organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(Pyridin-2-yl)-3-(2,4,6-trimeth­­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 19 September 2011; accepted 23 September 2011; online 30 September 2011)

The title heteroaryl chalcone derivative, C17H17NO4, is a condensation product of 2-acetyl­pyridine and 2,4,6-trimeth­oxy­benzaldehyde. The mol­ecule is roughly planar, the dihedral angle between the pyridine and benzene rings being 5.51 (10)°. All the three meth­oxy groups are almost co-planar with the bound benzene ring [r.m.s. deviation of 0.0306 (2) Å]. A weak C—H⋯O intra­molecular inter­action involving one of the ortho-meth­oxy groups generates an S(6) ring motif. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions into anti-parallel face-to-face pairs. Adjacent pairs are further connected into sheets parallel to the ab plane.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Chantrapromma et al. (2009[Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893-o894.]); Fun et al. (2010[Fun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010). Acta Cryst. E66, o2559-o2560.], 2011[Fun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o2406-o2407.]). For background to and applications of chalcones and heteroaryl chalcones, see: Bandgar et al. (2010[Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, N. (2010). Bioorg. Med. Chem. 18, 1364-1370.]); Gacche et al. (2008[Gacche, R. N., Dhole, N. A., Kamble, S. G. & Bandgar, B. P. (2008). J. Enzyme Inhib. Med. Chem. 23, 28-31.]); Go et al. (2005[Go, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483-499.]); Isomoto et al. (2005[Isomoto, H., Furusu, H., Ohnita, K., Wen, C. Y., Inoue, K. & Kohno, S. (2005). World J. Gastroenterol. 11, 1629-1633.]); Jung et al. (2008[Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron 27, 861-867.]); Suwunwong et al. (2011[Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Chem. Pap., doi: 10.2478/s11696-011-0084-4.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503-508.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17NO4

  • Mr = 299.32

  • Orthorhombic, F d d 2

  • a = 31.563 (2) Å

  • b = 44.508 (3) Å

  • c = 3.9504 (3) Å

  • V = 5549.6 (7) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.58 × 0.14 × 0.04 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.996

  • 31465 measured reflections

  • 2309 independent reflections

  • 1908 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.105

  • S = 1.09

  • 2309 reflections

  • 267 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 1.00 (2) 2.45 (3) 3.369 (2) 157.8 (17)
C7—H11B⋯O4 0.97 (3) 2.31 (2) 2.835 (2) 113.1 (18)
C17—H17B⋯O4ii 0.99 (2) 2.46 (2) 3.337 (3) 148 (2)
Symmetry codes: (i) [x+{\script{9\over 4}}, -y+{\script{9\over 4}}, z+{\script{1\over 4}}]; (ii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones and heteroaryl chalcones have drawn a lot of interests due to their wide range of biological properties including antioxidant (Gacche et al., 2008), antibacterial (Go et al., 2005; Isomoto et al., 2005), anti-inflammatory and anticancer (Bandgar et al., 2010) as well as HIV-1 protease inhibitory (Tewtrakul et al., 2003) activities. Furthermore they also exhibit fluorescent property (Jung et al., 2008; Suwunwong et al., 2011). In our on-going research on the biological and fluorescent properties of chalcones and heteroaryl chalcones (Chantrapromma et al., 2009; Fun et al., 2010, 2011; Suwunwong et al., 2011), the title heteroaryl chalcone derivative (I) was synthesized in order to study the effects of substituted positions on the fluorescent property in comparision with the closely related compounds (Fun et al., 2011; Suwunwong et al., 2011). In addition (I) was also tested for analgesic and antibacterial activities. Our results showed that (I) exhibits a moderate analgesic activity but is inactive for antibacterial activity. Herein we report the crystal structure of (I).

The molecule of the title heteroaryl chalcone derivative (Fig. 1) exists in an E configuration with respect to the C7C8 double bond [1.341 (3) Å]. The torsion angle C6–C7–C8–C9 is 179.0 (2)°. The molecule is almost planar with a dihedral angle between the pyridine and 2,4,6-trimethoxyphenyl rings of 5.51 (10)°. Atoms of the propenone bridge (C6, C7, C8 and O1) lie on the same plane [r.m.s. deviation of 0.017 (2)] and the torsion angle O1–C6–C7–C8 is -5.8 (4)°. The mean plane through this bridge makes dihedral angles of 6.96 (16) and 11.72 (16)° with the planes of pyridine and benzene rings, respectively. All the three substituted methoxy groups of the 2,4,6-trimethoxyphenyl unit are co-planar with the phenyl ring as indicated by the torsion angles C15–O2–C10–C11 = -0.4 (3)°, C16–O3–C12–C13 = 0.9 (3)° and C17–O4–C14–C13 = -4.7 (3)°. In the molecule, a weak intramolecular C7—H7A···O4 interaction (Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The bond distances are of normal values (Allen et al., 1987) and comparable with related structures (Chantrapromma et al., 2009; Fun et al., 2010; 2011).

In the crystal packing (Fig. 2), only the two ortho-methoxy groups are involved in weak C—H···O interactions (Table 1). The adjacent molecules are linked by weak C17—H17B···O4 interaction (Table 1) into anti-parallel face-to-face pairs. The adjacent pairs were further connected by weak C3—H3A···O2 interactions (Table 1) into sheets parallel to the ab plane which are stacked down the c axis. The crystal may be further stabilized by C···O [3.203 (2) Å] short contacts.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2009); Fun et al. (2010, 2011). For background to and applications of chalcones and heteroaryl chalcones, see: Bandgar et al. (2010); Gacche et al. (2008); Go et al. (2005); Isomoto et al. (2005); Jung et al. (2008); Suwunwong et al. (2011); Tewtrakul et al. (2003). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The title compound was synthesized by the condensation reaction of 2,4,6-trimethoxybenzaldehyde (0.40 g, 2 mmol) with 2-acetylpyridine (0.20 g, 2 mmol) in ethanol (30 ml) in the presence of 30% NaOH(aq) (5 ml). After stirring in ice bath at 278 K for 4 h, the resulting pale yellow solid appeared and was then collected by filtration, washed with distilled water, dried and purified by repeated recrystallization from acetone. Pale yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from acetone/ethanol (1:1 v/v) by the evaporation of the solvent at room temperature after several days, M.p. 392-393 K.

Refinement top

All H atoms were located in difference maps and refined isotropically. A total of 1754 Friedel pairs were merged before final refinement as there is no large anomalous dispersion for the determination of the absolute structure.

Structure description top

Chalcones and heteroaryl chalcones have drawn a lot of interests due to their wide range of biological properties including antioxidant (Gacche et al., 2008), antibacterial (Go et al., 2005; Isomoto et al., 2005), anti-inflammatory and anticancer (Bandgar et al., 2010) as well as HIV-1 protease inhibitory (Tewtrakul et al., 2003) activities. Furthermore they also exhibit fluorescent property (Jung et al., 2008; Suwunwong et al., 2011). In our on-going research on the biological and fluorescent properties of chalcones and heteroaryl chalcones (Chantrapromma et al., 2009; Fun et al., 2010, 2011; Suwunwong et al., 2011), the title heteroaryl chalcone derivative (I) was synthesized in order to study the effects of substituted positions on the fluorescent property in comparision with the closely related compounds (Fun et al., 2011; Suwunwong et al., 2011). In addition (I) was also tested for analgesic and antibacterial activities. Our results showed that (I) exhibits a moderate analgesic activity but is inactive for antibacterial activity. Herein we report the crystal structure of (I).

The molecule of the title heteroaryl chalcone derivative (Fig. 1) exists in an E configuration with respect to the C7C8 double bond [1.341 (3) Å]. The torsion angle C6–C7–C8–C9 is 179.0 (2)°. The molecule is almost planar with a dihedral angle between the pyridine and 2,4,6-trimethoxyphenyl rings of 5.51 (10)°. Atoms of the propenone bridge (C6, C7, C8 and O1) lie on the same plane [r.m.s. deviation of 0.017 (2)] and the torsion angle O1–C6–C7–C8 is -5.8 (4)°. The mean plane through this bridge makes dihedral angles of 6.96 (16) and 11.72 (16)° with the planes of pyridine and benzene rings, respectively. All the three substituted methoxy groups of the 2,4,6-trimethoxyphenyl unit are co-planar with the phenyl ring as indicated by the torsion angles C15–O2–C10–C11 = -0.4 (3)°, C16–O3–C12–C13 = 0.9 (3)° and C17–O4–C14–C13 = -4.7 (3)°. In the molecule, a weak intramolecular C7—H7A···O4 interaction (Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The bond distances are of normal values (Allen et al., 1987) and comparable with related structures (Chantrapromma et al., 2009; Fun et al., 2010; 2011).

In the crystal packing (Fig. 2), only the two ortho-methoxy groups are involved in weak C—H···O interactions (Table 1). The adjacent molecules are linked by weak C17—H17B···O4 interaction (Table 1) into anti-parallel face-to-face pairs. The adjacent pairs were further connected by weak C3—H3A···O2 interactions (Table 1) into sheets parallel to the ab plane which are stacked down the c axis. The crystal may be further stabilized by C···O [3.203 (2) Å] short contacts.

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2009); Fun et al. (2010, 2011). For background to and applications of chalcones and heteroaryl chalcones, see: Bandgar et al. (2010); Gacche et al. (2008); Go et al. (2005); Isomoto et al. (2005); Jung et al. (2008); Suwunwong et al. (2011); Tewtrakul et al. (2003). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. A weak intramolecular C—H···O interaction is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis, showing molecular sheets parallel to the ab plane. Hydrogen bonds are shown as dashed lines.
(2E)-1-(Pyridin-2-yl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C17H17NO4Dx = 1.433 Mg m3
Mr = 299.32Melting point = 392–393 K
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2309 reflections
a = 31.563 (2) Åθ = 1.6–30.0°
b = 44.508 (3) ŵ = 0.10 mm1
c = 3.9504 (3) ÅT = 100 K
V = 5549.6 (7) Å3Plate, pale yellow
Z = 160.58 × 0.14 × 0.04 mm
F(000) = 2528
Data collection top
Bruker APEXII CCD area detector
diffractometer
2309 independent reflections
Radiation source: sealed tube1908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
φ and ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 4444
Tmin = 0.943, Tmax = 0.996k = 6262
31465 measured reflectionsl = 55
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0467P)2 + 4.8268P]
where P = (Fo2 + 2Fc2)/3
2309 reflections(Δ/σ)max = 0.001
267 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C17H17NO4V = 5549.6 (7) Å3
Mr = 299.32Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 31.563 (2) ŵ = 0.10 mm1
b = 44.508 (3) ÅT = 100 K
c = 3.9504 (3) Å0.58 × 0.14 × 0.04 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
2309 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1908 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.996Rint = 0.100
31465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.105All H-atom parameters refined
S = 1.09Δρmax = 0.23 e Å3
2309 reflectionsΔρmin = 0.27 e Å3
267 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18610 (5)0.11217 (3)1.2030 (5)0.0298 (4)
O20.07115 (4)0.04799 (3)1.1758 (5)0.0239 (3)
O30.05980 (4)0.04831 (3)0.6752 (5)0.0248 (4)
O40.19307 (4)0.00496 (3)0.6918 (5)0.0242 (4)
N10.27419 (5)0.08486 (4)0.7393 (6)0.0245 (4)
C10.31419 (7)0.09271 (5)0.6662 (7)0.0263 (5)
C20.33299 (7)0.11932 (5)0.7701 (7)0.0266 (5)
C30.30912 (7)0.13912 (5)0.9612 (7)0.0270 (5)
C40.26779 (7)0.13153 (5)1.0406 (7)0.0254 (5)
C50.25139 (6)0.10419 (4)0.9256 (7)0.0225 (4)
C60.20685 (6)0.09511 (4)1.0251 (7)0.0226 (4)
C70.19132 (7)0.06578 (4)0.9048 (7)0.0228 (4)
C80.15391 (7)0.05521 (4)1.0129 (7)0.0228 (4)
C90.13222 (6)0.02737 (4)0.9251 (6)0.0213 (4)
C100.08883 (6)0.02411 (4)1.0100 (6)0.0217 (4)
C110.06569 (6)0.00125 (4)0.9267 (7)0.0225 (4)
C120.08555 (6)0.02465 (4)0.7554 (6)0.0216 (4)
C130.12828 (6)0.02332 (4)0.6760 (7)0.0220 (4)
C140.15094 (6)0.00253 (4)0.7601 (6)0.0217 (4)
C150.02726 (7)0.04603 (5)1.2600 (7)0.0252 (5)
C160.07863 (7)0.07331 (5)0.5027 (7)0.0259 (5)
C170.21410 (7)0.02095 (5)0.5537 (7)0.0261 (5)
H1A0.3305 (7)0.0785 (5)0.524 (8)0.023 (6)*
H2A0.3622 (7)0.1239 (5)0.708 (9)0.027 (6)*
H3A0.3216 (7)0.1581 (5)1.051 (8)0.025 (6)*
H4A0.2489 (7)0.1445 (5)1.187 (9)0.030 (7)*
H8A0.1375 (8)0.0676 (6)1.166 (9)0.039 (8)*
H11A0.0350 (7)0.0029 (5)0.980 (8)0.023 (6)*
H11B0.2095 (7)0.0554 (5)0.747 (9)0.025 (6)*
H13A0.1415 (7)0.0402 (5)0.545 (8)0.025 (6)*
H15A0.0101 (8)0.0457 (6)1.054 (9)0.033 (8)*
H15B0.0223 (8)0.0281 (6)1.428 (10)0.038 (7)*
H15C0.0194 (7)0.0634 (5)1.389 (8)0.024 (7)*
H16A0.0549 (7)0.0874 (5)0.453 (8)0.023 (6)*
H16B0.0916 (7)0.0668 (5)0.282 (9)0.023 (6)*
H16C0.1003 (8)0.0827 (5)0.644 (9)0.031 (7)*
H17A0.2010 (8)0.0257 (6)0.328 (9)0.030 (8)*
H17B0.2445 (7)0.0160 (5)0.542 (8)0.025 (6)*
H17C0.2105 (7)0.0383 (5)0.714 (9)0.028 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0320 (8)0.0216 (7)0.0360 (11)0.0005 (6)0.0043 (8)0.0058 (8)
O20.0246 (7)0.0189 (6)0.0283 (9)0.0001 (5)0.0026 (7)0.0024 (7)
O30.0251 (7)0.0175 (6)0.0317 (10)0.0026 (5)0.0018 (7)0.0032 (7)
O40.0236 (7)0.0194 (6)0.0295 (10)0.0009 (5)0.0026 (7)0.0034 (7)
N10.0284 (9)0.0189 (8)0.0264 (11)0.0003 (6)0.0011 (8)0.0007 (8)
C10.0279 (10)0.0233 (9)0.0276 (13)0.0008 (8)0.0002 (10)0.0019 (10)
C20.0290 (11)0.0239 (9)0.0270 (13)0.0012 (8)0.0014 (10)0.0061 (10)
C30.0320 (11)0.0203 (9)0.0288 (14)0.0037 (8)0.0050 (11)0.0023 (10)
C40.0313 (11)0.0197 (9)0.0251 (12)0.0004 (8)0.0021 (10)0.0009 (9)
C50.0274 (10)0.0188 (9)0.0214 (11)0.0013 (7)0.0012 (9)0.0033 (9)
C60.0267 (10)0.0185 (9)0.0224 (11)0.0004 (7)0.0010 (9)0.0029 (9)
C70.0278 (10)0.0162 (9)0.0242 (12)0.0008 (7)0.0007 (9)0.0012 (9)
C80.0266 (10)0.0173 (8)0.0245 (12)0.0013 (7)0.0014 (9)0.0017 (9)
C90.0258 (10)0.0181 (9)0.0200 (12)0.0013 (7)0.0009 (9)0.0019 (9)
C100.0287 (10)0.0162 (8)0.0201 (11)0.0015 (7)0.0017 (9)0.0011 (9)
C110.0233 (9)0.0195 (9)0.0248 (12)0.0001 (7)0.0002 (9)0.0027 (9)
C120.0287 (10)0.0156 (8)0.0206 (12)0.0024 (7)0.0039 (9)0.0021 (8)
C130.0263 (10)0.0176 (8)0.0220 (12)0.0009 (7)0.0012 (9)0.0009 (9)
C140.0245 (10)0.0191 (9)0.0214 (12)0.0007 (7)0.0014 (9)0.0028 (9)
C150.0247 (10)0.0231 (9)0.0279 (13)0.0018 (8)0.0003 (10)0.0022 (10)
C160.0305 (11)0.0179 (9)0.0292 (13)0.0016 (8)0.0011 (10)0.0026 (10)
C170.0264 (11)0.0194 (9)0.0325 (14)0.0009 (8)0.0045 (10)0.0029 (10)
Geometric parameters (Å, º) top
O1—C61.224 (3)C7—H11B0.96 (3)
O2—C101.368 (2)C8—C91.458 (3)
O2—C151.427 (3)C8—H8A0.97 (3)
O3—C121.367 (2)C9—C141.413 (3)
O3—C161.434 (3)C9—C101.417 (3)
O4—C141.361 (2)C10—C111.384 (3)
O4—C171.438 (3)C11—C121.392 (3)
N1—C51.341 (3)C11—H11A0.99 (2)
N1—C11.342 (3)C12—C131.386 (3)
C1—C21.387 (3)C13—C141.395 (3)
C1—H1A0.99 (3)C13—H13A1.00 (3)
C2—C31.383 (3)C15—H15A0.98 (3)
C2—H2A0.97 (2)C15—H15B1.05 (3)
C3—C41.384 (3)C15—H15C0.96 (3)
C3—H3A1.00 (2)C16—H16A1.00 (2)
C4—C51.398 (3)C16—H16B1.01 (3)
C4—H4A1.01 (3)C16—H16C0.98 (3)
C5—C61.515 (3)C17—H17A1.01 (3)
C6—C71.474 (3)C17—H17B0.99 (2)
C7—C81.341 (3)C17—H17C1.00 (3)
C10—O2—C15117.39 (16)O2—C10—C9115.35 (17)
C12—O3—C16117.48 (16)C11—C10—C9122.49 (19)
C14—O4—C17117.55 (16)C10—C11—C12119.22 (19)
C5—N1—C1117.13 (18)C10—C11—H11A121.7 (14)
N1—C1—C2124.1 (2)C12—C11—H11A119.1 (14)
N1—C1—H1A116.3 (13)O3—C12—C13123.98 (18)
C2—C1—H1A119.5 (13)O3—C12—C11114.91 (18)
C3—C2—C1118.2 (2)C13—C12—C11121.11 (18)
C3—C2—H2A121.2 (15)C12—C13—C14118.69 (19)
C1—C2—H2A120.6 (15)C12—C13—H13A119.3 (13)
C2—C3—C4118.8 (2)C14—C13—H13A121.8 (13)
C2—C3—H3A121.3 (14)O4—C14—C13121.27 (19)
C4—C3—H3A119.8 (14)O4—C14—C9115.97 (17)
C3—C4—C5119.2 (2)C13—C14—C9122.75 (18)
C3—C4—H4A123.1 (13)O2—C15—H15A110.2 (17)
C5—C4—H4A117.7 (13)O2—C15—H15B109.8 (14)
N1—C5—C4122.54 (19)H15A—C15—H15B115 (2)
N1—C5—C6117.99 (17)O2—C15—H15C109.0 (14)
C4—C5—C6119.4 (2)H15A—C15—H15C108 (2)
O1—C6—C7123.82 (19)H15B—C15—H15C104 (2)
O1—C6—C5118.70 (18)O3—C16—H16A105.8 (14)
C7—C6—C5117.47 (19)O3—C16—H16B111.0 (14)
C8—C7—C6120.1 (2)H16A—C16—H16B108 (2)
C8—C7—H11B124.1 (14)O3—C16—H16C110.5 (17)
C6—C7—H11B115.8 (14)H16A—C16—H16C112 (2)
C7—C8—C9129.5 (2)H16B—C16—H16C109 (2)
C7—C8—H8A118.2 (15)O4—C17—H17A108.4 (15)
C9—C8—H8A112.3 (15)O4—C17—H17B106.7 (14)
C14—C9—C10115.68 (17)H17A—C17—H17B114 (2)
C14—C9—C8125.35 (18)O4—C17—H17C109.0 (16)
C10—C9—C8118.97 (18)H17A—C17—H17C111 (2)
O2—C10—C11122.16 (18)H17B—C17—H17C108 (2)
C5—N1—C1—C20.2 (4)C8—C9—C10—O21.0 (3)
N1—C1—C2—C30.0 (4)C14—C9—C10—C112.2 (3)
C1—C2—C3—C40.1 (4)C8—C9—C10—C11178.1 (2)
C2—C3—C4—C50.1 (4)O2—C10—C11—C12179.5 (2)
C1—N1—C5—C40.3 (3)C9—C10—C11—C120.5 (4)
C1—N1—C5—C6177.1 (2)C16—O3—C12—C130.9 (3)
C3—C4—C5—N10.1 (4)C16—O3—C12—C11179.1 (2)
C3—C4—C5—C6177.2 (2)C10—C11—C12—O3178.1 (2)
N1—C5—C6—O1178.0 (2)C10—C11—C12—C131.9 (4)
C4—C5—C6—O10.5 (3)O3—C12—C13—C14177.6 (2)
N1—C5—C6—C71.1 (3)C11—C12—C13—C142.3 (3)
C4—C5—C6—C7178.5 (2)C17—O4—C14—C134.7 (3)
O1—C6—C7—C85.8 (4)C17—O4—C14—C9174.2 (2)
C5—C6—C7—C8173.2 (2)C12—C13—C14—O4179.2 (2)
C6—C7—C8—C9179.0 (2)C12—C13—C14—C90.4 (3)
C7—C8—C9—C1414.7 (4)C10—C9—C14—O4177.1 (2)
C7—C8—C9—C10165.6 (2)C8—C9—C14—O42.6 (3)
C15—O2—C10—C110.4 (3)C10—C9—C14—C131.8 (3)
C15—O2—C10—C9178.7 (2)C8—C9—C14—C13178.6 (2)
C14—C9—C10—O2178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i1.00 (2)2.45 (3)3.369 (2)157.8 (17)
C7—H11B···O40.97 (3)2.31 (2)2.835 (2)113.1 (18)
C17—H17B···O4ii0.99 (2)2.46 (2)3.337 (3)148 (2)
Symmetry codes: (i) x+9/4, y+9/4, z+1/4; (ii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC17H17NO4
Mr299.32
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)31.563 (2), 44.508 (3), 3.9504 (3)
V3)5549.6 (7)
Z16
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.58 × 0.14 × 0.04
Data collection
DiffractometerBruker APEXII CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.943, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
31465, 2309, 1908
Rint0.100
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.105, 1.09
No. of reflections2309
No. of parameters267
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i1.00 (2)2.45 (3)3.369 (2)157.8 (17)
C7—H11B···O40.97 (3)2.31 (2)2.835 (2)113.1 (18)
C17—H17B···O4ii0.99 (2)2.46 (2)3.337 (3)148 (2)
Symmetry codes: (i) x+9/4, y+9/4, z+1/4; (ii) x+1/2, y, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Thailand Research Fund (grant No. RSA5280033) and Prince of Songkla University for financial support. They also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. Mr Teerasak Anantapong, Department of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, is acknowledged for the bacterial assay.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, N. (2010). Bioorg. Med. Chem. 18, 1364–1370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o2406–o2407.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010). Acta Cryst. E66, o2559–o2560.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGacche, R. N., Dhole, N. A., Kamble, S. G. & Bandgar, B. P. (2008). J. Enzyme Inhib. Med. Chem. 23, 28–31.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGo, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationIsomoto, H., Furusu, H., Ohnita, K., Wen, C. Y., Inoue, K. & Kohno, S. (2005). World J. Gastroenterol. 11, 1629–1633.  PubMed CAS Google Scholar
First citationJung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Chem. Pap., doi: 10.2478/s11696-011-0084-4.  Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds