organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-2-(furan-2-yl)-1,3-thia­zolidin-4-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India, and cDepartment of Chemistry, Thanthai Hans Roever College, Perambalur 621 212, Tamil Nadu, India
*Correspondence e-mail: hkfun@usm.my

(Received 13 September 2011; accepted 26 September 2011; online 30 September 2011)

In the title compound, C14H13NO2S, the thia­zolidine ring is approximately planar with a maximum deviation of 0.112 (1) Å. The furan ring is disordered over two orientations, with an occupancy ratio of 0.901 (5):0.099 (5). The central thia­zolidine ring makes dihedral angles of 85.43 (8), 87.50 (11) and 87.9 (9)° with the phenyl ring and the major and minor components of the disordered furan ring, respectively. In the crystal, mol­ecules are connected by weak inter­molecular C—H⋯O hydrogen bonds, forming supra­molecular chains parallel to the b axis.

Related literature

For details and applications of thia­zolidine-4-ones, see: Dutta et al. (1990[Dutta, M. M., Goswami, B. N. & Kataky, J. C. (1990). J. Indian Chem. Soc. 67, 332-334.]); Jadhav & Ingle (1978[Jadhav, K. P. & Ingle, D. B. (1978). J. Indian Chem. Soc. 4, 424-426.]); Gursoy et al. (2005[Gursoy, A., Terzioglu, N. & Turk, J. (2005). Turk. J. Chem. 29, 247-254.]); Rawal et al. (2007[Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & Clercq, E. D. (2007). Bioorg. Med. Chem. 15, 1725-1731.]); Shrivastava et al. (2005[Shrivastava, T., Gaikwad, A. K., Haq, W., Sinha, S. & Katti, S. B. (2005). ARKIVOC, ii, 120-130.]); Look et al. (1996[Look, G. C., Schullek, J. R., Homes, C. P., Chinn, J. P., Gordon, E. M. & Gallop, M. A. (1996). Bioorg. Med. Chem. Lett. 6, 707-712.]); Anders et al. (2001[Anders, C. J., Bronson, J. J., Andrea, D. S. V., Deshpande, S. M., Falk, P. J., Grant-Young, K. A., Harte, W. E., Ho, H., Misco, P. F., Robertson, J. G., Stock, D., Sun, Y. & Walsh, A. W. (2001). Bioorg. Med. Chem. Lett. pp. 715-717.]); Barreca et al. (2001[Barreca, M. L., Chimirri, A., Luca, L. D., Monforte, A., Monforte, P., Rao, A., Zappala, M., Balzarini, J., De Clercq, E., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. pp. 1793-1796.]); Diurno et al. (1992[Diurno, M. V., Mazzoni, O., Calignano, P. E., Giordano, F. & Bolognese, A. (1992). J. Med. Chem. 35, 2910-2912.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO2S

  • Mr = 259.31

  • Monoclinic, P 21 /c

  • a = 13.2901 (2) Å

  • b = 9.6360 (1) Å

  • c = 9.9152 (1) Å

  • β = 102.855 (1)°

  • V = 1237.95 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.30 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.961

  • 13239 measured reflections

  • 3551 independent reflections

  • 2794 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.104

  • S = 1.07

  • 3551 reflections

  • 180 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.93 2.48 3.355 (3) 158
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

One of the main objectives of organic and medicinal chemistry is the design, synthesis and production of molecules having value as human therapeutic agents. During the past decade, combinatorial chemistry has provided access to chemical libraries based on privileged structures with heterocyclic moiety receiving special attention as they belong to a class of compounds with proven utility in medicinal chemistry. There are numerous biologically active molecules with five membered rings containing two hetero atoms. Among them, thiazolidin-4-ones are the most extensively investigated class of compounds, which have many interesting activity profiles namely bactericidal (Dutta et al., 1990), antifungal (Jadhav & Ingle, 1978), anticonvulsant (Gursoy et al., 2005), anti-HIV (Rawal et al., 2007), antituberculotic (Shrivastava et al., 2005), COX-1 inhibitors (Look et al., 1996), inhibitors of the bacterial enzyme MurB (Anders et al., 2001), non-nucleoside inhibitors of HIV-RT (Barreca et al., 2001) and anti-histaminic agents (Diurno et al., 1992).

The molecular structure of the title compound is shown in Fig. 1. The thiazolidine (S1/N1/C5–C7) ring is approximately planar, with a maximum deviation of 0.112 (1) Å for atom S1. The furan ring is disordered over two orientations, with an occupancy ratio of 0.901 (5):0.099 (5). The central thiazolidine ring makes dihedral angles of 85.43 (8)°, 87.50 (11) and 87.9 (9)° with the terminal phenyl (C9–C14) ring and the major (O1/C1–C4) and minor (O1X/C1X–C3X/C4) components of the disordered furan ring, respectively. In the crystal structure (Fig. 2), the molecules are connected by weak intermolecular C—H···O (Table 1) hydrogen bonds forming supramolecular chains parallel to the b-axis.

Related literature top

For details and applications of thiazolidine-4-ones, see: Dutta et al. (1990); Jadhav & Ingle (1978); Gursoy et al. (2005); Rawal et al. (2007); Shrivastava et al. (2005); Look et al. (1996); Anders et al. (2001); Barreca et al. (2001); Diurno et al. (1992). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a well ground intimate mixture of triphenylphosphine (1.1 mmol) and furfuraldehyde, (1.0 mmol) in a microwave vial (10 ml) equipped with a magnetic stirring bar, benzylazide (0.2 g, 1.0 mmol) was added dropwise with stirring. Stirring was continued until liberation of nitrogen ceased and then mercaptoacetic acid, (1.1 mmol), was added to the above mixture and the reaction vessel was sealed with a septum. It was then placed into the cavity of a focused monomode microwave reactor (CEM Discover, benchmate) and operated at 150°C (temperature monitored by a built-in IR sensor), power 80W for 10 minutes. The reaction temperature was maintained by modulating the power level of the reactor. The reaction mixture was allowed to stand at room temperature. The residue was then purified by column chromatography on silica (petrolium/ether-ethylacetate, 94:6 v/v) to afford 3-benzyl-2-(furan-2-yl)thiazolidin-4-one. Yield: 0.36 g (94%); M.p: 150–151°C. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). The furan ring is disordered over two orientations, with an occupancy ratio of 0.901 (5):0.099 (5).

Structure description top

One of the main objectives of organic and medicinal chemistry is the design, synthesis and production of molecules having value as human therapeutic agents. During the past decade, combinatorial chemistry has provided access to chemical libraries based on privileged structures with heterocyclic moiety receiving special attention as they belong to a class of compounds with proven utility in medicinal chemistry. There are numerous biologically active molecules with five membered rings containing two hetero atoms. Among them, thiazolidin-4-ones are the most extensively investigated class of compounds, which have many interesting activity profiles namely bactericidal (Dutta et al., 1990), antifungal (Jadhav & Ingle, 1978), anticonvulsant (Gursoy et al., 2005), anti-HIV (Rawal et al., 2007), antituberculotic (Shrivastava et al., 2005), COX-1 inhibitors (Look et al., 1996), inhibitors of the bacterial enzyme MurB (Anders et al., 2001), non-nucleoside inhibitors of HIV-RT (Barreca et al., 2001) and anti-histaminic agents (Diurno et al., 1992).

The molecular structure of the title compound is shown in Fig. 1. The thiazolidine (S1/N1/C5–C7) ring is approximately planar, with a maximum deviation of 0.112 (1) Å for atom S1. The furan ring is disordered over two orientations, with an occupancy ratio of 0.901 (5):0.099 (5). The central thiazolidine ring makes dihedral angles of 85.43 (8)°, 87.50 (11) and 87.9 (9)° with the terminal phenyl (C9–C14) ring and the major (O1/C1–C4) and minor (O1X/C1X–C3X/C4) components of the disordered furan ring, respectively. In the crystal structure (Fig. 2), the molecules are connected by weak intermolecular C—H···O (Table 1) hydrogen bonds forming supramolecular chains parallel to the b-axis.

For details and applications of thiazolidine-4-ones, see: Dutta et al. (1990); Jadhav & Ingle (1978); Gursoy et al. (2005); Rawal et al. (2007); Shrivastava et al. (2005); Look et al. (1996); Anders et al. (2001); Barreca et al. (2001); Diurno et al. (1992). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, showing 50% probability displacement ellipsoids. Open bonds indicate the mino component of the disordered furan ring.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the c axis. Only the major component of the disordered furan ring is shown.
3-Benzyl-2-(furan-2-yl)-1,3-thiazolidin-4-one top
Crystal data top
C14H13NO2SF(000) = 544
Mr = 259.31Dx = 1.391 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5111 reflections
a = 13.2901 (2) Åθ = 2.6–29.8°
b = 9.6360 (1) ŵ = 0.25 mm1
c = 9.9152 (1) ÅT = 100 K
β = 102.855 (1)°Block, colourless
V = 1237.95 (3) Å30.30 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3551 independent reflections
Radiation source: fine-focus sealed tube2794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 29.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.928, Tmax = 0.961k = 913
13239 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0277P)2 + 1.0975P]
where P = (Fo2 + 2Fc2)/3
3551 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C14H13NO2SV = 1237.95 (3) Å3
Mr = 259.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2901 (2) ŵ = 0.25 mm1
b = 9.6360 (1) ÅT = 100 K
c = 9.9152 (1) Å0.30 × 0.18 × 0.16 mm
β = 102.855 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3551 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2794 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.961Rint = 0.028
13239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.07Δρmax = 0.43 e Å3
3551 reflectionsΔρmin = 0.35 e Å3
180 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.94899 (3)0.23126 (5)0.26095 (5)0.02134 (12)
O20.82632 (10)0.47724 (13)0.03755 (13)0.0249 (3)
N10.78175 (10)0.28671 (15)0.07263 (15)0.0176 (3)
C10.85886 (16)0.1044 (3)0.0489 (2)0.0257 (6)0.901 (5)
H1A0.88380.13800.12310.031*0.901 (5)
C20.8142 (2)0.1838 (3)0.0346 (3)0.0234 (7)0.901 (5)
H2A0.80310.27910.02880.028*0.901 (5)
C30.78759 (17)0.0901 (2)0.1338 (2)0.0218 (5)0.901 (5)
H3A0.75560.11320.20510.026*0.901 (5)
O10.86228 (11)0.0324 (2)0.00892 (16)0.0228 (4)0.901 (5)
C1X0.7671 (17)0.190 (2)0.096 (2)0.030 (5)*0.099 (5)
H1XA0.74040.27580.11250.036*0.099 (5)
C2X0.828 (2)0.160 (3)0.004 (3)0.016 (6)*0.099 (5)
H2XA0.84460.22530.05600.019*0.099 (5)
C3X0.8599 (19)0.030 (3)0.009 (3)0.031 (6)*0.099 (5)
H3XA0.90340.00870.04260.037*0.099 (5)
O1X0.7542 (15)0.060 (2)0.1596 (18)0.038 (5)*0.099 (5)
C40.81768 (12)0.03740 (19)0.10405 (18)0.0188 (3)
C50.81880 (12)0.17612 (18)0.17059 (18)0.0174 (3)
H5A0.77480.17220.23780.021*
C60.95721 (13)0.3595 (2)0.1314 (2)0.0241 (4)
H6A0.98510.44560.17510.029*
H6B1.00200.32700.07300.029*
C70.84910 (12)0.38244 (18)0.04616 (17)0.0177 (3)
C80.67229 (12)0.29307 (19)0.00708 (18)0.0196 (4)
H8A0.64770.20000.01950.024*
H8B0.66340.34820.07660.024*
C90.60718 (12)0.35483 (17)0.09945 (17)0.0164 (3)
C100.64856 (13)0.44688 (19)0.20516 (18)0.0209 (4)
H10A0.71850.46820.22270.025*
C110.58667 (13)0.50767 (19)0.28530 (18)0.0218 (4)
H11A0.61520.56940.35550.026*
C120.48236 (13)0.4757 (2)0.25993 (19)0.0229 (4)
H12A0.44070.51560.31340.027*
C130.44033 (13)0.3840 (2)0.1546 (2)0.0257 (4)
H13A0.37040.36250.13740.031*
C140.50243 (13)0.32405 (19)0.07495 (19)0.0213 (4)
H14A0.47370.26270.00450.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01828 (19)0.0221 (2)0.0216 (2)0.00020 (16)0.00008 (15)0.00073 (18)
O20.0310 (7)0.0178 (7)0.0270 (7)0.0029 (5)0.0089 (5)0.0037 (5)
N10.0153 (6)0.0165 (7)0.0208 (7)0.0019 (5)0.0037 (5)0.0018 (6)
C10.0270 (10)0.0223 (12)0.0268 (11)0.0083 (9)0.0033 (9)0.0086 (10)
C20.0199 (12)0.0136 (13)0.0337 (17)0.0003 (9)0.0006 (11)0.0005 (11)
C30.0173 (9)0.0179 (11)0.0290 (11)0.0006 (8)0.0021 (8)0.0011 (9)
O10.0266 (8)0.0204 (10)0.0232 (8)0.0048 (7)0.0093 (6)0.0014 (7)
C40.0153 (7)0.0204 (9)0.0202 (8)0.0026 (6)0.0027 (6)0.0002 (7)
C50.0155 (7)0.0170 (8)0.0203 (8)0.0019 (6)0.0051 (6)0.0021 (7)
C60.0187 (8)0.0208 (10)0.0330 (10)0.0017 (7)0.0061 (7)0.0024 (8)
C70.0206 (7)0.0131 (8)0.0204 (8)0.0020 (6)0.0069 (6)0.0021 (7)
C80.0159 (7)0.0207 (9)0.0211 (8)0.0018 (6)0.0018 (6)0.0019 (7)
C90.0176 (7)0.0118 (8)0.0189 (8)0.0022 (6)0.0020 (6)0.0031 (6)
C100.0160 (7)0.0223 (9)0.0230 (9)0.0014 (6)0.0011 (6)0.0005 (7)
C110.0238 (8)0.0201 (9)0.0206 (8)0.0029 (7)0.0026 (7)0.0028 (7)
C120.0232 (8)0.0204 (9)0.0266 (9)0.0070 (7)0.0089 (7)0.0035 (7)
C130.0174 (8)0.0254 (10)0.0355 (10)0.0007 (7)0.0081 (7)0.0001 (8)
C140.0200 (8)0.0151 (9)0.0277 (9)0.0039 (6)0.0032 (7)0.0031 (7)
Geometric parameters (Å, º) top
S1—C61.8032 (19)O1X—C41.453 (18)
S1—C51.8410 (16)C4—C51.489 (2)
O2—C71.226 (2)C5—H5A0.9800
N1—C71.351 (2)C6—C71.512 (2)
N1—C51.452 (2)C6—H6A0.9700
N1—C81.457 (2)C6—H6B0.9700
C1—C21.357 (4)C8—C91.515 (2)
C1—O11.375 (3)C8—H8A0.9700
C1—H1A0.9300C8—H8B0.9700
C2—C31.436 (4)C9—C101.390 (2)
C2—H2A0.9300C9—C141.391 (2)
C3—C41.344 (3)C10—C111.394 (2)
C3—H3A0.9300C10—H10A0.9300
O1—C41.380 (2)C11—C121.387 (2)
C1X—C2X1.37 (3)C11—H11A0.9300
C1X—O1X1.43 (3)C12—C131.387 (3)
C1X—H1XA0.9300C12—H12A0.9300
C2X—C3X1.32 (4)C13—C141.389 (3)
C2X—H2XA0.9300C13—H13A0.9300
C3X—C41.36 (3)C14—H14A0.9300
C3X—H3XA0.9300
C6—S1—C592.90 (8)C4—C5—H5A108.6
C7—N1—C5119.36 (13)S1—C5—H5A108.6
C7—N1—C8121.58 (15)C7—C6—S1107.31 (12)
C5—N1—C8119.06 (14)C7—C6—H6A110.3
C2—C1—O1110.8 (2)S1—C6—H6A110.3
C2—C1—H1A124.6C7—C6—H6B110.3
O1—C1—H1A124.6S1—C6—H6B110.3
C1—C2—C3105.7 (2)H6A—C6—H6B108.5
C1—C2—H2A127.1O2—C7—N1124.45 (15)
C3—C2—H2A127.1O2—C7—C6123.23 (16)
C4—C3—C2107.1 (2)N1—C7—C6112.32 (15)
C4—C3—H3A126.5N1—C8—C9113.27 (14)
C2—C3—H3A126.5N1—C8—H8A108.9
C1—O1—C4105.93 (18)C9—C8—H8A108.9
C2X—C1X—O1X105 (2)N1—C8—H8B108.9
C2X—C1X—H1XA127.6C9—C8—H8B108.9
O1X—C1X—H1XA127.6H8A—C8—H8B107.7
C3X—C2X—C1X114 (3)C10—C9—C14118.73 (16)
C3X—C2X—H2XA122.9C10—C9—C8121.56 (15)
C1X—C2X—H2XA122.9C14—C9—C8119.66 (15)
C2X—C3X—C4107 (2)C9—C10—C11120.90 (16)
C2X—C3X—H3XA126.4C9—C10—H10A119.5
C4—C3X—H3XA126.4C11—C10—H10A119.5
C1X—O1X—C4105.1 (15)C12—C11—C10119.73 (17)
C3—C4—C3X84.6 (13)C12—C11—H11A120.1
C3—C4—O1110.41 (18)C10—C11—H11A120.1
C3X—C4—O1X108.5 (14)C13—C12—C11119.79 (16)
O1—C4—O1X132.6 (8)C13—C12—H12A120.1
C3—C4—C5134.18 (18)C11—C12—H12A120.1
C3X—C4—C5140.1 (13)C12—C13—C14120.16 (16)
O1—C4—C5115.28 (16)C12—C13—H13A119.9
O1X—C4—C5111.3 (8)C14—C13—H13A119.9
N1—C5—C4113.19 (14)C13—C14—C9120.68 (17)
N1—C5—S1104.82 (11)C13—C14—H14A119.7
C4—C5—S1112.97 (11)C9—C14—H14A119.7
N1—C5—H5A108.6
O1—C1—C2—C30.1 (2)O1—C4—C5—N149.22 (19)
C1—C2—C3—C40.1 (2)O1X—C4—C5—N1121.5 (8)
C2—C1—O1—C40.0 (2)C3—C4—C5—S1105.7 (2)
O1X—C1X—C2X—C3X4 (3)C3X—C4—C5—S157.9 (17)
C1X—C2X—C3X—C42 (3)O1—C4—C5—S169.72 (17)
C2X—C1X—O1X—C44 (2)O1X—C4—C5—S1119.6 (8)
C2—C3—C4—C3X6.0 (11)C6—S1—C5—N116.21 (12)
C2—C3—C4—O10.1 (2)C6—S1—C5—C4107.48 (13)
C2—C3—C4—O1X153.3 (18)C5—S1—C6—C715.65 (13)
C2—C3—C4—C5175.46 (19)C5—N1—C7—O2177.75 (16)
C2X—C3X—C4—C38.7 (19)C8—N1—C7—O23.4 (3)
C2X—C3X—C4—O1159 (4)C5—N1—C7—C62.0 (2)
C2X—C3X—C4—O1X1 (2)C8—N1—C7—C6176.90 (15)
C2X—C3X—C4—C5177.0 (13)S1—C6—C7—O2169.34 (14)
C1—O1—C4—C30.0 (2)S1—C6—C7—N110.94 (18)
C1—O1—C4—C3X14 (2)C7—N1—C8—C999.90 (19)
C1—O1—C4—O1X15.4 (10)C5—N1—C8—C978.97 (19)
C1—O1—C4—C5176.43 (14)N1—C8—C9—C1025.8 (2)
C1X—O1X—C4—C318.8 (11)N1—C8—C9—C14157.01 (16)
C1X—O1X—C4—C3X3.0 (18)C14—C9—C10—C110.1 (3)
C1X—O1X—C4—O116.1 (18)C8—C9—C10—C11177.10 (16)
C1X—O1X—C4—C5175.3 (11)C9—C10—C11—C120.3 (3)
C7—N1—C5—C4110.10 (17)C10—C11—C12—C130.3 (3)
C8—N1—C5—C470.99 (19)C11—C12—C13—C140.1 (3)
C7—N1—C5—S113.44 (18)C12—C13—C14—C90.1 (3)
C8—N1—C5—S1165.46 (12)C10—C9—C14—C130.1 (3)
C3—C4—C5—N1135.4 (2)C8—C9—C14—C13177.32 (17)
C3X—C4—C5—N161.0 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.483.355 (3)158
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H13NO2S
Mr259.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.2901 (2), 9.6360 (1), 9.9152 (1)
β (°) 102.855 (1)
V3)1237.95 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.928, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
13239, 3551, 2794
Rint0.028
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.104, 1.07
No. of reflections3551
No. of parameters180
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.483.355 (3)158
Symmetry code: (i) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAnders, C. J., Bronson, J. J., Andrea, D. S. V., Deshpande, S. M., Falk, P. J., Grant-Young, K. A., Harte, W. E., Ho, H., Misco, P. F., Robertson, J. G., Stock, D., Sun, Y. & Walsh, A. W. (2001). Bioorg. Med. Chem. Lett. pp. 715–717.  Google Scholar
First citationBarreca, M. L., Chimirri, A., Luca, L. D., Monforte, A., Monforte, P., Rao, A., Zappala, M., Balzarini, J., De Clercq, E., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. pp. 1793–1796.  Web of Science CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDiurno, M. V., Mazzoni, O., Calignano, P. E., Giordano, F. & Bolognese, A. (1992). J. Med. Chem. 35, 2910–2912.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDutta, M. M., Goswami, B. N. & Kataky, J. C. (1990). J. Indian Chem. Soc. 67, 332–334.  CAS Google Scholar
First citationGursoy, A., Terzioglu, N. & Turk, J. (2005). Turk. J. Chem. 29, 247–254.  Google Scholar
First citationJadhav, K. P. & Ingle, D. B. (1978). J. Indian Chem. Soc. 4, 424–426.  Google Scholar
First citationLook, G. C., Schullek, J. R., Homes, C. P., Chinn, J. P., Gordon, E. M. & Gallop, M. A. (1996). Bioorg. Med. Chem. Lett. 6, 707–712.  CrossRef CAS Web of Science Google Scholar
First citationRawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & Clercq, E. D. (2007). Bioorg. Med. Chem. 15, 1725–1731.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShrivastava, T., Gaikwad, A. K., Haq, W., Sinha, S. & Katti, S. B. (2005). ARKIVOC, ii, 120–130.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds