organic compounds
4,4′-Bipyridine–3-(thiophen-3-yl)acrylic acid (1/2)
aDepartment of Chemistry, University of Delhi, North Campus, Delhi, India
*Correspondence e-mail: fhussain@chemistry.du.ac.in, msathi@chemistry.du.ac.in
In the title 1/2 adduct, C10H8N2·2C7H6O2S, the dihedral angle between the pyridine rings is 18.41 (11)°. In the thiopheneacrylic acid molecules, the dihedral angles between the respective thiophene and acrylic acid units are 5.52 (17)° and 23.92 (9)°. In the crystal, the components are linked via O—H⋯N hydrogen-bonding interactions, forming units of two 3-thiopheneacrylic acid molecules and one 4,4′-bipyridine molecule.
Related literature
For the synthesis and in vitro antibacterial activity of oxazolidines, see: Srivastava et al. (2008). For crystal engineering and polymorph architectures, see: Friščić & MacGillivray (2009); Eccles et al. (2010). For the supramolecular construction of molecular ladders, see: Gao et al. (2004); MacGillivray et al. (2008); Friščić & MacGillivray (2005). For C—H⋯O hydrogen bonds in supramolecular design, see: Desiraju (1996) and for C—H⋯π interactions in crystal engineering, see: Desiraju (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536811035823/si2368sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811035823/si2368Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811035823/si2368Isup3.cml
All starting materials and products were found to be stable towards moisture and air. Starting materials such as 4,4'-bipyridyl (bpy) and 3-thiopheneacrylic acid (taa) were procured from commercial sources and used as received. Commercial grade solvents e.g. methanol was used as received further purification. The mixture of 1:2 ratio of 4,4'-bipyridyl (100.1 mg, 0.6409 mmol) and 3-thiopheneacrylic acid (197.8 mg, 1.2828 mmol) in methanol was stirred for 3 h at room temperature. The clear solution was obtained by filtration and that solution was kept at room temperature for several days. The white colored crystals were obtained. Yield: 83% (248.3 mg, 0.5344 mmol). Anal. Calcd for C24H20N2O4S2: C, 62.05; H, 4.34; N, 6.03; S, 13.8. Found: C, 60.93; H, 4.13; N, 5.87; S, 12.93. 1H NMR (CDCl3,): 8.72 (dd, J = 4.7 Hz, 4H, Hα, bpy), 7.71 (d, J = 1.54 Hz, 2H, H4, taa), 7.53 (dd, J = 4.7 Hz, 4H, Hβ, bpy), 7.47 (dd, J = 1.32 Hz, 2H, H1, taa), 7.29 (m, 4H, H2,3, taa), 6.20 (d, J = 15.44 Hz, 2H, H5, taa).
All H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C).
Supramolecular synthons that are based upon hydrogen bonds represent a prototypal tool for crystal engineering (Desiraju, 1996; 2002). Supramolecular heterosynthons formed from pyridine/amide and
have previously been exploited for liquid crystalline materials, two-dimensional beta networks, two-dimensional corrugated sheets and ternary supramolecules (MacGillivray et al., 2008; Gao et al., 2004; Friščić & MacGillivray, 2005; 2009). Recently, pharmaceutical molecules such as aspirin, rac-ibuprofen, and rac-flurbiprofen form heterosynthons with ditopic pyridine donors. Herein, we report 1 synthesized and characterized by FT—IR, UV-Vis, 1H-NMR spectroscopy, EA, DSC, and TGA.The π-π stacking interactions (Fig. 2). The Cg1–Cg2ii distance (between the N1,C8-C12 and N2,C13-C17 4,4'-bipyridine moieties) and the dihedral angle between pyridine planes α are 4.1411 (13)Å and 18.4 (1)°, respectively. [Symmetry code ii: (-1+x,y,z).
1 of the 2:1 adduct of 3-thiopheneacrylic acid with 4,4'-bipyridine was obtained by layering methanolic solution of 4,4'-bipyridyl to the methanolic solution of 3-thiopheneacrylic acid at room temperature. Each 3-thiopheneacrylic acid molecule forms a moderate intermolecular O—H···N bond with pyridine (Table 1). The 4,4'-bipyridine molecule in the adduct is non-planar with the two pyridine rings forming a dihedral angle of 18.41 (11)°. The two thiophene and the bipyridine are not coplanar and the dihedral angles between the S1 thiophene/N1 pyridine and S2 thiophene/ N2 pyridine are 30.14 (11)° and 47.64 (7)°, respectively. The heterosynthon extends to one-dimensional latterane like sheets held together by moderateFor the synthesis and in vitro antibacterial activity of oxazolidines, see: Srivastava et al. (2008). For the crystal engineering π interactions in crystal engineering, see: Desiraju (2002).
and polymorph architectures, see: Friščić & MacGillivray (2009); Eccles et al. (2010). For the supramolecular construction of molecular ladders, see: Gao et al. (2004); MacGillivray et al. (2008); Friščić & MacGillivray (2005). For C—H···O hydrogen bonds in supramolecular design, see: Desiraju (1996) and for C—H···Data collection: CrysAlis PRO (Oxford Diffraction 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).C10H8N2·2C7H6O2S | Z = 2 |
Mr = 464.54 | F(000) = 484 |
Triclinic, P1 | Dx = 1.388 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 7.3454 (5) Å | Cell parameters from 3251 reflections |
b = 10.7319 (8) Å | θ = 3.1–72.9° |
c = 15.0196 (11) Å | µ = 2.46 mm−1 |
α = 102.518 (6)° | T = 293 K |
β = 103.648 (6)° | Plate, white |
γ = 94.892 (6)° | 0.37 × 0.15 × 0.10 mm |
V = 1111.54 (14) Å3 |
Xcalibur, Sapphire3 diffractometer | 4344 independent reflections |
Radiation source: fine-focus sealed tube | 3498 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 15.9853 pixels mm-1 | θmax = 72.1°, θmin = 3.1° |
ω scans | h = −8→9 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −13→12 |
Tmin = 0.692, Tmax = 1.000 | l = −18→13 |
9038 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0658P)2 + 0.2003P] where P = (Fo2 + 2Fc2)/3 |
4344 reflections | (Δ/σ)max < 0.001 |
291 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C10H8N2·2C7H6O2S | γ = 94.892 (6)° |
Mr = 464.54 | V = 1111.54 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.3454 (5) Å | Cu Kα radiation |
b = 10.7319 (8) Å | µ = 2.46 mm−1 |
c = 15.0196 (11) Å | T = 293 K |
α = 102.518 (6)° | 0.37 × 0.15 × 0.10 mm |
β = 103.648 (6)° |
Xcalibur, Sapphire3 diffractometer | 4344 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 3498 reflections with I > 2σ(I) |
Tmin = 0.692, Tmax = 1.000 | Rint = 0.027 |
9038 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.24 e Å−3 |
4344 reflections | Δρmin = −0.32 e Å−3 |
291 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0548 (3) | 0.0002 (2) | −0.17354 (15) | 0.0547 (5) | |
H1 | 0.0689 | −0.0528 | −0.1316 | 0.066* | |
C2 | 0.1988 (3) | 0.08388 (19) | −0.17968 (13) | 0.0439 (4) | |
C3 | 0.1338 (3) | 0.1521 (2) | −0.25031 (15) | 0.0542 (5) | |
H3 | 0.2120 | 0.2136 | −0.2645 | 0.065* | |
C4 | −0.0525 (3) | 0.1183 (2) | −0.29432 (16) | 0.0611 (6) | |
H4 | −0.1172 | 0.1531 | −0.3420 | 0.073* | |
C5 | 0.3899 (3) | 0.09887 (19) | −0.12014 (13) | 0.0447 (4) | |
H5 | 0.4097 | 0.0504 | −0.0753 | 0.054* | |
C6 | 0.5392 (3) | 0.1746 (2) | −0.12320 (14) | 0.0479 (4) | |
H6 | 0.5262 | 0.2230 | −0.1681 | 0.058* | |
C7 | 0.7262 (3) | 0.18356 (19) | −0.05652 (14) | 0.0467 (4) | |
C8 | 0.2956 (3) | 0.2219 (2) | 0.08555 (15) | 0.0559 (5) | |
H8 | 0.2325 | 0.1394 | 0.0762 | 0.067* | |
C9 | 0.4852 (3) | 0.2485 (2) | 0.13424 (15) | 0.0508 (5) | |
H9 | 0.5459 | 0.1850 | 0.1574 | 0.061* | |
C10 | 0.5840 (3) | 0.36980 (18) | 0.14838 (13) | 0.0429 (4) | |
C11 | 0.4821 (3) | 0.4604 (2) | 0.11311 (16) | 0.0571 (5) | |
H11 | 0.5412 | 0.5437 | 0.1213 | 0.069* | |
C12 | 0.2929 (3) | 0.4253 (2) | 0.06605 (17) | 0.0610 (6) | |
H12 | 0.2273 | 0.4872 | 0.0432 | 0.073* | |
C13 | 0.7889 (3) | 0.40367 (18) | 0.19703 (13) | 0.0430 (4) | |
C14 | 0.8822 (3) | 0.3308 (2) | 0.25474 (15) | 0.0537 (5) | |
H14 | 0.8163 | 0.2593 | 0.2646 | 0.064* | |
C15 | 1.0737 (3) | 0.3656 (2) | 0.29725 (16) | 0.0575 (5) | |
H15 | 1.1340 | 0.3149 | 0.3347 | 0.069* | |
C16 | 1.0874 (3) | 0.5381 (2) | 0.23340 (17) | 0.0595 (6) | |
H16 | 1.1565 | 0.6104 | 0.2263 | 0.071* | |
C17 | 0.8972 (3) | 0.5096 (2) | 0.18718 (16) | 0.0556 (5) | |
H17 | 0.8417 | 0.5614 | 0.1494 | 0.067* | |
C18 | 1.2549 (3) | 0.6734 (2) | 0.52895 (16) | 0.0584 (5) | |
H18 | 1.2472 | 0.5856 | 0.5026 | 0.070* | |
C19 | 1.1052 (3) | 0.7401 (2) | 0.51574 (13) | 0.0475 (4) | |
C20 | 1.1585 (3) | 0.8722 (2) | 0.56515 (17) | 0.0614 (6) | |
H20 | 1.0746 | 0.9324 | 0.5652 | 0.074* | |
C21 | 1.3461 (3) | 0.9011 (2) | 0.61250 (18) | 0.0660 (6) | |
H21 | 1.4053 | 0.9830 | 0.6477 | 0.079* | |
C22 | 0.9150 (3) | 0.6807 (2) | 0.46025 (13) | 0.0490 (5) | |
H22 | 0.8956 | 0.5918 | 0.4362 | 0.059* | |
C23 | 0.7683 (3) | 0.7418 (2) | 0.44109 (15) | 0.0548 (5) | |
H23 | 0.7857 | 0.8303 | 0.4668 | 0.066* | |
C24 | 0.5778 (3) | 0.6803 (2) | 0.38173 (15) | 0.0549 (5) | |
O1 | 0.7640 (2) | 0.11251 (16) | −0.00462 (11) | 0.0637 (4) | |
O2 | 0.8489 (2) | 0.27837 (16) | −0.05983 (12) | 0.0645 (4) | |
H2 | 0.9510 | 0.2794 | −0.0227 | 0.097* | |
O3 | 0.4670 (2) | 0.74129 (19) | 0.34314 (14) | 0.0809 (6) | |
O4 | 0.5423 (2) | 0.55602 (16) | 0.37539 (13) | 0.0650 (4) | |
H4A | 0.4325 | 0.5289 | 0.3450 | 0.098* | |
S1 | −0.15372 (8) | 0.00362 (7) | −0.25123 (4) | 0.0671 (2) | |
S2 | 1.45740 (8) | 0.76787 (7) | 0.59882 (5) | 0.0697 (2) | |
N1 | 0.1992 (2) | 0.30804 (19) | 0.05151 (13) | 0.0568 (5) | |
N2 | 1.1767 (2) | 0.46765 (18) | 0.28753 (13) | 0.0552 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0390 (10) | 0.0657 (13) | 0.0557 (12) | 0.0000 (9) | 0.0023 (8) | 0.0207 (10) |
C2 | 0.0382 (10) | 0.0472 (10) | 0.0429 (9) | 0.0050 (8) | 0.0058 (7) | 0.0098 (8) |
C3 | 0.0474 (11) | 0.0583 (12) | 0.0553 (12) | 0.0055 (9) | 0.0045 (9) | 0.0213 (10) |
C4 | 0.0512 (12) | 0.0715 (14) | 0.0548 (12) | 0.0142 (11) | −0.0025 (9) | 0.0193 (11) |
C5 | 0.0378 (10) | 0.0497 (10) | 0.0448 (10) | 0.0062 (8) | 0.0048 (8) | 0.0147 (8) |
C6 | 0.0390 (10) | 0.0518 (11) | 0.0511 (11) | 0.0052 (8) | 0.0018 (8) | 0.0200 (9) |
C7 | 0.0358 (9) | 0.0512 (11) | 0.0511 (10) | 0.0048 (8) | 0.0049 (8) | 0.0163 (9) |
C8 | 0.0430 (11) | 0.0567 (12) | 0.0597 (12) | −0.0069 (9) | 0.0073 (9) | 0.0086 (10) |
C9 | 0.0421 (10) | 0.0491 (11) | 0.0569 (11) | 0.0014 (8) | 0.0065 (9) | 0.0130 (9) |
C10 | 0.0351 (9) | 0.0489 (10) | 0.0400 (9) | 0.0028 (8) | 0.0049 (7) | 0.0074 (8) |
C11 | 0.0437 (11) | 0.0502 (11) | 0.0701 (13) | 0.0020 (9) | −0.0004 (10) | 0.0178 (10) |
C12 | 0.0426 (11) | 0.0653 (14) | 0.0701 (14) | 0.0101 (10) | 0.0000 (10) | 0.0208 (11) |
C13 | 0.0338 (9) | 0.0472 (10) | 0.0422 (9) | 0.0030 (7) | 0.0039 (7) | 0.0065 (8) |
C14 | 0.0396 (10) | 0.0610 (12) | 0.0590 (12) | 0.0026 (9) | 0.0047 (9) | 0.0224 (10) |
C15 | 0.0415 (11) | 0.0663 (14) | 0.0609 (13) | 0.0078 (10) | 0.0005 (9) | 0.0220 (11) |
C16 | 0.0406 (11) | 0.0591 (13) | 0.0695 (14) | −0.0079 (9) | 0.0010 (10) | 0.0165 (11) |
C17 | 0.0422 (11) | 0.0544 (12) | 0.0629 (13) | −0.0014 (9) | −0.0013 (9) | 0.0186 (10) |
C18 | 0.0406 (11) | 0.0641 (13) | 0.0612 (13) | 0.0030 (9) | 0.0058 (9) | 0.0059 (10) |
C19 | 0.0372 (10) | 0.0588 (12) | 0.0421 (9) | 0.0004 (8) | 0.0040 (7) | 0.0121 (9) |
C20 | 0.0439 (12) | 0.0593 (13) | 0.0700 (14) | 0.0058 (10) | −0.0008 (10) | 0.0101 (11) |
C21 | 0.0461 (12) | 0.0624 (14) | 0.0716 (15) | −0.0046 (10) | −0.0014 (10) | 0.0021 (11) |
C22 | 0.0390 (10) | 0.0576 (12) | 0.0453 (10) | −0.0037 (9) | 0.0036 (8) | 0.0140 (9) |
C23 | 0.0406 (11) | 0.0612 (13) | 0.0559 (12) | −0.0025 (9) | 0.0000 (9) | 0.0182 (10) |
C24 | 0.0371 (10) | 0.0682 (14) | 0.0571 (12) | −0.0024 (9) | 0.0027 (9) | 0.0248 (10) |
O1 | 0.0460 (8) | 0.0779 (11) | 0.0686 (10) | 0.0059 (7) | −0.0012 (7) | 0.0399 (9) |
O2 | 0.0389 (8) | 0.0669 (10) | 0.0806 (11) | −0.0046 (7) | −0.0068 (7) | 0.0324 (8) |
O3 | 0.0477 (9) | 0.0871 (12) | 0.0997 (13) | −0.0059 (9) | −0.0160 (9) | 0.0502 (11) |
O4 | 0.0359 (8) | 0.0668 (10) | 0.0792 (11) | −0.0008 (7) | −0.0064 (7) | 0.0169 (8) |
S1 | 0.0359 (3) | 0.0853 (4) | 0.0685 (4) | −0.0024 (3) | −0.0014 (2) | 0.0156 (3) |
S2 | 0.0343 (3) | 0.0880 (5) | 0.0729 (4) | 0.0059 (3) | −0.0003 (2) | 0.0073 (3) |
N1 | 0.0350 (9) | 0.0705 (12) | 0.0563 (10) | −0.0002 (8) | 0.0024 (7) | 0.0110 (9) |
N2 | 0.0359 (9) | 0.0640 (11) | 0.0558 (10) | 0.0012 (8) | 0.0006 (7) | 0.0089 (8) |
C1—C2 | 1.361 (3) | C13—C14 | 1.392 (3) |
C1—S1 | 1.701 (2) | C14—C15 | 1.382 (3) |
C1—H1 | 0.9300 | C14—H14 | 0.9300 |
C2—C3 | 1.430 (3) | C15—N2 | 1.332 (3) |
C2—C5 | 1.451 (3) | C15—H15 | 0.9300 |
C3—C4 | 1.351 (3) | C16—N2 | 1.328 (3) |
C3—H3 | 0.9300 | C16—C17 | 1.380 (3) |
C4—S1 | 1.703 (3) | C16—H16 | 0.9300 |
C4—H4 | 0.9300 | C17—H17 | 0.9300 |
C5—C6 | 1.324 (3) | C18—C19 | 1.362 (3) |
C5—H5 | 0.9300 | C18—S2 | 1.699 (2) |
C6—C7 | 1.478 (3) | C18—H18 | 0.9300 |
C6—H6 | 0.9300 | C19—C20 | 1.423 (3) |
C7—O1 | 1.207 (2) | C19—C22 | 1.456 (3) |
C7—O2 | 1.318 (2) | C20—C21 | 1.367 (3) |
C8—N1 | 1.328 (3) | C20—H20 | 0.9300 |
C8—C9 | 1.385 (3) | C21—S2 | 1.705 (3) |
C8—H8 | 0.9300 | C21—H21 | 0.9300 |
C9—C10 | 1.383 (3) | C22—C23 | 1.315 (3) |
C9—H9 | 0.9300 | C22—H22 | 0.9300 |
C10—C11 | 1.395 (3) | C23—C24 | 1.479 (3) |
C10—C13 | 1.485 (2) | C23—H23 | 0.9300 |
C11—C12 | 1.380 (3) | C24—O3 | 1.208 (3) |
C11—H11 | 0.9300 | C24—O4 | 1.315 (3) |
C12—N1 | 1.330 (3) | O2—H2 | 0.8200 |
C12—H12 | 0.9300 | O4—H4A | 0.8200 |
C13—C17 | 1.386 (3) | ||
C2—C1—S1 | 112.31 (16) | C15—C14—C13 | 119.4 (2) |
C2—C1—H1 | 123.8 | C15—C14—H14 | 120.3 |
S1—C1—H1 | 123.8 | C13—C14—H14 | 120.3 |
C1—C2—C3 | 110.97 (18) | N2—C15—C14 | 123.6 (2) |
C1—C2—C5 | 122.51 (18) | N2—C15—H15 | 118.2 |
C3—C2—C5 | 126.52 (18) | C14—C15—H15 | 118.2 |
C4—C3—C2 | 113.3 (2) | N2—C16—C17 | 123.3 (2) |
C4—C3—H3 | 123.4 | N2—C16—H16 | 118.3 |
C2—C3—H3 | 123.4 | C17—C16—H16 | 118.3 |
C3—C4—S1 | 111.33 (17) | C16—C17—C13 | 120.1 (2) |
C3—C4—H4 | 124.3 | C16—C17—H17 | 120.0 |
S1—C4—H4 | 124.3 | C13—C17—H17 | 120.0 |
C6—C5—C2 | 126.60 (18) | C19—C18—S2 | 112.62 (18) |
C6—C5—H5 | 116.7 | C19—C18—H18 | 123.7 |
C2—C5—H5 | 116.7 | S2—C18—H18 | 123.7 |
C5—C6—C7 | 121.21 (18) | C18—C19—C20 | 111.27 (19) |
C5—C6—H6 | 119.4 | C18—C19—C22 | 123.4 (2) |
C7—C6—H6 | 119.4 | C20—C19—C22 | 125.35 (19) |
O1—C7—O2 | 123.23 (18) | C21—C20—C19 | 112.8 (2) |
O1—C7—C6 | 124.35 (18) | C21—C20—H20 | 123.6 |
O2—C7—C6 | 112.42 (17) | C19—C20—H20 | 123.6 |
N1—C8—C9 | 123.5 (2) | C20—C21—S2 | 111.29 (18) |
N1—C8—H8 | 118.3 | C20—C21—H21 | 124.4 |
C9—C8—H8 | 118.3 | S2—C21—H21 | 124.4 |
C10—C9—C8 | 119.7 (2) | C23—C22—C19 | 125.7 (2) |
C10—C9—H9 | 120.1 | C23—C22—H22 | 117.1 |
C8—C9—H9 | 120.1 | C19—C22—H22 | 117.1 |
C9—C10—C11 | 116.67 (18) | C22—C23—C24 | 124.9 (2) |
C9—C10—C13 | 122.63 (18) | C22—C23—H23 | 117.6 |
C11—C10—C13 | 120.69 (18) | C24—C23—H23 | 117.6 |
C12—C11—C10 | 119.5 (2) | O3—C24—O4 | 124.2 (2) |
C12—C11—H11 | 120.3 | O3—C24—C23 | 121.6 (2) |
C10—C11—H11 | 120.2 | O4—C24—C23 | 114.25 (18) |
N1—C12—C11 | 123.6 (2) | C7—O2—H2 | 109.5 |
N1—C12—H12 | 118.2 | C24—O4—H4A | 109.5 |
C11—C12—H12 | 118.2 | C1—S1—C4 | 92.12 (11) |
C17—C13—C14 | 116.54 (18) | C18—S2—C21 | 91.96 (11) |
C17—C13—C10 | 121.64 (18) | C8—N1—C12 | 117.01 (18) |
C14—C13—C10 | 121.82 (18) | C16—N2—C15 | 117.01 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1i | 0.82 | 1.86 | 2.668 (2) | 168 |
O4—H4A···N2ii | 0.82 | 1.87 | 2.684 (2) | 174 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C10H8N2·2C7H6O2S |
Mr | 464.54 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.3454 (5), 10.7319 (8), 15.0196 (11) |
α, β, γ (°) | 102.518 (6), 103.648 (6), 94.892 (6) |
V (Å3) | 1111.54 (14) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 2.46 |
Crystal size (mm) | 0.37 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Xcalibur, Sapphire3 |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.692, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9038, 4344, 3498 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.132, 1.05 |
No. of reflections | 4344 |
No. of parameters | 291 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.32 |
Computer programs: CrysAlis PRO (Oxford Diffraction 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1i | 0.82 | 1.86 | 2.668 (2) | 168.4 |
O4—H4A···N2ii | 0.82 | 1.87 | 2.684 (2) | 174.1 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
Acknowledgements
The authors are grateful to the University Sophisticated Instrument Center (USIC), University of Delhi, Delhi, India, for providing the single-crystal X-ray diffractometer facility. They also thank the Department of Science & Technology for financial support.
References
Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449. CrossRef CAS PubMed Web of Science Google Scholar
Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573. Web of Science CrossRef PubMed CAS Google Scholar
Eccles, K. S., Elcoate, C. J., Stokes, S. P., Maguire, A. R. & Lawrence, S. E. (2010). Cryst. Growth Des. 10, 4243–4245. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Friščić, T. & MacGillivray, L. R. (2005). Supramol. Chem. 17, 47–51. Google Scholar
Friščić, T. & MacGillivray, L. R. (2009). Chem. Commun. pp. 773–775. Google Scholar
Gao, X., Friščić, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232–236. Web of Science CSD CrossRef CAS Google Scholar
MacGillivray, L. R., Papaefstathiou, G. S., Friščić, T., Hamilton, T. D., Bučar, D. K., Chu, Q., Varshney, D. B. & Georgiev, I. G. (2008). Acc. Chem. Res. 41, 280–291. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srivastava, B. K., Jain, M. R., Solanki, M., Soni, R., Valani, D., Gupta, S., Mishra, B., Takale, V., Kapadnis, P., Patel, H., Pandya, P., Patel, J. Z. & Patel, P. R. (2008). Eur. J. Med. Chem. pp. 683–693. Web of Science CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Supramolecular synthons that are based upon hydrogen bonds represent a prototypal tool for crystal engineering (Desiraju, 1996; 2002). Supramolecular heterosynthons formed from pyridine/amide and carboxylic acids have previously been exploited for liquid crystalline materials, two-dimensional beta networks, two-dimensional corrugated sheets and ternary supramolecules (MacGillivray et al., 2008; Gao et al., 2004; Friščić & MacGillivray, 2005; 2009). Recently, pharmaceutical molecules such as aspirin, rac-ibuprofen, and rac-flurbiprofen form heterosynthons with ditopic pyridine donors. Herein, we report co-crystal 1 synthesized and characterized by FT—IR, UV-Vis, 1H-NMR spectroscopy, EA, DSC, and TGA.
The co-crystal 1 of the 2:1 adduct of 3-thiopheneacrylic acid with 4,4'-bipyridine was obtained by layering methanolic solution of 4,4'-bipyridyl to the methanolic solution of 3-thiopheneacrylic acid at room temperature. Each 3-thiopheneacrylic acid molecule forms a moderate intermolecular O—H···N bond with pyridine (Table 1). The 4,4'-bipyridine molecule in the adduct is non-planar with the two pyridine rings forming a dihedral angle of 18.41 (11)°. The two thiophene and the bipyridine are not coplanar and the dihedral angles between the S1 thiophene/N1 pyridine and S2 thiophene/ N2 pyridine are 30.14 (11)° and 47.64 (7)°, respectively. The heterosynthon extends to one-dimensional latterane like sheets held together by moderate π-π stacking interactions (Fig. 2). The Cg1–Cg2ii distance (between the N1,C8-C12 and N2,C13-C17 4,4'-bipyridine moieties) and the dihedral angle between pyridine planes α are 4.1411 (13)Å and 18.4 (1)°, respectively. [Symmetry code ii: (-1+x,y,z).