organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Amino­phen­yl)-4-methylbenzene­sulfonamide

aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: iuklodhi@yahoo.com

(Received 28 July 2011; accepted 5 September 2011; online 30 September 2011)

The title compound, C13H14N2O2S, crystallized with two independent mol­ecules in the asymmetric unit. They both have V-shaped conformations: the dihedral angles between their benzene rings are identical [45.86 (13)°] and their C—S—N—C torsion angles are similar [67.9 (3) and 70.2 (3)°]. In the crystal, the mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds, generating a three-dimensional network.

Related literature

For related structures and background to sulfonamides, see: Xing & Zeng (2005[Xing, J.-D. & Zeng, T. (2005). Acta Cryst. E61, o4318-o4319.]); Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Khan et al. (2010[Khan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.], 2011[Khan, I. U., Sheikh, T. A., Ejaz & Harrison, W. T. A. (2011). Acta Cryst. E67, o2371.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2O2S

  • Mr = 262.32

  • Orthorhombic, P 21 21 21

  • a = 5.0598 (3) Å

  • b = 14.7702 (11) Å

  • c = 35.026 (2) Å

  • V = 2617.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.41 × 0.35 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.907, Tmax = 0.953

  • 14160 measured reflections

  • 6049 independent reflections

  • 3138 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.122

  • S = 0.98

  • 6049 reflections

  • 345 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2266 Friedel pairs

  • Flack parameter: −0.03 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.70 (3) 2.33 (4) 2.996 (4) 161 (5)
N2—H2N⋯O4ii 0.88 (4) 2.18 (4) 3.052 (4) 172 (4)
N2—H3N⋯N4iii 0.97 (4) 2.28 (4) 3.191 (5) 155 (4)
N3—H4N⋯O3i 0.79 (3) 2.17 (3) 2.957 (3) 170 (3)
N4—H5N⋯N2iv 0.85 (4) 2.45 (4) 3.241 (5) 155 (4)
N4—H6N⋯O1v 0.86 (4) 2.47 (4) 3.323 (5) 171 (4)
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z; (iv) x-1, y+1, z; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing structural studies of sulfonamides (Khan et al., 2011), the synthesis and structure of the title compound, (I) (Fig. 1), are now described. Related stuctures with different substituents replacing the para-amino group in (I) include 4-methyl-N-(4-nitrophenyl)benzenesulfonamide, (II), (Xing and Zeng, 2005) and 4-methyl-N-(4-methylphenyl)benzenesulfonamide, (III), (Khan et al., 2010). Also worthy of mention is the remarkable sudy of Gelbrich et al. (2007), who made a systematic structural comparison of no fewer than 133 crystal structures of 4,4'-disubstituted benzenesulfonamidobenzenes. However, no compounds with an amino substituent were incorporated into their survey.

There are two independent molecules (A containing S1 and B containing S2) in the asymmetric unit of (I), as shown in Fig. 1. They have similar V-shaped conformations and indeed the dihedral angles between their benzene rings are identical [45.86 (13)°]. Their C—S—N—C torsion angles [67.9 (3)° for A and 70.2 (3)° for B] are also similar. The bond angle sums for N1 and N3 [349.4 and 344.1°, respectively] indicate a clear tendancy towards pyramidal geometry for the nitrogen atoms. Otherwise, their bond lengths and angles are similar to those seen in (II) and (III). Values for the inter-ring dihedral angle and the C—S—N—C torsion angle are 86.1 (1) and 65.85 (13)°, respectively, in (II), and 70.53 (10) and -60.71 (18)°, respectively, in (III), indicating that (I), (II) and (III) have significantly different conformations.

In the crystal of (I), the molecules are linked by N—H···O and N—H···N hydrogen bonds (Table 1). Both the sulfonamide NH groups make intermolecular hydrogen bonds to the sulfonamide O-atom acceptors such that separate [100] C(4) chains of A and B are generated, with adjacent molecules related only by a unit-cell translation. The amine groups each form an N—H···N and an N—H···O link. The former bonds lead to distinctive [100] —N—H···N—H···N— C(2) chains of alternating A and B molecules, and serve to link the C(4) chains into a sheet. The latter bonds generate [001] chains of alternating A and B molecules and overall a three-dimensional array is generated (Fig. 2).

Because of the presence of the —NH2 group, the hydrogen bonding patterns in (I) are not expected to show close similarities to those of the Gelbrich et al. (2007) study. There, the sulfonamide —NH— group was the only possible donor and the structure of (I) does not appear to match any of the groups of structures described by these workers.

Related literature top

For related structures and background to sulfonamides, see: Xing & Zeng (2005); Gelbrich et al. (2007); Khan et al. (2010, 2011).

Experimental top

p-Toluene sulfonyl chloride (2 mmol, 0.3813 g) was added to p-phenylenediamine (1 mmol, 0.108 g) in distilled water (20 ml) in a round-bottom flask (100 ml). The suspension was stirred for 10 h at room temperature while keeping the pH between 8–9 with sodium carbonate solution (3%). The light brown precipitate formed was filtered, washed with distilled water and dried. Light brown needles of (I) were grown from methanol.

Refinement top

The N-bound H-atoms were located in difference Fourier maps and their positions were freely refined with the constraint Uiso(H) = 1.2Ueq(N). The C-bound H-atoms were placed in calculated positions treated as riding atoms: C-H = 0.93 and 0.96 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Structure description top

As part of our ongoing structural studies of sulfonamides (Khan et al., 2011), the synthesis and structure of the title compound, (I) (Fig. 1), are now described. Related stuctures with different substituents replacing the para-amino group in (I) include 4-methyl-N-(4-nitrophenyl)benzenesulfonamide, (II), (Xing and Zeng, 2005) and 4-methyl-N-(4-methylphenyl)benzenesulfonamide, (III), (Khan et al., 2010). Also worthy of mention is the remarkable sudy of Gelbrich et al. (2007), who made a systematic structural comparison of no fewer than 133 crystal structures of 4,4'-disubstituted benzenesulfonamidobenzenes. However, no compounds with an amino substituent were incorporated into their survey.

There are two independent molecules (A containing S1 and B containing S2) in the asymmetric unit of (I), as shown in Fig. 1. They have similar V-shaped conformations and indeed the dihedral angles between their benzene rings are identical [45.86 (13)°]. Their C—S—N—C torsion angles [67.9 (3)° for A and 70.2 (3)° for B] are also similar. The bond angle sums for N1 and N3 [349.4 and 344.1°, respectively] indicate a clear tendancy towards pyramidal geometry for the nitrogen atoms. Otherwise, their bond lengths and angles are similar to those seen in (II) and (III). Values for the inter-ring dihedral angle and the C—S—N—C torsion angle are 86.1 (1) and 65.85 (13)°, respectively, in (II), and 70.53 (10) and -60.71 (18)°, respectively, in (III), indicating that (I), (II) and (III) have significantly different conformations.

In the crystal of (I), the molecules are linked by N—H···O and N—H···N hydrogen bonds (Table 1). Both the sulfonamide NH groups make intermolecular hydrogen bonds to the sulfonamide O-atom acceptors such that separate [100] C(4) chains of A and B are generated, with adjacent molecules related only by a unit-cell translation. The amine groups each form an N—H···N and an N—H···O link. The former bonds lead to distinctive [100] —N—H···N—H···N— C(2) chains of alternating A and B molecules, and serve to link the C(4) chains into a sheet. The latter bonds generate [001] chains of alternating A and B molecules and overall a three-dimensional array is generated (Fig. 2).

Because of the presence of the —NH2 group, the hydrogen bonding patterns in (I) are not expected to show close similarities to those of the Gelbrich et al. (2007) study. There, the sulfonamide —NH— group was the only possible donor and the structure of (I) does not appear to match any of the groups of structures described by these workers.

For related structures and background to sulfonamides, see: Xing & Zeng (2005); Gelbrich et al. (2007); Khan et al. (2010, 2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules (A and B) of compound (I), showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of compound (I), viewed along the a-axis, with the N-H···O and N-H···N hydrogen bonds (dashed lines; see Table 1 for details). Molecule A is shown in blue and molecule A in red. All C-bound H atoms have been omitted for clarity.
N-(4-Aminophenyl)-4-methylbenzenesulfonamide top
Crystal data top
C13H14N2O2SF(000) = 1104
Mr = 262.32Dx = 1.331 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2101 reflections
a = 5.0598 (3) Åθ = 2.3–21.0°
b = 14.7702 (11) ŵ = 0.24 mm1
c = 35.026 (2) ÅT = 296 K
V = 2617.7 (3) Å3Cut needle, brown
Z = 80.41 × 0.35 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
6049 independent reflections
Radiation source: fine-focus sealed tube3138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 28.3°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 66
Tmin = 0.907, Tmax = 0.953k = 1819
14160 measured reflectionsl = 4244
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0447P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.003
6049 reflectionsΔρmax = 0.19 e Å3
345 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 2266 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C13H14N2O2SV = 2617.7 (3) Å3
Mr = 262.32Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 5.0598 (3) ŵ = 0.24 mm1
b = 14.7702 (11) ÅT = 296 K
c = 35.026 (2) Å0.41 × 0.35 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
6049 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3138 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.953Rint = 0.048
14160 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122Δρmax = 0.19 e Å3
S = 0.98Δρmin = 0.23 e Å3
6049 reflectionsAbsolute structure: Flack (1983), 2266 Friedel pairs
345 parametersAbsolute structure parameter: 0.03 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7219 (6)0.5980 (2)0.52219 (9)0.0461 (9)
C20.5551 (7)0.6031 (3)0.55343 (11)0.0676 (11)
H20.42070.56080.55650.081*
C30.5892 (9)0.6712 (3)0.57994 (11)0.0745 (13)
H30.47740.67350.60100.089*
C40.7816 (9)0.7354 (3)0.57630 (11)0.0650 (11)
C50.9476 (8)0.7288 (3)0.54593 (11)0.0672 (11)
H51.08270.77100.54330.081*
C60.9217 (7)0.6609 (3)0.51874 (10)0.0577 (10)
H61.03860.65790.49830.069*
C70.8067 (12)0.8109 (3)0.60412 (11)0.1064 (17)
H7A0.75680.86670.59210.160*
H7B0.98640.81500.61270.160*
H7C0.69290.79980.62560.160*
C80.7725 (7)0.3749 (2)0.53228 (10)0.0470 (9)
C90.8953 (7)0.3861 (3)0.56689 (11)0.0588 (10)
H91.03080.42820.56950.071*
C100.8171 (9)0.3350 (3)0.59756 (11)0.0667 (11)
H100.90240.34230.62090.080*
C110.6143 (7)0.2728 (3)0.59452 (11)0.0573 (10)
C120.4958 (7)0.2624 (3)0.55924 (10)0.0581 (10)
H120.35980.22060.55640.070*
C130.5747 (7)0.3124 (3)0.52862 (10)0.0521 (9)
H130.49350.30400.50510.062*
S10.67974 (18)0.51473 (7)0.48702 (3)0.0565 (3)
N10.8513 (6)0.4261 (2)0.49950 (10)0.0574 (9)
H1N0.988 (7)0.429 (3)0.4975 (11)0.069*
N20.5408 (8)0.2184 (3)0.62512 (10)0.0775 (11)
H2N0.589 (8)0.235 (3)0.6483 (10)0.093*
H3N0.362 (8)0.195 (3)0.6230 (10)0.093*
O10.7922 (5)0.54737 (18)0.45226 (7)0.0748 (8)
O20.4094 (4)0.48778 (19)0.48757 (8)0.0759 (8)
C140.1982 (6)0.7212 (2)0.73078 (9)0.0433 (8)
C150.0384 (8)0.7105 (3)0.69949 (11)0.0661 (11)
H150.09870.75090.69470.079*
C160.0848 (9)0.6391 (3)0.67542 (12)0.0760 (13)
H160.02470.63150.65430.091*
C170.2854 (9)0.5789 (3)0.68115 (11)0.0652 (11)
C180.4447 (8)0.5923 (3)0.71206 (11)0.0625 (11)
H180.58460.55270.71630.075*
C190.4044 (6)0.6623 (2)0.73690 (11)0.0518 (9)
H190.51570.67010.75780.062*
C200.3247 (11)0.4991 (3)0.65535 (13)0.1056 (17)
H20A0.41870.45250.66880.158*
H20B0.42480.51730.63340.158*
H20C0.15590.47630.64730.158*
C210.2515 (6)0.9433 (2)0.71400 (10)0.0434 (9)
C220.0559 (7)1.0077 (3)0.71480 (10)0.0551 (10)
H220.02981.02050.73770.066*
C230.0137 (7)1.0527 (3)0.68273 (10)0.0581 (10)
H230.14871.09540.68380.070*
C240.1128 (7)1.0364 (2)0.64826 (10)0.0517 (9)
C250.3122 (8)0.9737 (3)0.64794 (11)0.0659 (11)
H250.40340.96270.62540.079*
C260.3792 (7)0.9273 (2)0.68016 (10)0.0563 (10)
H260.51310.88420.67920.068*
S20.14355 (16)0.81143 (6)0.76258 (3)0.0478 (3)
N30.3200 (5)0.89631 (19)0.74834 (8)0.0448 (7)
H4N0.474 (6)0.886 (2)0.7494 (9)0.054*
N40.0471 (8)1.0859 (3)0.61552 (10)0.0748 (11)
H5N0.110 (8)1.104 (3)0.6191 (12)0.090*
H6N0.099 (8)1.055 (3)0.5963 (11)0.090*
O30.1258 (4)0.83822 (17)0.75914 (7)0.0647 (7)
O40.2457 (5)0.78643 (19)0.79860 (6)0.0668 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (19)0.049 (2)0.045 (2)0.0025 (18)0.0005 (17)0.0031 (17)
C20.057 (2)0.082 (3)0.064 (3)0.005 (2)0.016 (2)0.006 (3)
C30.081 (3)0.091 (4)0.052 (3)0.012 (3)0.021 (2)0.010 (3)
C40.081 (3)0.062 (3)0.053 (3)0.016 (3)0.001 (2)0.004 (2)
C50.074 (3)0.057 (3)0.070 (3)0.009 (2)0.012 (2)0.002 (2)
C60.056 (2)0.065 (3)0.052 (2)0.007 (2)0.0099 (19)0.003 (2)
C70.164 (5)0.076 (3)0.079 (3)0.030 (4)0.005 (3)0.028 (3)
C80.042 (2)0.048 (2)0.051 (2)0.0038 (18)0.0044 (18)0.0066 (19)
C90.057 (2)0.053 (3)0.066 (3)0.010 (2)0.013 (2)0.002 (2)
C100.080 (3)0.060 (3)0.061 (3)0.010 (2)0.026 (2)0.008 (2)
C110.065 (3)0.046 (2)0.061 (3)0.002 (2)0.010 (2)0.003 (2)
C120.062 (2)0.056 (3)0.057 (2)0.014 (2)0.010 (2)0.003 (2)
C130.055 (2)0.052 (2)0.049 (2)0.007 (2)0.0062 (17)0.007 (2)
S10.0551 (6)0.0642 (7)0.0502 (6)0.0055 (5)0.0044 (5)0.0030 (5)
N10.0490 (18)0.062 (2)0.061 (2)0.001 (2)0.0063 (19)0.0103 (17)
N20.092 (3)0.080 (3)0.061 (2)0.018 (2)0.016 (2)0.015 (2)
O10.098 (2)0.087 (2)0.0397 (15)0.0100 (18)0.0080 (15)0.0010 (14)
O20.0483 (14)0.088 (2)0.092 (2)0.0104 (15)0.0146 (14)0.0059 (18)
C140.0405 (18)0.044 (2)0.046 (2)0.0038 (17)0.0029 (17)0.0089 (17)
C150.059 (2)0.071 (3)0.068 (3)0.007 (2)0.010 (2)0.006 (2)
C160.084 (3)0.079 (3)0.065 (3)0.008 (3)0.017 (2)0.006 (3)
C170.089 (3)0.050 (3)0.057 (3)0.014 (3)0.016 (3)0.003 (2)
C180.078 (3)0.040 (2)0.070 (3)0.005 (2)0.008 (2)0.011 (2)
C190.052 (2)0.044 (2)0.059 (2)0.0008 (19)0.0048 (19)0.010 (2)
C200.163 (5)0.071 (3)0.083 (3)0.004 (4)0.010 (3)0.021 (3)
C210.0367 (19)0.039 (2)0.054 (2)0.0010 (17)0.0005 (17)0.0027 (18)
C220.062 (2)0.058 (3)0.046 (2)0.021 (2)0.0102 (18)0.003 (2)
C230.060 (2)0.055 (3)0.059 (3)0.021 (2)0.003 (2)0.002 (2)
C240.065 (2)0.044 (2)0.046 (2)0.002 (2)0.004 (2)0.0006 (19)
C250.072 (3)0.067 (3)0.059 (3)0.017 (3)0.017 (2)0.000 (2)
C260.055 (2)0.053 (2)0.061 (3)0.018 (2)0.007 (2)0.000 (2)
S20.0404 (5)0.0560 (6)0.0469 (6)0.0052 (5)0.0017 (4)0.0051 (5)
N30.0351 (14)0.0449 (17)0.0546 (18)0.0059 (15)0.0076 (14)0.0033 (15)
N40.092 (3)0.071 (3)0.061 (2)0.009 (2)0.004 (2)0.004 (2)
O30.0423 (14)0.0779 (19)0.0739 (17)0.0104 (13)0.0112 (13)0.0022 (15)
O40.0828 (19)0.077 (2)0.0406 (14)0.0086 (15)0.0042 (13)0.0097 (13)
Geometric parameters (Å, º) top
C1—C61.378 (4)C14—C151.371 (4)
C1—C21.384 (4)C14—C191.375 (4)
C1—S11.754 (4)C14—S21.759 (3)
C2—C31.380 (5)C15—C161.370 (5)
C2—H20.9300C15—H150.9300
C3—C41.364 (5)C16—C171.365 (6)
C3—H30.9300C16—H160.9300
C4—C51.359 (5)C17—C181.364 (5)
C4—C71.487 (5)C17—C201.498 (6)
C5—C61.389 (5)C18—C191.367 (5)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—H190.9300
C7—H7A0.9600C20—H20A0.9600
C7—H7B0.9600C20—H20B0.9600
C7—H7C0.9600C20—H20C0.9600
C8—C131.368 (4)C21—C261.371 (4)
C8—C91.372 (4)C21—C221.373 (4)
C8—N11.431 (5)C21—N31.431 (4)
C9—C101.372 (5)C22—C231.352 (4)
C9—H90.9300C22—H220.9300
C10—C111.381 (5)C23—C241.388 (4)
C10—H100.9300C23—H230.9300
C11—C121.382 (4)C24—C251.369 (5)
C11—N21.391 (5)C24—N41.400 (5)
C12—C131.362 (4)C25—C261.363 (5)
C12—H120.9300C25—H250.9300
C13—H130.9300C26—H260.9300
S1—O21.425 (2)S2—O41.413 (2)
S1—O11.428 (3)S2—O31.424 (2)
S1—N11.630 (4)S2—N31.618 (3)
N1—H1N0.70 (3)N3—H4N0.79 (3)
N2—H2N0.88 (4)N4—H5N0.85 (4)
N2—H3N0.97 (4)N4—H6N0.86 (4)
C6—C1—C2118.7 (3)C15—C14—C19120.0 (3)
C6—C1—S1120.0 (3)C15—C14—S2120.0 (3)
C2—C1—S1121.3 (3)C19—C14—S2120.0 (3)
C3—C2—C1119.7 (4)C16—C15—C14118.6 (4)
C3—C2—H2120.2C16—C15—H15120.7
C1—C2—H2120.2C14—C15—H15120.7
C4—C3—C2122.2 (4)C17—C16—C15122.6 (4)
C4—C3—H3118.9C17—C16—H16118.7
C2—C3—H3118.9C15—C16—H16118.7
C5—C4—C3117.7 (4)C18—C17—C16117.5 (4)
C5—C4—C7120.9 (4)C18—C17—C20121.0 (5)
C3—C4—C7121.4 (4)C16—C17—C20121.5 (4)
C4—C5—C6122.0 (4)C17—C18—C19121.8 (4)
C4—C5—H5119.0C17—C18—H18119.1
C6—C5—H5119.0C19—C18—H18119.1
C1—C6—C5119.7 (3)C18—C19—C14119.5 (4)
C1—C6—H6120.1C18—C19—H19120.2
C5—C6—H6120.1C14—C19—H19120.2
C4—C7—H7A109.5C17—C20—H20A109.5
C4—C7—H7B109.5C17—C20—H20B109.5
H7A—C7—H7B109.5H20A—C20—H20B109.5
C4—C7—H7C109.5C17—C20—H20C109.5
H7A—C7—H7C109.5H20A—C20—H20C109.5
H7B—C7—H7C109.5H20B—C20—H20C109.5
C13—C8—C9119.7 (3)C26—C21—C22118.5 (3)
C13—C8—N1119.0 (3)C26—C21—N3121.9 (3)
C9—C8—N1121.2 (3)C22—C21—N3119.6 (3)
C10—C9—C8119.6 (4)C23—C22—C21120.8 (3)
C10—C9—H9120.2C23—C22—H22119.6
C8—C9—H9120.2C21—C22—H22119.6
C9—C10—C11121.3 (3)C22—C23—C24121.1 (3)
C9—C10—H10119.3C22—C23—H23119.4
C11—C10—H10119.3C24—C23—H23119.4
C10—C11—C12117.7 (4)C25—C24—C23117.7 (3)
C10—C11—N2121.6 (4)C25—C24—N4121.4 (4)
C12—C11—N2120.6 (4)C23—C24—N4120.8 (4)
C13—C12—C11121.1 (4)C26—C25—C24121.1 (3)
C13—C12—H12119.4C26—C25—H25119.4
C11—C12—H12119.4C24—C25—H25119.4
C12—C13—C8120.4 (3)C25—C26—C21120.8 (3)
C12—C13—H13119.8C25—C26—H26119.6
C8—C13—H13119.8C21—C26—H26119.6
O2—S1—O1119.24 (18)O4—S2—O3119.89 (16)
O2—S1—N1106.46 (18)O4—S2—N3106.01 (16)
O1—S1—N1106.72 (17)O3—S2—N3106.66 (16)
O2—S1—C1107.65 (17)O4—S2—C14108.04 (16)
O1—S1—C1108.28 (17)O3—S2—C14107.91 (17)
N1—S1—C1108.05 (16)N3—S2—C14107.78 (15)
C8—N1—S1119.4 (2)C21—N3—S2120.1 (2)
C8—N1—H1N113 (4)C21—N3—H4N112 (2)
S1—N1—H1N117 (4)S2—N3—H4N112 (3)
C11—N2—H2N119 (3)C24—N4—H5N106 (3)
C11—N2—H3N113 (2)C24—N4—H6N107 (3)
H2N—N2—H3N115 (4)H5N—N4—H6N125 (4)
C6—C1—C2—C31.0 (5)C19—C14—C15—C161.7 (5)
S1—C1—C2—C3178.0 (3)S2—C14—C15—C16179.5 (3)
C1—C2—C3—C40.8 (6)C14—C15—C16—C170.7 (6)
C2—C3—C4—C52.1 (6)C15—C16—C17—C180.7 (6)
C2—C3—C4—C7176.9 (4)C15—C16—C17—C20177.3 (4)
C3—C4—C5—C61.5 (6)C16—C17—C18—C191.0 (6)
C7—C4—C5—C6177.4 (4)C20—C17—C18—C19177.0 (4)
C2—C1—C6—C51.5 (5)C17—C18—C19—C140.0 (5)
S1—C1—C6—C5177.5 (3)C15—C14—C19—C181.4 (5)
C4—C5—C6—C10.2 (6)S2—C14—C19—C18179.8 (3)
C13—C8—C9—C100.5 (5)C26—C21—C22—C231.6 (5)
N1—C8—C9—C10179.1 (3)N3—C21—C22—C23179.6 (3)
C8—C9—C10—C110.8 (6)C21—C22—C23—C241.0 (6)
C9—C10—C11—C121.3 (6)C22—C23—C24—C250.6 (6)
C9—C10—C11—N2177.6 (4)C22—C23—C24—N4177.4 (4)
C10—C11—C12—C130.6 (5)C23—C24—C25—C261.7 (6)
N2—C11—C12—C13176.9 (4)N4—C24—C25—C26178.5 (4)
C11—C12—C13—C80.6 (5)C24—C25—C26—C211.2 (6)
C9—C8—C13—C121.2 (5)C22—C21—C26—C250.5 (5)
N1—C8—C13—C12179.8 (3)N3—C21—C26—C25179.2 (3)
C6—C1—S1—O2154.1 (3)C15—C14—S2—O4154.8 (3)
C2—C1—S1—O224.9 (3)C19—C14—S2—O426.5 (3)
C6—C1—S1—O123.9 (3)C15—C14—S2—O323.8 (3)
C2—C1—S1—O1155.1 (3)C19—C14—S2—O3157.5 (3)
C6—C1—S1—N191.3 (3)C15—C14—S2—N391.1 (3)
C2—C1—S1—N189.7 (3)C19—C14—S2—N387.7 (3)
C13—C8—N1—S181.6 (4)C26—C21—N3—S2100.0 (4)
C9—C8—N1—S199.8 (4)C22—C21—N3—S281.2 (4)
O2—S1—N1—C847.4 (3)O4—S2—N3—C21174.3 (2)
O1—S1—N1—C8175.8 (3)O3—S2—N3—C2145.5 (3)
C1—S1—N1—C867.9 (3)C14—S2—N3—C2170.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.70 (3)2.33 (4)2.996 (4)161 (5)
N2—H2N···O4ii0.88 (4)2.18 (4)3.052 (4)172 (4)
N2—H3N···N4iii0.97 (4)2.28 (4)3.191 (5)155 (4)
N3—H4N···O3i0.79 (3)2.17 (3)2.957 (3)170 (3)
N4—H5N···N2iv0.85 (4)2.45 (4)3.241 (5)155 (4)
N4—H6N···O1v0.86 (4)2.47 (4)3.323 (5)171 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x, y1, z; (iv) x1, y+1, z; (v) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H14N2O2S
Mr262.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.0598 (3), 14.7702 (11), 35.026 (2)
V3)2617.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.41 × 0.35 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.907, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
14160, 6049, 3138
Rint0.048
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.122, 0.98
No. of reflections6049
No. of parameters345
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.23
Absolute structureFlack (1983), 2266 Friedel pairs
Absolute structure parameter0.03 (8)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.70 (3)2.33 (4)2.996 (4)161 (5)
N2—H2N···O4ii0.88 (4)2.18 (4)3.052 (4)172 (4)
N2—H3N···N4iii0.97 (4)2.28 (4)3.191 (5)155 (4)
N3—H4N···O3i0.79 (3)2.17 (3)2.957 (3)170 (3)
N4—H5N···N2iv0.85 (4)2.45 (4)3.241 (5)155 (4)
N4—H6N···O1v0.86 (4)2.47 (4)3.323 (5)171 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x, y1, z; (iv) x1, y+1, z; (v) x1/2, y+3/2, z+1.
 

Acknowledgements

IUK thanks the Higher Education Commission of Pakistan for financial support under the project to strengthen the Materials Chemistry Laboratory at GCUL.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Sheikh, T. A., Ejaz & Harrison, W. T. A. (2011). Acta Cryst. E67, o2371.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXing, J.-D. & Zeng, T. (2005). Acta Cryst. E61, o4318–o4319.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds