organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Caloxanthone C: a pyran­oxanthone from the stem bark of Calophyllum soulattri

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Correspondence e-mail: gwen@science.upm.edu.my

(Received 4 August 2011; accepted 6 September 2011; online 14 September 2011)

The title compound [systematic name: 5,10-di­hy­droxy-2,2-di­methyl-12-(2-methyl­but-3-en-2-yl)­pyrano[3,2-b]xanthen-6(2H)-one], C23H22O5, isolated from the stem bark of Calophyllum soulattri, consists of four six-membered rings and a 2-methyl­but-3-en-2-yl side chain. The tricyclic xanthone ring system is almost planar [maximum deviation = 0.093 (2) Å], whereas the pyran­oid ring is in a distorted boat conformation. The 2-methyl­but-3-en-2-yl side chain is in a synperiplanar conformation. There are two intra­molecular O—H⋯O hydrogen bonds. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, forming a zigzag chain propagating in [010].

Related literature

For related structures, see: Ee et al. (2010[Ee, G. C. L., Teo, S. H., Kwong, H. C., Mohamed Tahir, M. I. & Silong, S. (2010). Acta Cryst. E66, o3331-o3332.]); Fun et al. (2006[Fun, H.-K., Ng, S.-L., Razak, I. A., Boonnak, N. & Chantrapromma, S. (2006). Acta Cryst. E62, o130-o132.]); Doriguetto et al. (2001[Doriguetto, A. C., Santos, M. H., Ellena, J. A. & Nagem, T. J. (2001). Acta Cryst. C57, 1095-1097.]); Boonnak et al. (2007[Boonnak, N., Fun, H.-K., Chantrapromma, S. & Karalai, C. (2007). Acta Cryst. E63, o3958-o3959.]); Ndjakou et al. (2007[Ndjakou Lenta, B., Devkota, K. P., Neumann, B., Tsamo, E. & Sewald, N. (2007). Acta Cryst. E63, o1629-o1631.]). For the biological activity of Calophyllum species, see: Dharmaratne et al. (1999[Dharmaratne, H. R., Wijesinghe, W. M. & Thevanasem, V. (1999). J. Ethnopharmacol. 66, 339-342.], 2009[Dharmaratne, H. R., Napagoda, M. T. & Tennakoon, S. B. (2009). Nat. Prod. Res. 23, 539-545.]); Zou et al. (2005[Zou, J., Jin, D., Chen, W., Wang, J., Liu, Q. & Zhu, X. (2005). J. Nat. Prod. 68, 1514-1518.]); Ito et al. (1999[Ito, C., Itoigawa, M., Miyamoto, Y., Rao, K. S., Takayasu, J. & Okuda, Y. (1999). J. Nat. Prod. 62, 1668-1671.], 2002[Ito, C., Itoigawa, M., Mishina, Y., Filho, V. C., Mukainaka, T. & Tokuda, H. (2002). J. Nat. Prod. 65, 267-272.]); Ee et al. (2004[Ee, G. C. L., Ng, K. N., Taufiq-Yap, Y. H., Rahmani, M., Ali, A. M. & Muse, R. (2004). Nat. Prod. Res. 18, 123-128.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkins Trans. 2, pp. S1-19]).

[Scheme 1]

Experimental

Crystal data
  • C23H22O5

  • Mr = 378.42

  • Monoclinic, P 21 /n

  • a = 6.7013 (3) Å

  • b = 15.8951 (7) Å

  • c = 17.3891 (7) Å

  • β = 93.181 (4)°

  • V = 1849.39 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 150 K

  • 0.34 × 0.15 × 0.07 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.890, Tmax = 0.947

  • 10133 measured reflections

  • 3503 independent reflections

  • 3048 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.170

  • S = 1.00

  • 3488 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16⋯O5 0.83 1.79 2.570 (2) 155
O28—H28⋯O1 0.81 2.25 2.690 (2) 115
C12—H12⋯O5i 0.94 2.51 3.441 (3) 168
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Calophyllum species are native to tropical areas, mainly in Asia, Australia, Africa and Polynesia. This genus is well known for various bioactivities due to the existence of a variety of secondary metabolites such as xanthones (Dharmaratne et al., 1999), coumarins (Ee et al., 2004) and flavanoids (Ito et al., 1999). Xanthones are known to have various biological activities such as, antifungal (Dharmaratne et al., 1999), anti-oxidant (Dharmaratne et al., 2009), anti-inflammatory (Zou et al., 2005) and anti-cancer (Ito et al., 2002). We present here the crystal structure of Caloxanthone C, isolated from the stem bark of Calophyllum soulattri.

The molecular structure of the title compound is illustrated in Fig. 1. The bond distances are in the normal range (Allen et al., 1987) and together with the bond angles are comparable to those reported for other pyranoxanthone structures (Ee et al. 2010; Fun et al. 2006; Doriguetto et al. 2001), and other closely related structures (Boonnak et al., 2007; Ndjakou et al. 2007).

The title molecule has a xanthone skeleton, which is essentially planar [maximum deviation 0.093 (2) Å for atom C14] with two intramolecular O-H···O hydrogen bonds (Fig. 1 & Table 1). Rings A (C2,C3,C24-C27), B (O1,C2-C4,C6,C7) and C (C6-C9,C14,C15) are practically coplanar, including atoms O28, O5, and O16, that are linked to them; the latter deviate from the individual mean planes by 0.009 (2) Å, 0.016 (2) Å, and 0.056 (2) Å, for O28 from ring A, O5 from ring B and O16 from ring C, respectively. Rings A and B nearly lie in the same plane, as they form a dihedral angle of only 0.46 (9)°, while rings B and C are inclined to one another by 4.25 (9)°. The mean planes of rings A and C, which intersect on a line approximately through the middle of ring B, are inclined to one another by 4.62 (10)°. The same dihedral angle is 7.78 (9) ° in the trihydroxy derivative of the title compound, reported on by (Fun et al., 2006), and 7.75 (7) ° for a similar pyranoxanthone structure (12-Acetyl-6-hydroxy-3,3,9,9-tetramethylfuro[3,4-b]pyrano[3,2-h]xanthene-7,11(3H,9H)-dione ) reported on by (Ee et al., 2010).

The mean torsional angle of ring D (C9,O10,C11-C14) is 21.08 (13)° and it adopts a conformation half way between an envelope and a half boat. This conformation is probably caused by the constraint of the C12C13 double bond which results in considerable pucking of ring D, happening at C11. This conformation is similar to that observed in other pyranoxanthone structures, such as 12-Acetyl-6-hydroxy-3,3,9,9-tetramethylfuro[3,4-b]pyrano[3,2-h]xanthene-7,11(3H,9H)-dione (Ee et al., 2010) and 12-(1,1-Dimethyl-2-propenyl)-5,9,10-trihydroxy-2,2-dimethyl-2H,6H-pyrano[3,2-b]xanthen-6-one (Fun et al., 2006).

The orientation of the 2-methylbut-3-en-2-yl (C19—C23) side chain with respect to the benzene ring C is indicated by the torsion angle of C7—C8—C19—C20 = 27.6 (3)° [compared to 28.8 (3) ° in (Fun et al., 2006)], indicating a synperiplanar conformation.

In the crystal, there is an intermolecular C—H···O hydrogen bond (Table 1, Fig. 2) the leads to the fomation of a zigzag chain propagating in [010].

Related literature top

For related structures, see: Ee et al. (2010); Fun et al. (2006); Doriguetto et al. (2001); Boonnak et al. (2007); Ndjakou et al. (2007). For the biological activity of Calophyllum species, see: Dharmaratne et al. (1999, 2009); Zou et al. (2005); Ito et al. (1999, 2002); Ee et al. (2004). For standard bond lengths, see Allen et al. (1987).

Experimental top

The stem bark of Calophyllum soulattri was collected from the Sri Aman district in Sarawak, Malaysia. Approximately 1 kg of air-dried stem bark of Calophyllum soulattri was ground into a fine powder and extracted successively in a Soxhlet apparatus with n-hexane, dichloromethane, ethyl acetate and methanol for 72 h. The extracts were evaporated to dryness under vacuum to give 15.3 g of dichloromethane extract, which was subjected to column chromatography, over silica gel, several times. Stepwise gradient systems using n-hexane, dichloromethane, ethyl acetate and methanol and eluting through the columns resulted in separation and purification of the extract. Caloxanthone C, a yellowish crystal with the melting point of 210–212 °C was isolated. Single crystals, suitable for X-ray diffraction analysis, were prepared by the slow evaporation and diffusion of diethyl ether into a solution of Caloxanthone C in chloroform at room temperature.

Refinement top

The H atoms could all be located in a difference Fourier map. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [O—H = 0.82 Å, C—H = 0.93 - 0.98 Å], after which the positions were refined with riding constraints, with Uiso(H) = k × Ueq(O,C), with k = 1.5 for OH and CH3 H-atoms and k = 1.2 for all other H-atoms.

Structure description top

Calophyllum species are native to tropical areas, mainly in Asia, Australia, Africa and Polynesia. This genus is well known for various bioactivities due to the existence of a variety of secondary metabolites such as xanthones (Dharmaratne et al., 1999), coumarins (Ee et al., 2004) and flavanoids (Ito et al., 1999). Xanthones are known to have various biological activities such as, antifungal (Dharmaratne et al., 1999), anti-oxidant (Dharmaratne et al., 2009), anti-inflammatory (Zou et al., 2005) and anti-cancer (Ito et al., 2002). We present here the crystal structure of Caloxanthone C, isolated from the stem bark of Calophyllum soulattri.

The molecular structure of the title compound is illustrated in Fig. 1. The bond distances are in the normal range (Allen et al., 1987) and together with the bond angles are comparable to those reported for other pyranoxanthone structures (Ee et al. 2010; Fun et al. 2006; Doriguetto et al. 2001), and other closely related structures (Boonnak et al., 2007; Ndjakou et al. 2007).

The title molecule has a xanthone skeleton, which is essentially planar [maximum deviation 0.093 (2) Å for atom C14] with two intramolecular O-H···O hydrogen bonds (Fig. 1 & Table 1). Rings A (C2,C3,C24-C27), B (O1,C2-C4,C6,C7) and C (C6-C9,C14,C15) are practically coplanar, including atoms O28, O5, and O16, that are linked to them; the latter deviate from the individual mean planes by 0.009 (2) Å, 0.016 (2) Å, and 0.056 (2) Å, for O28 from ring A, O5 from ring B and O16 from ring C, respectively. Rings A and B nearly lie in the same plane, as they form a dihedral angle of only 0.46 (9)°, while rings B and C are inclined to one another by 4.25 (9)°. The mean planes of rings A and C, which intersect on a line approximately through the middle of ring B, are inclined to one another by 4.62 (10)°. The same dihedral angle is 7.78 (9) ° in the trihydroxy derivative of the title compound, reported on by (Fun et al., 2006), and 7.75 (7) ° for a similar pyranoxanthone structure (12-Acetyl-6-hydroxy-3,3,9,9-tetramethylfuro[3,4-b]pyrano[3,2-h]xanthene-7,11(3H,9H)-dione ) reported on by (Ee et al., 2010).

The mean torsional angle of ring D (C9,O10,C11-C14) is 21.08 (13)° and it adopts a conformation half way between an envelope and a half boat. This conformation is probably caused by the constraint of the C12C13 double bond which results in considerable pucking of ring D, happening at C11. This conformation is similar to that observed in other pyranoxanthone structures, such as 12-Acetyl-6-hydroxy-3,3,9,9-tetramethylfuro[3,4-b]pyrano[3,2-h]xanthene-7,11(3H,9H)-dione (Ee et al., 2010) and 12-(1,1-Dimethyl-2-propenyl)-5,9,10-trihydroxy-2,2-dimethyl-2H,6H-pyrano[3,2-b]xanthen-6-one (Fun et al., 2006).

The orientation of the 2-methylbut-3-en-2-yl (C19—C23) side chain with respect to the benzene ring C is indicated by the torsion angle of C7—C8—C19—C20 = 27.6 (3)° [compared to 28.8 (3) ° in (Fun et al., 2006)], indicating a synperiplanar conformation.

In the crystal, there is an intermolecular C—H···O hydrogen bond (Table 1, Fig. 2) the leads to the fomation of a zigzag chain propagating in [010].

For related structures, see: Ee et al. (2010); Fun et al. (2006); Doriguetto et al. (2001); Boonnak et al. (2007); Ndjakou et al. (2007). For the biological activity of Calophyllum species, see: Dharmaratne et al. (1999, 2009); Zou et al. (2005); Ito et al. (1999, 2002); Ee et al. (2004). For standard bond lengths, see Allen et al. (1987).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the crystallographic numbering scheme and displacement ellipsoids drawn at the 50% probability level. The intramoleular O-H···O hydrogen bonds are shown as dashed lines [see Table 1 for details].
[Figure 2] Fig. 2. A view of the along the a-axis of the C-H···O hydrogen bonded (thin grey lines; see Table 1 for details) zizgzag chain in the crystal of the title compound [b-axis green; c-axis blue].
5,10-Dihydroxy-2,2-dimethyl-12-(2-methylbut-3-en- 2-yl)pyrano[3,2-b]xanthen-6(2H)-one top
Crystal data top
C23H22O5F(000) = 800
Mr = 378.42Dx = 1.359 Mg m3
Monoclinic, P21/nMelting point: 189 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54184 Å
a = 6.7013 (3) ÅCell parameters from 4840 reflections
b = 15.8951 (7) Åθ = 71–4°
c = 17.3891 (7) ŵ = 0.78 mm1
β = 93.181 (4)°T = 150 K
V = 1849.39 (14) Å3Plate, yellow
Z = 40.34 × 0.15 × 0.07 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
3503 independent reflections
Radiation source: sealed x-ray tube3048 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω/2θ scansθmax = 70.9°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
h = 88
Tmin = 0.890, Tmax = 0.947k = 019
10133 measured reflectionsl = 021
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.08P)2 + 2.61P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.170(Δ/σ)max = 0.0002304
S = 1.00Δρmax = 0.34 e Å3
3488 reflectionsΔρmin = 0.34 e Å3
254 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 27 (7)
Primary atom site location: structure-invariant direct methods
Crystal data top
C23H22O5V = 1849.39 (14) Å3
Mr = 378.42Z = 4
Monoclinic, P21/nCu Kα radiation
a = 6.7013 (3) ŵ = 0.78 mm1
b = 15.8951 (7) ÅT = 150 K
c = 17.3891 (7) Å0.34 × 0.15 × 0.07 mm
β = 93.181 (4)°
Data collection top
Oxford Diffraction Gemini
diffractometer
3503 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
3048 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.947Rint = 0.023
10133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
3488 reflectionsΔρmin = 0.34 e Å3
254 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. For this compound, 10133 numbers of reflections were collected and measured during the refinement. Symmetry related reflections were measured more than once and after merging the symmetry equivalent reflections there were only 3503 reflection left. 15 more reflections were filtered, as σ cutoff was set as -3 and (sinθ/x)set to>0.01 (to eliminate reflection measured near the vicinity of beam stop) therefore numbers of reflection reduced to 3488.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2643 (2)0.41026 (9)0.57160 (8)0.0229 (4)
O50.2129 (3)0.53596 (10)0.36618 (9)0.0307 (5)
O100.2854 (2)0.14802 (10)0.44806 (9)0.0278 (5)
O160.2066 (3)0.39365 (10)0.29598 (8)0.0303 (5)
O280.3025 (3)0.48977 (10)0.70816 (9)0.0353 (6)
C20.2663 (3)0.49629 (13)0.56988 (12)0.0210 (6)
C30.2503 (3)0.54285 (13)0.50222 (12)0.0218 (6)
C40.2296 (3)0.49750 (14)0.42909 (12)0.0230 (6)
C60.2301 (3)0.40664 (13)0.43370 (12)0.0203 (6)
C70.2456 (3)0.36432 (13)0.50527 (11)0.0197 (6)
C80.2438 (3)0.27680 (13)0.51359 (12)0.0208 (6)
C90.2496 (3)0.23212 (13)0.44407 (12)0.0214 (6)
C110.2127 (4)0.09367 (15)0.38384 (13)0.0309 (7)
C120.2517 (4)0.13517 (16)0.30843 (13)0.0317 (7)
C130.2589 (3)0.21808 (15)0.30307 (13)0.0272 (7)
C140.2370 (3)0.27046 (14)0.37081 (12)0.0226 (6)
C150.2218 (3)0.35722 (14)0.36604 (12)0.0230 (6)
C170.3296 (5)0.01284 (17)0.39606 (16)0.0449 (9)
C180.0109 (4)0.07989 (16)0.39128 (14)0.0362 (8)
C190.2517 (3)0.23222 (13)0.59319 (12)0.0247 (6)
C200.1635 (3)0.28569 (13)0.65545 (12)0.0242 (6)
C210.2403 (4)0.29604 (14)0.72643 (13)0.0275 (7)
C220.4673 (4)0.20684 (17)0.61492 (13)0.0380 (8)
C230.1135 (5)0.15364 (17)0.59174 (15)0.0455 (9)
C240.2559 (3)0.63098 (14)0.50689 (13)0.0261 (7)
C250.2754 (3)0.66952 (14)0.57769 (15)0.0289 (7)
C260.2914 (3)0.62217 (15)0.64509 (14)0.0285 (7)
C270.2857 (3)0.53529 (14)0.64196 (13)0.0253 (6)
H120.264500.100800.264900.0384*
H130.280300.243400.255800.0331*
H160.197000.444600.305700.0463*
H1710.318600.007900.447000.0664*
H1720.281400.029200.359900.0668*
H1730.469500.022600.388400.0665*
H1810.030900.052200.439700.0529*
H1820.078200.133400.389100.0531*
H1830.060300.045200.350100.0534*
H200.036600.310800.641900.0285*
H2110.369500.276100.741300.0327*
H2120.167300.323200.762800.0333*
H2210.551900.256100.623000.0565*
H2220.517500.172800.574500.0567*
H2230.473900.173200.661200.0565*
H2310.099900.134500.643600.0671*
H2320.015400.170000.569100.0678*
H2330.166000.108300.562100.0677*
H240.245300.663500.462100.0304*
H250.277200.729900.581700.0349*
H260.305500.648300.693100.0342*
H280.293500.440000.698000.0529*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0319 (8)0.0176 (8)0.0189 (7)0.0017 (6)0.0004 (6)0.0005 (6)
O50.0401 (10)0.0266 (9)0.0250 (8)0.0005 (7)0.0005 (7)0.0077 (6)
O100.0396 (9)0.0191 (8)0.0238 (8)0.0034 (7)0.0053 (7)0.0037 (6)
O160.0421 (10)0.0300 (9)0.0184 (8)0.0007 (7)0.0007 (7)0.0032 (6)
O280.0587 (12)0.0246 (9)0.0222 (8)0.0023 (8)0.0006 (7)0.0024 (6)
C20.0197 (10)0.0174 (10)0.0260 (11)0.0002 (8)0.0012 (8)0.0000 (8)
C30.0156 (10)0.0217 (11)0.0279 (11)0.0009 (8)0.0006 (8)0.0012 (8)
C40.0198 (10)0.0244 (11)0.0247 (11)0.0003 (8)0.0011 (8)0.0041 (9)
C60.0163 (10)0.0230 (11)0.0214 (10)0.0002 (8)0.0003 (8)0.0011 (8)
C70.0189 (10)0.0212 (11)0.0189 (10)0.0009 (8)0.0001 (8)0.0015 (8)
C80.0215 (10)0.0205 (11)0.0200 (10)0.0011 (8)0.0019 (8)0.0004 (8)
C90.0203 (10)0.0197 (11)0.0239 (11)0.0005 (8)0.0021 (8)0.0006 (8)
C110.0449 (14)0.0216 (11)0.0254 (11)0.0011 (10)0.0049 (10)0.0080 (9)
C120.0371 (13)0.0327 (13)0.0250 (11)0.0040 (10)0.0001 (9)0.0102 (10)
C130.0272 (11)0.0340 (13)0.0203 (10)0.0016 (9)0.0002 (8)0.0033 (9)
C140.0196 (10)0.0265 (11)0.0212 (10)0.0008 (8)0.0019 (8)0.0026 (9)
C150.0211 (10)0.0285 (12)0.0191 (10)0.0005 (8)0.0006 (8)0.0032 (8)
C170.0671 (19)0.0267 (13)0.0397 (15)0.0126 (13)0.0079 (13)0.0097 (11)
C180.0505 (16)0.0276 (12)0.0295 (12)0.0087 (11)0.0068 (11)0.0020 (10)
C190.0356 (12)0.0187 (10)0.0196 (10)0.0026 (9)0.0012 (9)0.0013 (8)
C200.0268 (11)0.0203 (10)0.0255 (11)0.0029 (9)0.0024 (8)0.0049 (8)
C210.0334 (12)0.0270 (11)0.0225 (11)0.0013 (9)0.0052 (9)0.0015 (9)
C220.0502 (16)0.0403 (14)0.0233 (12)0.0203 (12)0.0004 (11)0.0061 (10)
C230.079 (2)0.0295 (14)0.0283 (13)0.0245 (14)0.0062 (13)0.0016 (10)
C240.0226 (11)0.0215 (11)0.0339 (12)0.0000 (8)0.0002 (9)0.0055 (9)
C250.0225 (11)0.0189 (11)0.0452 (14)0.0012 (8)0.0020 (10)0.0024 (10)
C260.0276 (12)0.0253 (12)0.0323 (12)0.0001 (9)0.0001 (9)0.0085 (9)
C270.0248 (11)0.0241 (11)0.0270 (11)0.0021 (9)0.0011 (9)0.0019 (9)
Geometric parameters (Å, º) top
O1—C21.368 (3)C19—C201.522 (3)
O1—C71.365 (2)C19—C221.527 (3)
O5—C41.253 (3)C20—C211.321 (3)
O10—C91.359 (3)C24—C251.375 (3)
O10—C111.473 (3)C25—C261.392 (3)
O16—C151.348 (3)C26—C271.383 (3)
O28—C271.359 (3)C12—H120.9400
O16—H160.8300C13—H130.9300
O28—H280.8100C17—H1710.9500
C2—C271.398 (3)C17—H1720.9600
C2—C31.389 (3)C17—H1730.9700
C3—C241.404 (3)C18—H1810.9700
C3—C41.462 (3)C18—H1820.9600
C4—C61.446 (3)C18—H1830.9500
C6—C71.413 (3)C20—H200.9600
C6—C151.413 (3)C21—H2110.9400
C7—C81.399 (3)C21—H2120.9300
C8—C91.405 (3)C22—H2210.9700
C8—C191.553 (3)C22—H2220.9600
C9—C141.411 (3)C22—H2230.9700
C11—C171.514 (4)C23—H2310.9600
C11—C181.527 (4)C23—H2320.9600
C11—C121.504 (3)C23—H2330.9600
C12—C131.322 (3)C24—H240.9300
C13—C141.457 (3)C25—H250.9600
C14—C151.385 (3)C26—H260.9300
C19—C231.554 (4)
C2—O1—C7121.12 (16)C3—C24—C25119.8 (2)
C9—O10—C11119.21 (17)C24—C25—C26120.8 (2)
C15—O16—H16104.00C25—C26—C27120.4 (2)
C27—O28—H28109.00C2—C27—C26118.6 (2)
O1—C2—C27115.10 (18)O28—C27—C2121.51 (19)
O1—C2—C3123.42 (18)O28—C27—C26119.9 (2)
C3—C2—C27121.48 (19)C11—C12—H12118.00
C4—C3—C24122.92 (19)C13—C12—H12121.00
C2—C3—C24118.83 (19)C12—C13—H13120.00
C2—C3—C4118.25 (19)C14—C13—H13120.00
O5—C4—C3121.2 (2)C11—C17—H171111.00
O5—C4—C6122.38 (19)C11—C17—H172110.00
C3—C4—C6116.38 (18)C11—C17—H173110.00
C4—C6—C7121.59 (19)H171—C17—H172109.00
C7—C6—C15117.78 (19)H171—C17—H173108.00
C4—C6—C15120.60 (19)H172—C17—H173108.00
O1—C7—C8116.46 (17)C11—C18—H181109.00
O1—C7—C6119.23 (18)C11—C18—H182109.00
C6—C7—C8124.32 (19)C11—C18—H183109.00
C7—C8—C19123.08 (18)H181—C18—H182110.00
C7—C8—C9114.40 (18)H181—C18—H183109.00
C9—C8—C19122.35 (18)H182—C18—H183110.00
C8—C9—C14123.77 (19)C19—C20—H20116.00
O10—C9—C8117.82 (18)C21—C20—H20118.00
O10—C9—C14118.20 (18)C20—C21—H211121.00
O10—C11—C17104.15 (19)C20—C21—H212120.00
O10—C11—C12109.73 (19)H211—C21—H212119.00
C12—C11—C18110.8 (2)C19—C22—H221111.00
O10—C11—C18107.74 (18)C19—C22—H222109.00
C12—C11—C17112.4 (2)C19—C22—H223111.00
C17—C11—C18111.7 (2)H221—C22—H222109.00
C11—C12—C13120.5 (2)H221—C22—H223109.00
C12—C13—C14120.5 (2)H222—C22—H223107.00
C9—C14—C13118.7 (2)C19—C23—H231109.00
C9—C14—C15119.00 (19)C19—C23—H232108.00
C13—C14—C15122.1 (2)C19—C23—H233112.00
O16—C15—C6120.75 (19)H231—C23—H232110.00
C6—C15—C14120.28 (19)H231—C23—H233109.00
O16—C15—C14118.92 (19)H232—C23—H233109.00
C8—C19—C22109.03 (17)C3—C24—H24120.00
C8—C19—C23111.18 (18)C25—C24—H24120.00
C20—C19—C23101.88 (18)C24—C25—H25121.00
C22—C19—C23110.3 (2)C26—C25—H25119.00
C20—C19—C22111.78 (17)C25—C26—H26121.00
C8—C19—C20112.58 (17)C27—C26—H26119.00
C19—C20—C21126.0 (2)
C7—O1—C2—C30.1 (3)O1—C7—C8—C9172.41 (17)
C7—O1—C2—C27179.82 (17)O1—C7—C8—C193.0 (3)
C2—O1—C7—C60.6 (3)C6—C7—C8—C97.4 (3)
C2—O1—C7—C8179.54 (17)C6—C7—C8—C19177.21 (19)
C11—O10—C9—C8154.62 (19)C7—C8—C9—O10168.09 (17)
C11—O10—C9—C1430.5 (3)C7—C8—C9—C146.5 (3)
C9—O10—C11—C1242.9 (3)C19—C8—C9—O107.3 (3)
C9—O10—C11—C17163.42 (19)C19—C8—C9—C14178.13 (19)
C9—O10—C11—C1877.9 (2)C7—C8—C19—C2027.6 (3)
O1—C2—C3—C40.2 (3)C7—C8—C19—C2297.0 (2)
O1—C2—C3—C24179.41 (18)C7—C8—C19—C23141.2 (2)
C27—C2—C3—C4179.74 (19)C9—C8—C19—C20157.36 (19)
C27—C2—C3—C240.6 (3)C9—C8—C19—C2278.0 (2)
O1—C2—C27—O280.4 (3)C9—C8—C19—C2343.8 (3)
O1—C2—C27—C26179.23 (18)O10—C9—C14—C131.2 (3)
C3—C2—C27—O28179.6 (2)O10—C9—C14—C15173.23 (18)
C3—C2—C27—C260.8 (3)C8—C9—C14—C13175.72 (19)
C2—C3—C4—O5179.4 (2)C8—C9—C14—C151.3 (3)
C2—C3—C4—C60.8 (3)O10—C11—C12—C1328.3 (3)
C24—C3—C4—O51.0 (3)C17—C11—C12—C13143.7 (2)
C24—C3—C4—C6178.85 (19)C18—C11—C12—C1390.6 (3)
C2—C3—C24—C250.5 (3)C11—C12—C13—C142.4 (4)
C4—C3—C24—C25179.91 (19)C12—C13—C14—C913.0 (3)
O5—C4—C6—C7178.9 (2)C12—C13—C14—C15172.8 (2)
O5—C4—C6—C153.3 (3)C9—C14—C15—O16178.96 (19)
C3—C4—C6—C71.3 (3)C9—C14—C15—C63.5 (3)
C3—C4—C6—C15176.56 (18)C13—C14—C15—O166.8 (3)
C4—C6—C7—O11.2 (3)C13—C14—C15—C6170.74 (19)
C4—C6—C7—C8178.96 (19)C8—C19—C20—C21136.6 (2)
C15—C6—C7—O1176.65 (18)C22—C19—C20—C2113.5 (3)
C15—C6—C7—C83.2 (3)C23—C19—C20—C21104.3 (3)
C4—C6—C15—O162.2 (3)C3—C24—C25—C260.5 (3)
C4—C6—C15—C14175.28 (19)C24—C25—C26—C270.7 (3)
C7—C6—C15—O16179.87 (19)C25—C26—C27—O28179.67 (19)
C7—C6—C15—C142.6 (3)C25—C26—C27—C20.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···O50.831.792.570 (2)155
O28—H28···O10.812.252.690 (2)115
C12—H12···O5i0.942.513.441 (3)168
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H22O5
Mr378.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)6.7013 (3), 15.8951 (7), 17.3891 (7)
β (°) 93.181 (4)
V3)1849.39 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.78
Crystal size (mm)0.34 × 0.15 × 0.07
Data collection
DiffractometerOxford Diffraction Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.890, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
10133, 3503, 3048
Rint0.023
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.170, 1.00
No. of reflections3488
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···O50.831.792.570 (2)155
O28—H28···O10.812.252.690 (2)115
C12—H12···O5i0.942.513.441 (3)168
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Ministry of Science, Technology and Innovation (MOSTI) for a grant from the e-science fund.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkins Trans. 2, pp. S1–19  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoonnak, N., Fun, H.-K., Chantrapromma, S. & Karalai, C. (2007). Acta Cryst. E63, o3958–o3959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDharmaratne, H. R., Napagoda, M. T. & Tennakoon, S. B. (2009). Nat. Prod. Res. 23, 539–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDharmaratne, H. R., Wijesinghe, W. M. & Thevanasem, V. (1999). J. Ethnopharmacol. 66, 339–342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDoriguetto, A. C., Santos, M. H., Ellena, J. A. & Nagem, T. J. (2001). Acta Cryst. C57, 1095–1097.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEe, G. C. L., Ng, K. N., Taufiq-Yap, Y. H., Rahmani, M., Ali, A. M. & Muse, R. (2004). Nat. Prod. Res. 18, 123–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEe, G. C. L., Teo, S. H., Kwong, H. C., Mohamed Tahir, M. I. & Silong, S. (2010). Acta Cryst. E66, o3331–o3332.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Ng, S.-L., Razak, I. A., Boonnak, N. & Chantrapromma, S. (2006). Acta Cryst. E62, o130–o132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIto, C., Itoigawa, M., Mishina, Y., Filho, V. C., Mukainaka, T. & Tokuda, H. (2002). J. Nat. Prod. 65, 267–272.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIto, C., Itoigawa, M., Miyamoto, Y., Rao, K. S., Takayasu, J. & Okuda, Y. (1999). J. Nat. Prod. 62, 1668–1671.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNdjakou Lenta, B., Devkota, K. P., Neumann, B., Tsamo, E. & Sewald, N. (2007). Acta Cryst. E63, o1629–o1631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationZou, J., Jin, D., Chen, W., Wang, J., Liu, Q. & Zhu, X. (2005). J. Nat. Prod. 68, 1514–1518.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds