organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Di­methyl­amino-N′-(2-hy­dr­oxy-3,5-di­iodo­benzyl­­idene)benzohydrazide

aCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China, and bDepartment of Chemistry, Yancheng Normal College, Yancheng 224002, People's Republic of China
*Correspondence e-mail: xpzhougroup@163.com,

(Received 20 August 2011; accepted 26 August 2011; online 3 September 2011)

The title mol­ecule, C16H15I2N3O2, adopts an E configuration about the C=N bond. The dihedral angle between the two benzene rings is 6.4 (2)°. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains propagating in the c-axis direction.

Related literature

For medical applications of hydrazones, see: Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Zhang et al. (2010[Zhang, Y.-H., Zhang, L., Liu, L., Guo, J.-X., Wu, D.-L., Xu, G.-C., Wang, X.-H. & Jia, D.-Z. (2010). Inorg. Chim. Acta, 363, 289-293.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]). For related structures, see: Su et al. (2011a[Su, F., Gu, Z.-G. & Lin, J. (2011a). Acta Cryst. E67, o1634.],b[Su, F., Gu, Z.-G. & Lin, J. (2011b). Acta Cryst. E67, o1896.]); Khaledi et al. (2010[Khaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105-o106.]); Zhou & Yang (2010[Zhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o290.]); Ji & Lu (2010[Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.]). For similar compounds that we have reported recently, see: Dai & Mao (2010a[Dai, C.-H. & Mao, F.-L. (2010a). Acta Cryst. E66, o2942.],b[Dai, C.-H. & Mao, F.-L. (2010b). Acta Cryst. E66, o3004-o3005.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15I2N3O2

  • Mr = 535.11

  • Monoclinic, P 21 /c

  • a = 20.387 (4) Å

  • b = 9.0000 (16) Å

  • c = 9.8355 (17) Å

  • β = 94.320 (2)°

  • V = 1799.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.51 mm−1

  • T = 298 K

  • 0.17 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.587, Tmax = 0.621

  • 9471 measured reflections

  • 3892 independent reflections

  • 2551 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.094

  • S = 1.04

  • 3892 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −1.06 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.91 2.623 (5) 144
N2—H2⋯O2i 0.90 (1) 2.16 (2) 3.016 (5) 159 (5)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years, medical applications of a number of hydrazone compounds have received considerable attention (Ajani et al., 2010; Zhang et al., 2010; Angelusiu et al., 2010). The structures of several hydrazone derivatives have also been determined (Su et al., 2011a,b; Khaledi et al., 2010; Zhou & Yang, 2010; Ji & Lu, 2010; Singh & Singh, 2010; Ahmad et al., 2010). As a continuation of our work in this area (Dai & Mao, 2010a,b), we report herein on the structure of the new title hydrazone compound.

In the molecule of the title compound, there is an intramolecular O—H···N hydrogen bond, as shown in Fig. 1. The dihedral angle between the (C1-C6) and (C9-C14) benzene rings is 6.4 (2)°. The bond lengths and angles are comparable to those found in the hydrazone compounds cited above.

In the crystal, the hydrazone molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), to form one-dimensional chains in the c direction (Fig. 2).

Related literature top

For medical applications of hydrazones, see: Ajani et al. (2010); Zhang et al. (2010); Angelusiu et al. (2010). For related structures, see: Su et al. (2011a,b); Khaledi et al. (2010); Zhou & Yang (2010); Ji & Lu (2010); Singh & Singh (2010); Ahmad et al. (2010). For similar compounds that we have reported recently, see: Dai & Mao (2010a,b).

Experimental top

The reaction of 2-hydroxy-3,5-diiodobenzaldehyde (0.374 g, 1 mmol) with 4-dimethylaminobenzohydrazide (0.179 g, 1 mmol) in 50 ml methanol at room temperature afforded the title compound. Colorless block-shaped single crystals were formed by slow evaporation of the clear solution in air.

Refinement top

The H2 atom was located in a difference Fourier map and refined with a distance restraint, N—H = 0.90 (1) Å, and Uiso = 0.08 Å2. The other H-atoms were positioned geometrically and refined as riding: O—H = 0.82 Å, C—H = 0.93 and 0.96 Å, for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OH and CH3 H-atoms and k = 1.2 for all other H-atoms.

Structure description top

In the last few years, medical applications of a number of hydrazone compounds have received considerable attention (Ajani et al., 2010; Zhang et al., 2010; Angelusiu et al., 2010). The structures of several hydrazone derivatives have also been determined (Su et al., 2011a,b; Khaledi et al., 2010; Zhou & Yang, 2010; Ji & Lu, 2010; Singh & Singh, 2010; Ahmad et al., 2010). As a continuation of our work in this area (Dai & Mao, 2010a,b), we report herein on the structure of the new title hydrazone compound.

In the molecule of the title compound, there is an intramolecular O—H···N hydrogen bond, as shown in Fig. 1. The dihedral angle between the (C1-C6) and (C9-C14) benzene rings is 6.4 (2)°. The bond lengths and angles are comparable to those found in the hydrazone compounds cited above.

In the crystal, the hydrazone molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), to form one-dimensional chains in the c direction (Fig. 2).

For medical applications of hydrazones, see: Ajani et al. (2010); Zhang et al. (2010); Angelusiu et al. (2010). For related structures, see: Su et al. (2011a,b); Khaledi et al. (2010); Zhou & Yang (2010); Ji & Lu (2010); Singh & Singh (2010); Ahmad et al. (2010). For similar compounds that we have reported recently, see: Dai & Mao (2010a,b).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing 30% probability displacement ellipsoids and the atomic numbering. The intramolecular N-H···O hydrogen bond is shown as a dashed line (See Table 1 for details).
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed down the b axis, with the O-H···N and N-H···O hydrogen bonds shown as dashed lines (see Table 1 for details).
4-Dimethylamino-N'-(2-hydroxy-3,5-diiodobenzylidene)benzohydrazide top
Crystal data top
C16H15I2N3O2F(000) = 1016
Mr = 535.11Dx = 1.975 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2040 reflections
a = 20.387 (4) Åθ = 2.4–24.5°
b = 9.0000 (16) ŵ = 3.51 mm1
c = 9.8355 (17) ÅT = 298 K
β = 94.320 (2)°Block, colourless
V = 1799.5 (5) Å30.17 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3892 independent reflections
Radiation source: fine-focus sealed tube2551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2518
Tmin = 0.587, Tmax = 0.621k = 1111
9471 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.036P)2 + 0.0912P]
where P = (Fo2 + 2Fc2)/3
3892 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.70 e Å3
1 restraintΔρmin = 1.06 e Å3
Crystal data top
C16H15I2N3O2V = 1799.5 (5) Å3
Mr = 535.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.387 (4) ŵ = 3.51 mm1
b = 9.0000 (16) ÅT = 298 K
c = 9.8355 (17) Å0.17 × 0.17 × 0.15 mm
β = 94.320 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3892 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2551 reflections with I > 2σ(I)
Tmin = 0.587, Tmax = 0.621Rint = 0.033
9471 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.70 e Å3
3892 reflectionsΔρmin = 1.06 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.430896 (19)0.68628 (4)0.37673 (4)0.06296 (15)
I20.41396 (2)0.29856 (5)0.12108 (4)0.07864 (18)
N10.17425 (19)0.6984 (4)0.1129 (4)0.0460 (10)
N20.1097 (2)0.7279 (5)0.0734 (4)0.0486 (11)
N30.1967 (2)0.8856 (6)0.0186 (5)0.0745 (15)
O10.28501 (17)0.7467 (4)0.2597 (3)0.0556 (9)
H10.24490.74850.24420.083*
O20.09491 (16)0.8441 (4)0.2731 (3)0.0528 (9)
C10.2749 (2)0.5829 (5)0.0659 (4)0.0411 (12)
C20.3110 (2)0.6455 (5)0.1782 (5)0.0423 (12)
C30.3763 (2)0.6018 (5)0.2055 (5)0.0400 (11)
C40.4057 (2)0.5002 (5)0.1236 (4)0.0407 (11)
H40.44910.47120.14390.049*
C50.3697 (2)0.4431 (5)0.0118 (5)0.0408 (11)
C60.3058 (2)0.4842 (5)0.0169 (5)0.0459 (12)
H60.28240.44520.09360.055*
C70.2062 (2)0.6198 (6)0.0322 (5)0.0481 (13)
H70.18530.58580.04920.058*
C80.0719 (2)0.8033 (5)0.1611 (5)0.0427 (12)
C90.0026 (2)0.8230 (5)0.1103 (5)0.0406 (11)
C100.0353 (2)0.9280 (5)0.1713 (5)0.0457 (13)
H100.01610.98550.24230.055*
C110.1005 (2)0.9493 (6)0.1295 (5)0.0480 (13)
H110.12451.02060.17310.058*
C120.1311 (2)0.8675 (6)0.0245 (5)0.0500 (13)
C130.0930 (3)0.7631 (7)0.0376 (6)0.0675 (17)
H130.11210.70590.10880.081*
C140.0279 (3)0.7425 (6)0.0035 (5)0.0563 (14)
H140.00370.67280.04140.068*
C150.2392 (3)0.9775 (7)0.0537 (6)0.0759 (19)
H15A0.23650.94880.14800.114*
H15B0.28370.96590.01550.114*
H15C0.22611.07940.04640.114*
C160.2223 (3)0.8274 (7)0.1472 (6)0.083 (2)
H16A0.18760.82030.20760.124*
H16B0.25610.89220.18620.124*
H16C0.24050.73050.13410.124*
H20.095 (3)0.714 (6)0.014 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0550 (3)0.0776 (3)0.0542 (3)0.0025 (2)0.00991 (18)0.02124 (19)
I20.0613 (3)0.0960 (4)0.0767 (3)0.0256 (2)0.0072 (2)0.0429 (2)
N10.034 (2)0.068 (3)0.036 (2)0.010 (2)0.0000 (18)0.004 (2)
N20.036 (2)0.075 (3)0.034 (2)0.015 (2)0.0013 (19)0.003 (2)
N30.041 (3)0.121 (4)0.060 (3)0.024 (3)0.007 (2)0.013 (3)
O10.049 (2)0.071 (2)0.046 (2)0.011 (2)0.0005 (19)0.0170 (18)
O20.044 (2)0.083 (3)0.0309 (19)0.0048 (18)0.0020 (16)0.0016 (18)
C10.040 (3)0.055 (3)0.028 (3)0.004 (2)0.000 (2)0.002 (2)
C20.051 (3)0.045 (3)0.032 (3)0.002 (2)0.006 (2)0.002 (2)
C30.036 (3)0.047 (3)0.036 (3)0.003 (2)0.004 (2)0.003 (2)
C40.034 (3)0.045 (3)0.042 (3)0.006 (2)0.003 (2)0.007 (2)
C50.041 (3)0.046 (3)0.036 (3)0.007 (2)0.004 (2)0.004 (2)
C60.049 (3)0.054 (3)0.034 (3)0.002 (3)0.003 (2)0.009 (2)
C70.040 (3)0.065 (3)0.038 (3)0.004 (3)0.006 (2)0.002 (3)
C80.044 (3)0.050 (3)0.035 (3)0.007 (2)0.007 (2)0.011 (2)
C90.036 (3)0.051 (3)0.034 (3)0.006 (2)0.002 (2)0.005 (2)
C100.043 (3)0.057 (3)0.036 (3)0.004 (3)0.002 (2)0.004 (2)
C110.050 (3)0.056 (3)0.039 (3)0.014 (3)0.008 (2)0.001 (2)
C120.037 (3)0.068 (4)0.045 (3)0.008 (3)0.004 (2)0.006 (3)
C130.051 (4)0.099 (5)0.051 (4)0.008 (3)0.008 (3)0.025 (3)
C140.040 (3)0.074 (4)0.054 (3)0.012 (3)0.000 (3)0.022 (3)
C150.043 (3)0.099 (5)0.085 (5)0.023 (3)0.004 (3)0.008 (4)
C160.046 (4)0.139 (6)0.060 (4)0.001 (4)0.014 (3)0.001 (4)
Geometric parameters (Å, º) top
I1—C32.091 (4)C6—H60.9300
I2—C52.096 (4)C7—H70.9300
N1—C71.278 (6)C8—C91.474 (6)
N1—N21.371 (5)C9—C141.385 (6)
N2—C81.378 (6)C9—C101.385 (6)
N2—H20.898 (10)C10—C111.375 (6)
N3—C121.380 (6)C10—H100.9300
N3—C151.427 (7)C11—C121.380 (7)
N3—C161.431 (7)C11—H110.9300
O1—C21.348 (5)C12—C131.390 (7)
O1—H10.8200C13—C141.370 (7)
O2—C81.221 (5)C13—H130.9300
C1—C61.389 (6)C14—H140.9300
C1—C21.400 (6)C15—H15A0.9600
C1—C71.452 (6)C15—H15B0.9600
C2—C31.393 (6)C15—H15C0.9600
C3—C41.385 (6)C16—H16A0.9600
C4—C51.375 (6)C16—H16B0.9600
C4—H40.9300C16—H16C0.9600
C5—C61.363 (6)
C7—N1—N2117.1 (4)N2—C8—C9114.4 (4)
N1—N2—C8119.2 (4)C14—C9—C10117.0 (4)
N1—N2—H2120 (4)C14—C9—C8123.9 (4)
C8—N2—H2120 (4)C10—C9—C8119.1 (4)
C12—N3—C15121.7 (5)C11—C10—C9121.5 (5)
C12—N3—C16120.6 (5)C11—C10—H10119.2
C15—N3—C16117.2 (5)C9—C10—H10119.2
C2—O1—H1109.5C10—C11—C12121.5 (5)
C6—C1—C2119.0 (4)C10—C11—H11119.2
C6—C1—C7119.0 (4)C12—C11—H11119.2
C2—C1—C7122.0 (4)C11—C12—N3122.7 (5)
O1—C2—C3119.3 (4)C11—C12—C13117.0 (5)
O1—C2—C1122.3 (4)N3—C12—C13120.3 (5)
C3—C2—C1118.5 (4)C14—C13—C12121.5 (5)
C4—C3—C2121.6 (4)C14—C13—H13119.2
C4—C3—I1118.7 (3)C12—C13—H13119.2
C2—C3—I1119.7 (3)C13—C14—C9121.5 (5)
C5—C4—C3118.9 (4)C13—C14—H14119.3
C5—C4—H4120.6C9—C14—H14119.3
C3—C4—H4120.6N3—C15—H15A109.5
C6—C5—C4120.6 (4)N3—C15—H15B109.5
C6—C5—I2119.2 (3)H15A—C15—H15B109.5
C4—C5—I2120.1 (3)N3—C15—H15C109.5
C5—C6—C1121.4 (4)H15A—C15—H15C109.5
C5—C6—H6119.3H15B—C15—H15C109.5
C1—C6—H6119.3N3—C16—H16A109.5
N1—C7—C1120.8 (4)N3—C16—H16B109.5
N1—C7—H7119.6H16A—C16—H16B109.5
C1—C7—H7119.6N3—C16—H16C109.5
O2—C8—N2121.2 (4)H16A—C16—H16C109.5
O2—C8—C9124.3 (4)H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.912.623 (5)144
N2—H2···O2i0.90 (1)2.16 (2)3.016 (5)159 (5)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H15I2N3O2
Mr535.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)20.387 (4), 9.0000 (16), 9.8355 (17)
β (°) 94.320 (2)
V3)1799.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.51
Crystal size (mm)0.17 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.587, 0.621
No. of measured, independent and
observed [I > 2σ(I)] reflections
9471, 3892, 2551
Rint0.033
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.094, 1.04
No. of reflections3892
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 1.06

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.912.623 (5)144.1
N2—H2···O2i0.898 (10)2.16 (2)3.016 (5)159 (5)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

We are grateful to the Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection for financial support (project No. JLCBE07026).

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, C.-H. & Mao, F.-L. (2010a). Acta Cryst. E66, o2942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDai, C.-H. & Mao, F.-L. (2010b). Acta Cryst. E66, o3004–o3005.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105–o106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSu, F., Gu, Z.-G. & Lin, J. (2011a). Acta Cryst. E67, o1634.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSu, F., Gu, Z.-G. & Lin, J. (2011b). Acta Cryst. E67, o1896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y.-H., Zhang, L., Liu, L., Guo, J.-X., Wu, D.-L., Xu, G.-C., Wang, X.-H. & Jia, D.-Z. (2010). Inorg. Chim. Acta, 363, 289–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o290.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds