Balasubramani et al., 2007), and have analysed their hydrogen bonding patterns. The present investigation concerns the supramolecular patterns exhibited by acetoguanaminium fluoroborate.
The asymmetric unit of the title salt contains one 2,4-diamino-6-methyl-1,3,5-triazin-1-ium (acetoguanaminium) cation and one tetrafluoroborate anion as shown in Fig. 1. The acetoguanaminium cation is protonated at N1. Protonation of the triazine base on the N1 atom is reflected by an increase of the C1—N2—C6 bond angle (119.77 (17)°) with respect to the other C—N—C angles (mean value 115.94 (18)°). The tetrafluoroborate anion shows a slightly distorted tetrahedral geometry (Li et al., 2011). In the asymmetric unit, the acetoguanaminium cation interacts with the tetrafluoroborate anion via a nearly linear N—H···F hydrogen bond (Fig. 1, Table 1). Centrosymmetrically-related cations are paired through a pair of N—H···N hydrogen bonds to form a robust R22(8) ring motif (Etter, 1990; Bernstein et al., 1995) by linking an H atom of the 4-amino group with the N5 atom of the inversion related cation (Table 1). Base pairs are interlinked by R44(16) ring motifs formed by two of N—H···F hydrogen bonds (Fig. 2; Table 1). The combination of the complementary base pairs (R22(8)) and R44(16) motifs generates a supramolecular ribbons parallel to the [211] direction. Adjacent ribbons are interconnected by the alternating occurrence of two different ring motifs such as R44(12) and R66(28) forming a supramolecular sheet parallel to the (120) plane as shown in Fig. 2. There is a supramolecular hydrogen bonded ladder generated by the alternating arrangement of R44(16) and R44(12) ring motifs which extends along c axis. Adjacent sheets are interlinked via N—H···F hydrogen bond to form rings with graph set R66(24) as shown in Fig. 3. These rings propagate along the b axis and generates a three dimensional supramolecular network. The structure is further stabilized by nearly face to face π-π stacking interactions between acetoguanaminium rings, with interplanar distance of 3.333 Å, centroid- to-centroid distance of 3.3361 (12)Å and slip angle of 2.46° (Hunter, 1994). In addition, anion-π contacts are also observed between the acetoguanaminium ring and the F2 and F4 atoms of tetrafluoroborate anion (Cg1···F2i = 3.654 (3) Å; Cg1···F4i = 3.178 (3) Å; Cg1 is the centroid of the N1–N3/C2/C4/C6 ring; symmetry code: (i) 1-x, 2-y, 1-z).