metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[iron(II)-bis­­{μ-5-carb­­oxy-2-[(1H-1,2,4-triazol-1-yl)meth­yl]-1H-imidazole-4-carboxyl­ato}]

aDepartment of Quality Examination and Management, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou, Henan, 450011, People's Republic of China, and bDepartment of Biological Engineering, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou, Henan, 450011, People's Republic of China
*Correspondence e-mail: tongyan4200@163.com

(Received 4 July 2011; accepted 4 September 2011; online 30 September 2011)

In the title coordination polymer, [Fe(C8H6N5O4)2]n {or [FeL2]n,where HL = 2-[(1H-1,2,4-triazol-1-yl) meth­yl]-1H-imidazole-4,5-dicarb­oxy­lic acid)}, the FeII ion, located on an inversion centre, is six-coordinated by two O atoms and four N atoms from two L ligands in a distorted octa­hedral geometry [Fe—O = 2.1452 (13), Fe—N = 2.1316 (14) and 2.2484 (15) Å]. There is an intra­molecular O—H⋯O hydrogen bond in each L ligand. Being an effective tridentate bridging ligand, the deprotonated L anions link two FeII atoms, yielding a chain-like polymer propagating along [100]. In the crystal, these polymer chains are linked via N—H⋯N hydrogen bonds, forming a two-dimensional network.

Related literature

For the design and self-assembly of metal-organic coordination polymers (MOCP's), see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067-1068.]); Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M. & Yaghi, O. M. (2001). Acc. Chem. Res. 13, 319-330.]). For related structures, see: Wang et al. (2008[Wang, S. A., Zhang, L. R., Li, G. H., Huo, Q. S. & Liu, Y. L. (2008). CrystEngComm, 10, 1662-1666.]); Meng et al. (2009[Meng, C. X., Li, D. S., Zhao, J., Fu, F., Zhang, X. N., Tang, L. & Wang, Y. Y. (2009). Inorg. Chem. Commun. 12, 793-795.]); Zhang, Li et al. (2010[Zhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. & Zhu, Y. (2010). Inorg. Chem. 49, 3776-3788.]); Zhang, Ma et al. (2010[Zhang, L. P., Ma, J. F., Yang, J., Pang, Y. Y. & Ma, J. C. (2010). Inorg. Chem. 49, 1535-1550.]); Feng et al. 2010[Feng, X., Zhao, J. S., Liu, B., Wang, L. Y., Zhang, G., Wang, J. G., Shi, X. G. & Liu, Y. Y. (2010). Cryst. Growth Des. 10, 1399-1408.]); Li et al. (2010[Li, X., Wu, B. L., Wang, R. Y., Zhang, H. Y., Niu, C. Y., Niu, Y. Y. & Hou, H. H. (2010). Inorg. Chem. 49, 2600-2613.]); Chen et al. (2010[Chen, L. Z., Huang, Y., Xiong, R. G. & Hu, H. W. (2010). J. Mol. Struct. 963, 16-21.]); Jing et al. (2010[Jing, X. M., Zhang, L. R., Ma, T. L., Li, G. H., Yu, Y., Huo, Q. S., Eddaoudi, M. & Liu, Y. L. (2010). Cryst. Growth Des. 10, 492-494.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C8H6N5O4)2]

  • Mr = 528.21

  • Monoclinic, P 21 /c

  • a = 7.1790 (14) Å

  • b = 13.490 (3) Å

  • c = 10.129 (2) Å

  • β = 99.11 (3)°

  • V = 968.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.784, Tmax = 0.919

  • 10179 measured reflections

  • 1900 independent reflections

  • 1847 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.08

  • 1900 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.82 1.70 2.5175 (19) 179
N5—H5A⋯N2i 0.86 2.01 2.850 (2) 166
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and self-assembly of metal-organic coordination polymers (MOCP's) has received much attention since the early work of (Batten & Robson, 1998) and the group of Yaghi (Eddaoudi et al., 2001). The selection of suitable bi- or multi-dentate bridging ligands plays a crucial role in the construction of MOCP's, through tuning their structural dimensionalities and stereochemistry with different coordination sites. In this work, the semi-rigid ligand, 2-[(1H-1,2,4-triazol-1-yl) methyl]-1H-imidazole-4,5-dicarboxylic acid (HL), was synthesized. Similar ligands, which differ only in the groups on the 2-position of the imidazole ring, such as 2-ethyl-1H-imidazole-4,5-dicarboxylic acid, 2-propyl-1H-imidazole-4,5-dicarboxylic acid (Wang et al., 2008; Meng et al., 2009; Zhang, Li et al., 2010; Zhang, Ma et al., 2010; Feng, et al., 2010), and 2-pyridinyl-1H-imidazole -4,5-dicarboxylic acid (Li et al., 2010; Chen et al., 2010; Jing et al., 2010), have been studied extensively. We report herein on the crystal structure of the title one-dimensional coordination polymer.

As shown in Fig. 1, the asymmetric unit of the title coordination polymer contains half a FeII ion, located on an inversion centre, and a deprotonated L- ligand. The local coordination geometry around the FeII centre can be described as distorted octahedral. The equatorial plane is formed by two imidazole N atoms (N4 and N4d) and two carboxylate O atoms (O1 and O1d) from two L- ligands, while the axial positions are occupied by two triazolate N atoms (N3b and N3c). The cis bond angles around each FeII centre are in the range 78.11 (5)° to 101.89 (5)°.

Two FeII centers are linked together by two identical L- ligands through triazolate N-donors, imidazole N-donors and carboxylate O-donors into a 14-membered box-like macrocycle with the Fe1···Fe1iiseparation being 7.179 Å. The symmetrically related triazolyl rings are parallel to one another, and the shortest distance between atoms is 3.662 Å, indicating a weak π-π interaction. Being an effective tridentate bridging ligand, the deprotonated L- anions link two FeII centers to yield a one-dimensional chain-like polymer propagating along [100].

In the crystal the one-dimensional polymer chains are linked by classical N-H···N hydrogen bonds, involving the uncoordinated triazolate N atoms and the imidazole N atoms, resulting in the formation of a two-dimensional supramolecular network propagating in the bc-plane (Table 1 and Fig. 2).

Related literature top

For the design and self-assembly of metal-organic coordination polymers (MOCP's), see: Batten & Robson (1998); Eddaoudi et al. (2001). For related structures, see: Wang et al. (2008); Meng et al. (2009); Zhang, Li et al. (2010); Zhang, Ma et al. (2010); Feng et al. 2010); Li et al. (2010); Chen et al. (2010); Jing et al. (2010).

Experimental top

The title coordination polymer was synthesized by adding 1.0 mmol of 2-[(1H-1,2,4-triazol-1-yl) methyl]-1H-imidazole-4,5-dicarboxylic acid, (HL), to 5 mL water. Then FeSO4(0.5 mmol) was added to the above solution, and the mixture was heated to 393 K for 3 days, and then cooled to room temperature. Yellow crystals, suitable for X-ray analysis, were obtained in 46% yield. Anal. Calcd (%) for C16H12FeN10O8: C, 36.38; H, 2.29; N, 26.52. Found (%): C, 36.52; H, 2.45; N, 26.36.

Refinement top

The H atoms were included in calculated positions and treated as riding atoms: C–H = 0.93 Å for the triazole and 0.97 Å for the methylene H atoms with Uiso(H) = 1.2Ueq(C); O–H = 0.82 Å and N–H = 0.86 Å, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N).

Structure description top

The design and self-assembly of metal-organic coordination polymers (MOCP's) has received much attention since the early work of (Batten & Robson, 1998) and the group of Yaghi (Eddaoudi et al., 2001). The selection of suitable bi- or multi-dentate bridging ligands plays a crucial role in the construction of MOCP's, through tuning their structural dimensionalities and stereochemistry with different coordination sites. In this work, the semi-rigid ligand, 2-[(1H-1,2,4-triazol-1-yl) methyl]-1H-imidazole-4,5-dicarboxylic acid (HL), was synthesized. Similar ligands, which differ only in the groups on the 2-position of the imidazole ring, such as 2-ethyl-1H-imidazole-4,5-dicarboxylic acid, 2-propyl-1H-imidazole-4,5-dicarboxylic acid (Wang et al., 2008; Meng et al., 2009; Zhang, Li et al., 2010; Zhang, Ma et al., 2010; Feng, et al., 2010), and 2-pyridinyl-1H-imidazole -4,5-dicarboxylic acid (Li et al., 2010; Chen et al., 2010; Jing et al., 2010), have been studied extensively. We report herein on the crystal structure of the title one-dimensional coordination polymer.

As shown in Fig. 1, the asymmetric unit of the title coordination polymer contains half a FeII ion, located on an inversion centre, and a deprotonated L- ligand. The local coordination geometry around the FeII centre can be described as distorted octahedral. The equatorial plane is formed by two imidazole N atoms (N4 and N4d) and two carboxylate O atoms (O1 and O1d) from two L- ligands, while the axial positions are occupied by two triazolate N atoms (N3b and N3c). The cis bond angles around each FeII centre are in the range 78.11 (5)° to 101.89 (5)°.

Two FeII centers are linked together by two identical L- ligands through triazolate N-donors, imidazole N-donors and carboxylate O-donors into a 14-membered box-like macrocycle with the Fe1···Fe1iiseparation being 7.179 Å. The symmetrically related triazolyl rings are parallel to one another, and the shortest distance between atoms is 3.662 Å, indicating a weak π-π interaction. Being an effective tridentate bridging ligand, the deprotonated L- anions link two FeII centers to yield a one-dimensional chain-like polymer propagating along [100].

In the crystal the one-dimensional polymer chains are linked by classical N-H···N hydrogen bonds, involving the uncoordinated triazolate N atoms and the imidazole N atoms, resulting in the formation of a two-dimensional supramolecular network propagating in the bc-plane (Table 1 and Fig. 2).

For the design and self-assembly of metal-organic coordination polymers (MOCP's), see: Batten & Robson (1998); Eddaoudi et al. (2001). For related structures, see: Wang et al. (2008); Meng et al. (2009); Zhang, Li et al. (2010); Zhang, Ma et al. (2010); Feng et al. 2010); Li et al. (2010); Chen et al. (2010); Jing et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title coordination polymer, showing 30% probability displacement ellipsoids and the atom-numbering [symmetry codes: (a) = -1+x, y, z; (b) = 1+x, y, z; (c) = -1-x, -y, -z; (d) = -x, -y, -z].
[Figure 2] Fig. 2. A view perpendicular to the two-dimensional network structure of the title polymer, formed via N-H···N hydrogen bonds (dashed lines; see Table 1 for details).
catena-Poly[iron(II)-bis{µ-5-carboxy-2-[(1H-1,2,4-triazol-1- yl)methyl]-1H-imidazole-4-carboxylato}] top
Crystal data top
[Fe(C8H6N5O4)2]F(000) = 536
Mr = 528.21Dx = 1.811 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3321 reflections
a = 7.1790 (14) Åθ = 2.0–31.1°
b = 13.490 (3) ŵ = 0.85 mm1
c = 10.129 (2) ÅT = 293 K
β = 99.11 (3)°Prism, yellow
V = 968.6 (3) Å30.30 × 0.15 × 0.10 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
1900 independent reflections
Radiation source: fine-focus sealed tube1847 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 88
Tmin = 0.784, Tmax = 0.919k = 1616
10179 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.4416P]
where P = (Fo2 + 2Fc2)/3
1900 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Fe(C8H6N5O4)2]V = 968.6 (3) Å3
Mr = 528.21Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.1790 (14) ŵ = 0.85 mm1
b = 13.490 (3) ÅT = 293 K
c = 10.129 (2) Å0.30 × 0.15 × 0.10 mm
β = 99.11 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
1900 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
1847 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.919Rint = 0.020
10179 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.08Δρmax = 0.25 e Å3
1900 reflectionsΔρmin = 0.25 e Å3
160 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.000000.000000.000000.0218 (1)
O10.06876 (16)0.10364 (9)0.14553 (12)0.0289 (3)
O20.00859 (18)0.15001 (9)0.35930 (13)0.0354 (4)
O30.19925 (18)0.08021 (10)0.56865 (12)0.0349 (4)
O40.38127 (18)0.05047 (10)0.62554 (12)0.0351 (4)
N10.51150 (18)0.17230 (10)0.08531 (13)0.0226 (4)
N20.5674 (2)0.23038 (11)0.01037 (16)0.0345 (5)
N30.75834 (19)0.09910 (10)0.02990 (14)0.0261 (4)
N40.16330 (18)0.05447 (9)0.17946 (13)0.0217 (4)
N50.32936 (18)0.11788 (10)0.36005 (13)0.0235 (4)
C10.7157 (3)0.18384 (14)0.0396 (2)0.0361 (6)
C20.6267 (2)0.09475 (12)0.10846 (16)0.0248 (5)
C30.3469 (2)0.20523 (12)0.14359 (18)0.0272 (5)
C40.2792 (2)0.12666 (11)0.22693 (16)0.0216 (4)
C50.1404 (2)0.00355 (11)0.28705 (16)0.0217 (5)
C60.0165 (2)0.09232 (12)0.26313 (16)0.0245 (4)
C70.2437 (2)0.03540 (12)0.40038 (16)0.0228 (5)
C80.2797 (2)0.00276 (12)0.54165 (17)0.0259 (5)
H1A0.785800.207100.102900.0430*
H2A0.616600.044900.170400.0300*
H3A0.137600.102500.500000.0520*
H3B0.380600.263600.198100.0330*
H3C0.246000.223400.072300.0330*
H5A0.402600.157300.410900.0280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0216 (2)0.0231 (2)0.0203 (2)0.0023 (1)0.0022 (1)0.0003 (1)
O10.0284 (6)0.0284 (6)0.0293 (6)0.0064 (5)0.0031 (5)0.0015 (5)
O20.0361 (7)0.0321 (7)0.0375 (7)0.0095 (5)0.0041 (5)0.0108 (5)
O30.0412 (7)0.0376 (7)0.0263 (6)0.0011 (6)0.0069 (5)0.0070 (5)
O40.0399 (7)0.0399 (7)0.0240 (6)0.0047 (6)0.0009 (5)0.0041 (5)
N10.0236 (7)0.0206 (7)0.0247 (7)0.0014 (5)0.0070 (5)0.0047 (5)
N20.0359 (8)0.0312 (8)0.0406 (9)0.0099 (7)0.0191 (7)0.0174 (7)
N30.0258 (7)0.0249 (7)0.0282 (7)0.0049 (5)0.0061 (6)0.0023 (6)
N40.0217 (6)0.0217 (7)0.0224 (6)0.0002 (5)0.0053 (5)0.0006 (5)
N50.0236 (7)0.0229 (7)0.0241 (7)0.0025 (5)0.0045 (5)0.0039 (5)
C10.0365 (10)0.0333 (10)0.0435 (11)0.0095 (8)0.0214 (8)0.0130 (8)
C20.0284 (8)0.0225 (8)0.0238 (8)0.0040 (6)0.0051 (6)0.0035 (6)
C30.0268 (8)0.0215 (8)0.0360 (9)0.0023 (6)0.0132 (7)0.0023 (7)
C40.0204 (7)0.0205 (7)0.0250 (8)0.0016 (6)0.0073 (6)0.0006 (6)
C50.0207 (8)0.0229 (8)0.0224 (8)0.0007 (6)0.0062 (6)0.0021 (6)
C60.0210 (7)0.0248 (8)0.0289 (8)0.0003 (6)0.0073 (6)0.0010 (6)
C70.0214 (8)0.0248 (8)0.0232 (8)0.0014 (6)0.0069 (6)0.0002 (6)
C80.0243 (8)0.0310 (9)0.0236 (8)0.0079 (6)0.0077 (7)0.0015 (6)
Geometric parameters (Å, º) top
Fe1—O12.1452 (13)N3—C21.330 (2)
Fe1—N42.1316 (14)N3—C11.352 (2)
Fe1—N3i2.2484 (15)N4—C41.321 (2)
Fe1—N3ii2.2484 (15)N4—C51.373 (2)
Fe1—O1iii2.1452 (13)N5—C71.365 (2)
Fe1—N4iii2.1316 (14)N5—C41.345 (2)
O1—C61.259 (2)N5—H5A0.8600
O2—C61.255 (2)C3—C41.484 (2)
O3—C81.308 (2)C5—C61.489 (2)
O4—C81.213 (2)C5—C71.369 (2)
O3—H3A0.8200C7—C81.480 (2)
N1—C21.331 (2)C1—H1A0.9300
N1—C31.471 (2)C2—H2A0.9300
N1—N21.356 (2)C3—H3B0.9700
N2—C11.310 (3)C3—H3C0.9700
O1—Fe1—N478.11 (6)C7—N5—H5A126.00
O1—Fe1—N3i91.64 (6)N2—C1—N3114.38 (18)
O1—Fe1—N3ii88.36 (6)N1—C2—N3109.91 (14)
O1—Fe1—O1iii180.00N1—C3—C4111.65 (13)
O1—Fe1—N4iii101.89 (6)N5—C4—C3125.00 (14)
N3i—Fe1—N490.69 (6)N4—C4—N5110.69 (14)
N3ii—Fe1—N489.31 (6)N4—C4—C3124.31 (15)
O1iii—Fe1—N4101.89 (6)N4—C5—C7109.26 (14)
N4—Fe1—N4iii180.00N4—C5—C6118.24 (14)
N3i—Fe1—N3ii180.00C6—C5—C7132.51 (15)
O1iii—Fe1—N3i88.36 (6)O1—C6—O2125.73 (15)
N3i—Fe1—N4iii89.31 (6)O1—C6—C5116.10 (14)
O1iii—Fe1—N3ii91.64 (6)O2—C6—C5118.15 (15)
N3ii—Fe1—N4iii90.69 (6)C5—C7—C8133.23 (15)
O1iii—Fe1—N4iii78.11 (6)N5—C7—C5105.78 (14)
Fe1—O1—C6116.15 (11)N5—C7—C8120.92 (14)
C8—O3—H3A109.00O3—C8—O4122.94 (16)
N2—N1—C3117.39 (13)O3—C8—C7116.19 (14)
C2—N1—C3133.07 (14)O4—C8—C7120.86 (15)
N2—N1—C2109.52 (13)N2—C1—H1A123.00
N1—N2—C1103.17 (15)N3—C1—H1A123.00
Fe1iv—N3—C1123.27 (13)N1—C2—H2A125.00
Fe1iv—N3—C2133.72 (11)N3—C2—H2A125.00
C1—N3—C2103.01 (15)N1—C3—H3B109.00
Fe1—N4—C5111.20 (10)N1—C3—H3C109.00
C4—N4—C5106.21 (13)C4—C3—H3B109.00
Fe1—N4—C4142.58 (11)C4—C3—H3C109.00
C4—N5—C7108.07 (13)H3B—C3—H3C108.00
C4—N5—H5A126.00
N4—Fe1—O1—C63.33 (11)Fe1—N4—C4—C33.5 (3)
N3i—Fe1—O1—C693.69 (12)C5—N4—C4—N50.72 (17)
N3ii—Fe1—O1—C686.31 (12)C5—N4—C4—C3178.19 (14)
N4iii—Fe1—O1—C6176.67 (11)Fe1—N4—C5—C61.63 (17)
O1—Fe1—N4—C4177.56 (18)Fe1—N4—C5—C7178.49 (10)
O1—Fe1—N4—C50.67 (10)C4—N4—C5—C6179.49 (13)
N3i—Fe1—N4—C486.04 (18)C4—N4—C5—C70.39 (17)
N3i—Fe1—N4—C592.20 (11)C7—N5—C4—N40.78 (18)
N3ii—Fe1—N4—C493.96 (18)C7—N5—C4—C3178.12 (14)
N3ii—Fe1—N4—C587.80 (11)C4—N5—C7—C50.50 (17)
O1iii—Fe1—N4—C42.44 (18)C4—N5—C7—C8176.74 (14)
O1iii—Fe1—N4—C5179.33 (10)N1—C3—C4—N484.25 (18)
Fe1—O1—C6—O2173.29 (13)N1—C3—C4—N594.50 (18)
Fe1—O1—C6—C55.11 (17)N4—C5—C6—O14.6 (2)
C2—N1—N2—C10.14 (19)N4—C5—C6—O2173.91 (14)
C3—N1—N2—C1178.66 (15)C7—C5—C6—O1175.54 (16)
N2—N1—C2—N30.34 (18)C7—C5—C6—O25.9 (3)
C3—N1—C2—N3178.87 (16)N4—C5—C7—N50.07 (17)
N2—N1—C3—C4169.17 (14)N4—C5—C7—C8176.68 (16)
C2—N1—C3—C412.4 (2)C6—C5—C7—N5179.92 (15)
N1—N2—C1—N30.6 (2)C6—C5—C7—C83.2 (3)
C2—N3—C1—N20.8 (2)N5—C7—C8—O3176.25 (14)
Fe1iv—N3—C1—N2178.52 (12)N5—C7—C8—O42.5 (2)
C1—N3—C2—N10.64 (18)C5—C7—C8—O30.1 (3)
Fe1iv—N3—C2—N1178.54 (11)C5—C7—C8—O4178.83 (17)
Fe1—N4—C4—N5177.57 (13)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.702.5175 (19)179
N5—H5A···N2v0.862.012.850 (2)166
Symmetry code: (v) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C8H6N5O4)2]
Mr528.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.1790 (14), 13.490 (3), 10.129 (2)
β (°) 99.11 (3)
V3)968.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.784, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
10179, 1900, 1847
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.08
No. of reflections1900
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.702.5175 (19)179
N5—H5A···N2i0.862.012.850 (2)166
Symmetry code: (i) x, y1/2, z1/2.
 

Acknowledgements

This work was sponsored by the Natural Science Foundation of Henan Province (No. 200510469005) and the start-up fund for scientific research of Zhengzhou College of Animal Husbandry Engineering.

References

First citationBatten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067–1068.  Google Scholar
First citationChen, L. Z., Huang, Y., Xiong, R. G. & Hu, H. W. (2010). J. Mol. Struct. 963, 16–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M. & Yaghi, O. M. (2001). Acc. Chem. Res. 13, 319–330.  Web of Science CrossRef Google Scholar
First citationFeng, X., Zhao, J. S., Liu, B., Wang, L. Y., Zhang, G., Wang, J. G., Shi, X. G. & Liu, Y. Y. (2010). Cryst. Growth Des. 10, 1399–1408.  Web of Science CSD CrossRef CAS Google Scholar
First citationJing, X. M., Zhang, L. R., Ma, T. L., Li, G. H., Yu, Y., Huo, Q. S., Eddaoudi, M. & Liu, Y. L. (2010). Cryst. Growth Des. 10, 492–494.  Web of Science CrossRef CAS Google Scholar
First citationLi, X., Wu, B. L., Wang, R. Y., Zhang, H. Y., Niu, C. Y., Niu, Y. Y. & Hou, H. H. (2010). Inorg. Chem. 49, 2600–2613.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMeng, C. X., Li, D. S., Zhao, J., Fu, F., Zhang, X. N., Tang, L. & Wang, Y. Y. (2009). Inorg. Chem. Commun. 12, 793–795.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. A., Zhang, L. R., Li, G. H., Huo, Q. S. & Liu, Y. L. (2008). CrystEngComm, 10, 1662–1666.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. & Zhu, Y. (2010). Inorg. Chem. 49, 3776–3788.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, L. P., Ma, J. F., Yang, J., Pang, Y. Y. & Ma, J. C. (2010). Inorg. Chem. 49, 1535–1550.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds