metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis[4-amino-3,5-bis­­(2-pyrid­yl)-4H-1,2,4-triazole-κN3]di­aqua­cobalt(II) bis­­(3-carb­­oxy-5-nitro­benzoate)

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: tjnulicp@gmail.com

(Received 24 August 2011; accepted 31 August 2011; online 14 September 2011)

The title complex, [Co(C12H10N6)2(H2O)2](C8H4NO6)2, is composed of a mononuclear cobalt(II) cation and two 3-carb­oxy-5-nitro­benzoate anions for charge balance. In the cation, the CoII atom is six-coordinated in a distorted octa­hedral geometry. It bonds to two O atoms of two water mol­ecules, and two pairs of N atoms from two 4-amino-3,5-bis­(2-pyrid­yl)-4H-1,2,4-triazole mol­ecules, which behave as bidentate chelating ligands. There are intra­molecular N—H⋯N hydrogen bonds in the cation. In the crystal, there are a number of inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, as well as inter­molecular ππ stacking inter­actions [centroid–centroid distances = 3.657 (2) and 3.847 (2) Å], that link the mol­ecules into two-dimensional networks lying parallel to the ab plane. The presence of C—H⋯O inter­actions leads to the formation of a three-dimensional network.

Related literature

For background information on triazole derivatives, see: Klingele et al. (2009[Klingele, J., Scherer, H. & Klingele, M. H. (2009). Z. Anorg. Allg. Chem. 635, 2279-2287.]); Shao et al. (2004[Shao, S.-C., Liu, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, m1815-m1816.]); Huang et al. (2011[Huang, Y. G., Mu, B., Schoenecker, P. M., Carson, C. G., Karra, J. R., Cai, Y. & Walton, K. S. (2011). Angew. Chem. Int. Ed. 50, 436-440.]). For the coordination systems of related pyridyl-substitued triazole ligands, see: Du et al. (2007[Du, M., Jiang, X.-J. & Zhao, X.-J. (2007). Inorg. Chem. 46, 3984-3995.], 2008[Du, M., Zhang, Z.-H., You, Y.-P. & Zhao, X.-J. (2008). CrystEngComm, 10, 306-321.]); He et al. (2010[He, X., Liu, J.-J., Guo, H.-M., Shao, M. & Li, M.-X. (2010). Polyhedron, 29, 1062-1068.]); Li et al. (2010[Li, B.-Y., Peng, Y., Li, G.-H., Hua, J., Yu, Y., Jin, D., Shi, Z. & Feng, S.-H. (2010). Cryst. Growth. Des. 10, 2192-2201.]). For some examples of the coordination complexes of the title (4-amino-3,5-bis­(2-pyrid­yl)-4H-1,2,4-triazole (2-bpt) ligand, see: Guo et al. (2011[Guo, J., Tang, M., Chen, J. & Li, C.-P. (2011). Acta Cryst. E67, m1180.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H10N6)2(H2O)2](C8H4NO6)2

  • Mr = 991.73

  • Triclinic, [P \overline 1]

  • a = 7.589 (3) Å

  • b = 16.104 (6) Å

  • c = 18.256 (6) Å

  • α = 74.739 (6)°

  • β = 86.435 (6)°

  • γ = 88.619 (6)°

  • V = 2148.4 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 296 K

  • 0.28 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.876, Tmax = 0.953

  • 11079 measured reflections

  • 7532 independent reflections

  • 5560 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 1.03

  • 7532 reflections

  • 624 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N6 0.89 2.23 2.885 (3) 130
N11—H11A⋯N12 0.89 2.21 2.859 (3) 130
O1—H1A⋯O9i 0.85 1.85 2.674 (3) 163
O1—H1B⋯O5ii 0.85 1.87 2.710 (3) 168
O2—H2A⋯O5iii 0.85 1.89 2.712 (2) 162
O2—H2B⋯O9 0.85 1.86 2.681 (3) 163
O4—H4⋯O10iv 0.82 1.73 2.545 (3) 172
N5—H5B⋯O10 0.89 2.36 3.065 (3) 136
N5—H5B⋯O3iv 0.89 2.51 3.234 (3) 139
N11—H11B⋯O6iii 0.89 2.32 3.057 (3) 140
N11—H11B⋯O13v 0.89 2.56 3.252 (3) 135
O14—H14⋯O6vi 0.82 1.77 2.580 (3) 170
C3—H3⋯O5vii 0.93 2.47 3.402 (4) 176
C9—H9⋯O11iv 0.93 2.49 3.249 (5) 139
C14—H14A⋯O6viii 0.93 2.49 3.403 (4) 166
C21—H21⋯O7ix 0.93 2.48 3.259 (4) 142
C28—H28⋯O13vi 0.93 2.56 3.490 (4) 175
Symmetry codes: (i) x-1, y, z; (ii) x, y, z-1; (iii) x+1, y, z-1; (iv) -x+1, -y, -z+1; (v) -x+2, -y+1, -z; (vi) -x+1, -y+1, -z+1; (vii) -x, -y, -z+1; (viii) -x, -y+1, -z+1; (ix) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

1,2,4-triazole and its derivatives are an important class of ligands used as building tectons in constructing coordination complexes (Klingele et al., 2009; Shao et al., 2004; Huang et al., 2011). In particular, pyridyl-decorated triazole ligands are extensively studied, for example 4-amino-3,5-bis(4-pyridyl)-4H-1,2,4-triazole and 4-amino-3,5-bis(3-pyridyl)-4H-1,2,4-triazole, by us (Du et al., 2007; 2008) and other groups (He et al., 2010; Li, et al. 2010). In the published articles, such series of ligands successfully behave as not only the extended exo-bidentate linkers with the terminal pyridyl groups but also as the promoter of a coordinative cycle with the central triazole upon metalation (Li, et al. 2010). Toward this direction, the analogous ligand 4-amino-3,5-bis(2-pyridyl)-4H-1,2,4-triazole (2-bpt) exhibits different conformations and coordination modes, and has received our attention (Guo et al. 2011). In continuation of our work in this field we report on the crystal structure of the title cobalt(II) complex.

The molecular structure of title complex is illustrated in Fig. 1. In the cation [Co(2-bpt)2(H2O)2]2+, the 2-bpt ligands show a bidentate mode, bonding to atom Co1 through atoms N1, N2 and N7, N8, in a trans arrangement. The Co1 atom is also coordinated to a pair of water molecules through the O atoms O1 and O2. The cobalt atom shows a distorted octahedral coordination sphere. The two 3-carboxy-5-nitrobenzoates are isolated in a discrete mode for charge balance. Within the cation [Co(2-bpt)2(H2O)2]2+, there are two intramolecular N–H···N bonds involving the amino and the 2-pyridyl groups in the 2-bpt ligands (Table 1).

In the crystal, intermolecular O–H···O hydrogen bonds between the water ligand and discrete 3-carboxy-5-nitrobenzoates interlink these molecules into a one-dimensional chain motif. Furthermore, adjacent chains are interconnected by N–H···O hydrogen bonds between the 2-bpt and 3-carboxy-5-nitrobenzoate, and O–H···O hydrogen bonds between the 3-carboxy-5-nitrobenzoates, to form extended two-dimensional networks (Table 1 and Fig. 2). In addition, a number of π···π stacking interactions, involving symmetry related coordinated pyridine rings, are found to further reinforce the two-dimensional supramolecular pattern [Cg1···Cg1i 3.847 (2) Å, perpendicular separation 3.534 (1) Å, with slippage of 1.519 Å; Cg2···Cg2i 3.657 (2) Å, perpendicular separation 3.495 (1) Å, slippage 1.077 Å; where Cg1 is the centroid of ring (N1,C1-C5); Cg2 is the centroid of ring (N7,C13-C17); symmetry code: 1-x, -y, -z]. There are also a number of C-H···O interactions present linking the two-dimensional networks to form a three-dimensional structure (Tabel 1).

Related literature top

For background information on triazole derivatives, see: Klingele et al. (2009); Shao et al. (2004); Huang et al. (2011). For the coordination systems of related pyridyl-substitued triazole ligands, see: Du et al. (2007, 2008); He et al. (2010); Li et al. (2010). For some examples of the coordination complexes of the title (4-amino-3,5-bis(2-pyridyl)-4H-1,2,4-triazole (2-bpt) ligand, see: Guo et al. (2011).

Experimental top

A mixture of 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole (2-bpt; 23.8 mg, 0.1 mmol), 5-nitroisophthalic acid (21.1 mg, 0.1 mmol), Co(NO3)2 (18.3 mg, 0.1 mmol) in water (10 ml) was sealed in a Teflon-lined stainless steel vessel (20 ml). It was heated to 373 K in 24 h and then gradually cooled to room temperature at a rate of 5 °C/h. Red block-like crystals, suitable for X-ray analysis, were obtained. Anal. Calc. for C40H32CoN14O14: C, 48.44; H, 3.25; N, 19.77%. Found: C, 48.32; H, 3.04; N, 19.85%.

Refinement top

All the H atoms were initially located in a difference Fourier map. The water and NH2 H atoms were then refined as riding atoms with Uiso(H) = 1.5Ueq(O,N). The hydroxyl and C-bound H atoms were included in calculated positions and treated as riding atoms: O-H = 0.85 Å, N-H = 0.89 Å, and C-H = 0.93 Å, with Uiso(H) = k × Ueq (O,N,C), where k = 1.5 for OH and NH2 H atoms, and k = 1.2 for C-bound H-atoms.

Structure description top

1,2,4-triazole and its derivatives are an important class of ligands used as building tectons in constructing coordination complexes (Klingele et al., 2009; Shao et al., 2004; Huang et al., 2011). In particular, pyridyl-decorated triazole ligands are extensively studied, for example 4-amino-3,5-bis(4-pyridyl)-4H-1,2,4-triazole and 4-amino-3,5-bis(3-pyridyl)-4H-1,2,4-triazole, by us (Du et al., 2007; 2008) and other groups (He et al., 2010; Li, et al. 2010). In the published articles, such series of ligands successfully behave as not only the extended exo-bidentate linkers with the terminal pyridyl groups but also as the promoter of a coordinative cycle with the central triazole upon metalation (Li, et al. 2010). Toward this direction, the analogous ligand 4-amino-3,5-bis(2-pyridyl)-4H-1,2,4-triazole (2-bpt) exhibits different conformations and coordination modes, and has received our attention (Guo et al. 2011). In continuation of our work in this field we report on the crystal structure of the title cobalt(II) complex.

The molecular structure of title complex is illustrated in Fig. 1. In the cation [Co(2-bpt)2(H2O)2]2+, the 2-bpt ligands show a bidentate mode, bonding to atom Co1 through atoms N1, N2 and N7, N8, in a trans arrangement. The Co1 atom is also coordinated to a pair of water molecules through the O atoms O1 and O2. The cobalt atom shows a distorted octahedral coordination sphere. The two 3-carboxy-5-nitrobenzoates are isolated in a discrete mode for charge balance. Within the cation [Co(2-bpt)2(H2O)2]2+, there are two intramolecular N–H···N bonds involving the amino and the 2-pyridyl groups in the 2-bpt ligands (Table 1).

In the crystal, intermolecular O–H···O hydrogen bonds between the water ligand and discrete 3-carboxy-5-nitrobenzoates interlink these molecules into a one-dimensional chain motif. Furthermore, adjacent chains are interconnected by N–H···O hydrogen bonds between the 2-bpt and 3-carboxy-5-nitrobenzoate, and O–H···O hydrogen bonds between the 3-carboxy-5-nitrobenzoates, to form extended two-dimensional networks (Table 1 and Fig. 2). In addition, a number of π···π stacking interactions, involving symmetry related coordinated pyridine rings, are found to further reinforce the two-dimensional supramolecular pattern [Cg1···Cg1i 3.847 (2) Å, perpendicular separation 3.534 (1) Å, with slippage of 1.519 Å; Cg2···Cg2i 3.657 (2) Å, perpendicular separation 3.495 (1) Å, slippage 1.077 Å; where Cg1 is the centroid of ring (N1,C1-C5); Cg2 is the centroid of ring (N7,C13-C17); symmetry code: 1-x, -y, -z]. There are also a number of C-H···O interactions present linking the two-dimensional networks to form a three-dimensional structure (Tabel 1).

For background information on triazole derivatives, see: Klingele et al. (2009); Shao et al. (2004); Huang et al. (2011). For the coordination systems of related pyridyl-substitued triazole ligands, see: Du et al. (2007, 2008); He et al. (2010); Li et al. (2010). For some examples of the coordination complexes of the title (4-amino-3,5-bis(2-pyridyl)-4H-1,2,4-triazole (2-bpt) ligand, see: Guo et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the numbering scheme, and displacement ellipsoids drawn at the 50% probability level [H-atoms have been omitted for clarity].
[Figure 2] Fig. 2. A view along the c-axis of the two-dimensional network in the crystal of the title compound, formed via N–H···O and O–H···O hydrogen bonds (red dashed lines; see Table 1 for details).
trans-Bis[4-amino-3,5-bis(2-pyridyl)-4H-1,2,4-triazole- κN3]diaquacobalt(II) bis(3-carboxy-5-nitrobenzoate) top
Crystal data top
[Co(C12H10N6)2(H2O)2](C8H4NO6)2Z = 2
Mr = 991.73F(000) = 1018
Triclinic, P1Dx = 1.533 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.589 (3) ÅCell parameters from 2949 reflections
b = 16.104 (6) Åθ = 2.3–27.8°
c = 18.256 (6) ŵ = 0.49 mm1
α = 74.739 (6)°T = 296 K
β = 86.435 (6)°Block, red
γ = 88.619 (6)°0.28 × 0.20 × 0.10 mm
V = 2148.4 (13) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
7532 independent reflections
Radiation source: fine-focus sealed tube5560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.876, Tmax = 0.953k = 1914
11079 measured reflectionsl = 2116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.4823P]
where P = (Fo2 + 2Fc2)/3
7532 reflections(Δ/σ)max = 0.001
624 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Co(C12H10N6)2(H2O)2](C8H4NO6)2γ = 88.619 (6)°
Mr = 991.73V = 2148.4 (13) Å3
Triclinic, P1Z = 2
a = 7.589 (3) ÅMo Kα radiation
b = 16.104 (6) ŵ = 0.49 mm1
c = 18.256 (6) ÅT = 296 K
α = 74.739 (6)°0.28 × 0.20 × 0.10 mm
β = 86.435 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7532 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5560 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.953Rint = 0.020
11079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
7532 reflectionsΔρmin = 0.28 e Å3
624 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.32405 (4)0.25256 (2)0.003809 (17)0.03888 (11)
O10.0507 (2)0.25767 (13)0.00518 (10)0.0705 (6)
H1A0.01000.23500.04600.106*
H1B0.00160.26600.03600.106*
O20.5949 (2)0.24725 (11)0.00307 (9)0.0518 (5)
H2A0.65920.26530.03760.078*
H2B0.65010.22520.04280.078*
O30.3001 (3)0.09926 (13)0.66872 (12)0.0740 (6)
O40.1421 (4)0.06414 (13)0.77892 (13)0.0909 (8)
H40.18440.01630.78110.136*
O50.1561 (2)0.27405 (11)0.88632 (9)0.0490 (4)
O60.1783 (2)0.41069 (11)0.82107 (10)0.0549 (5)
O70.1480 (5)0.49569 (17)0.57118 (15)0.1329 (13)
O80.2199 (4)0.40024 (17)0.51197 (12)0.1040 (9)
O90.8068 (2)0.20782 (13)0.11969 (10)0.0588 (5)
O100.7215 (3)0.08548 (11)0.20111 (12)0.0630 (5)
O110.8256 (4)0.04771 (19)0.47188 (14)0.1199 (11)
O120.9545 (4)0.14525 (16)0.50898 (13)0.0921 (8)
O131.1457 (3)0.41543 (12)0.32180 (12)0.0784 (7)
O141.0360 (3)0.43935 (12)0.20838 (11)0.0710 (6)
H141.07470.48770.20330.106*
N10.3044 (3)0.11527 (13)0.02363 (11)0.0445 (5)
N20.3197 (3)0.20794 (12)0.12305 (11)0.0403 (5)
N30.3485 (3)0.24343 (13)0.18211 (11)0.0430 (5)
N40.3396 (3)0.10213 (12)0.22488 (11)0.0425 (5)
N50.3586 (3)0.01656 (13)0.27045 (12)0.0587 (6)
H5A0.31850.01970.31650.088*
H5B0.47530.00950.27010.088*
N60.3598 (3)0.11979 (15)0.37782 (12)0.0578 (6)
N70.3113 (3)0.39029 (13)0.01663 (11)0.0435 (5)
N80.3581 (3)0.29661 (12)0.11590 (11)0.0405 (5)
N90.4189 (3)0.25979 (12)0.17272 (11)0.0419 (5)
N100.4397 (3)0.40093 (12)0.21353 (11)0.0417 (5)
N110.4862 (3)0.48528 (13)0.25670 (12)0.0574 (6)
H11A0.47410.48370.30450.086*
H11B0.60060.48870.24990.086*
N120.5556 (3)0.38292 (15)0.36183 (12)0.0589 (6)
N130.1622 (4)0.42141 (19)0.56753 (15)0.0786 (8)
N140.8956 (4)0.11715 (18)0.45993 (15)0.0692 (7)
C10.2857 (4)0.07359 (17)0.02980 (16)0.0555 (7)
H10.29170.10510.08050.067*
C20.2577 (4)0.01403 (18)0.01325 (17)0.0629 (8)
H20.24680.04120.05180.075*
C30.2464 (4)0.05991 (19)0.06188 (18)0.0680 (9)
H30.22670.11890.07480.082*
C40.2644 (4)0.01838 (17)0.11821 (16)0.0583 (8)
H4A0.25650.04880.16920.070*
C50.2940 (3)0.06877 (16)0.09748 (14)0.0427 (6)
C60.3153 (3)0.12378 (15)0.14923 (13)0.0399 (6)
C70.3618 (3)0.17853 (16)0.24301 (13)0.0408 (6)
C80.3936 (3)0.18816 (17)0.31903 (14)0.0443 (6)
C90.3847 (4)0.1292 (2)0.44718 (16)0.0693 (9)
H90.36380.08220.48880.083*
C100.4392 (4)0.2042 (2)0.46033 (17)0.0708 (9)
H100.45380.20770.50960.085*
C110.4718 (4)0.2738 (2)0.39973 (18)0.0692 (9)
H110.50760.32560.40720.083*
C120.4506 (4)0.26606 (18)0.32698 (16)0.0546 (7)
H120.47400.31200.28470.066*
C130.2701 (4)0.43301 (18)0.03589 (16)0.0558 (7)
H130.25410.40180.08650.067*
C140.2502 (4)0.52099 (18)0.01830 (17)0.0616 (8)
H14A0.22240.54870.05630.074*
C150.2721 (4)0.56709 (18)0.05627 (17)0.0629 (8)
H150.25910.62670.06950.075*
C160.3139 (4)0.52431 (16)0.11160 (16)0.0544 (7)
H160.32890.55450.16250.065*
C170.3327 (3)0.43628 (15)0.08981 (14)0.0410 (6)
C180.3730 (3)0.38062 (15)0.14064 (13)0.0397 (6)
C190.4689 (3)0.32364 (15)0.23130 (13)0.0396 (6)
C200.5518 (3)0.31336 (17)0.30288 (14)0.0451 (6)
C210.6397 (4)0.3751 (2)0.42676 (17)0.0722 (9)
H210.64540.42300.46850.087*
C220.7174 (4)0.3000 (2)0.43443 (18)0.0730 (9)
H220.77640.29760.48000.088*
C230.7071 (4)0.2286 (2)0.37412 (17)0.0649 (8)
H230.75650.17670.37860.078*
C240.6227 (4)0.23449 (18)0.30664 (15)0.0530 (7)
H240.61350.18680.26480.064*
C250.1314 (3)0.20759 (15)0.70810 (14)0.0436 (6)
C260.0370 (3)0.22969 (15)0.76796 (14)0.0412 (6)
H260.01160.18740.81280.049*
C270.0203 (3)0.31364 (15)0.76225 (13)0.0362 (5)
C280.0197 (3)0.37651 (16)0.69598 (14)0.0450 (6)
H280.01620.43320.69110.054*
C290.1143 (4)0.35339 (17)0.63703 (14)0.0489 (7)
C300.1688 (3)0.27040 (17)0.64131 (15)0.0493 (7)
H300.22950.25670.60020.059*
C310.1993 (4)0.11865 (17)0.71484 (17)0.0548 (7)
C320.1256 (3)0.33493 (16)0.82824 (14)0.0389 (6)
C330.9871 (3)0.30328 (15)0.29271 (14)0.0444 (6)
C340.9275 (3)0.27180 (15)0.23500 (14)0.0432 (6)
H340.93310.30680.18550.052*
C350.8596 (3)0.18940 (15)0.24922 (14)0.0400 (6)
C360.8506 (3)0.13782 (17)0.32355 (15)0.0497 (7)
H360.80570.08240.33490.060*
C370.9101 (4)0.17082 (17)0.38024 (15)0.0499 (7)
C380.9792 (3)0.25185 (17)0.36690 (15)0.0490 (7)
H381.01940.27160.40630.059*
C391.0643 (4)0.39134 (17)0.27698 (17)0.0526 (7)
C400.7929 (3)0.15776 (16)0.18499 (15)0.0442 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0385 (2)0.0391 (2)0.0386 (2)0.00531 (14)0.00514 (14)0.01071 (15)
O10.0373 (11)0.1106 (18)0.0502 (11)0.0070 (11)0.0047 (9)0.0014 (11)
O20.0393 (10)0.0708 (13)0.0427 (10)0.0064 (9)0.0047 (8)0.0113 (9)
O30.0879 (16)0.0578 (13)0.0753 (14)0.0140 (11)0.0214 (12)0.0227 (11)
O40.122 (2)0.0407 (12)0.0971 (17)0.0092 (13)0.0482 (15)0.0090 (12)
O50.0532 (11)0.0453 (10)0.0435 (10)0.0056 (8)0.0115 (8)0.0058 (9)
O60.0667 (13)0.0356 (10)0.0636 (12)0.0036 (9)0.0135 (10)0.0186 (9)
O70.197 (3)0.0594 (17)0.105 (2)0.0189 (18)0.081 (2)0.0223 (15)
O80.141 (2)0.105 (2)0.0485 (13)0.0234 (17)0.0284 (14)0.0012 (13)
O90.0566 (12)0.0688 (13)0.0479 (11)0.0180 (10)0.0014 (9)0.0090 (10)
O100.0648 (13)0.0362 (11)0.0874 (14)0.0081 (9)0.0061 (11)0.0140 (10)
O110.155 (3)0.095 (2)0.0825 (18)0.050 (2)0.0184 (17)0.0320 (15)
O120.134 (2)0.0888 (18)0.0489 (13)0.0098 (16)0.0052 (14)0.0129 (13)
O130.113 (2)0.0464 (12)0.0803 (15)0.0072 (12)0.0306 (14)0.0186 (11)
O140.0987 (17)0.0460 (12)0.0657 (13)0.0224 (12)0.0148 (12)0.0059 (10)
N10.0454 (13)0.0440 (12)0.0467 (13)0.0119 (10)0.0052 (10)0.0173 (10)
N20.0423 (12)0.0380 (12)0.0401 (11)0.0030 (9)0.0062 (9)0.0113 (9)
N30.0472 (13)0.0427 (12)0.0395 (12)0.0007 (10)0.0047 (9)0.0134 (10)
N40.0466 (13)0.0363 (12)0.0416 (12)0.0001 (9)0.0017 (9)0.0058 (9)
N50.0764 (17)0.0393 (13)0.0539 (14)0.0019 (12)0.0054 (12)0.0002 (11)
N60.0599 (16)0.0653 (16)0.0443 (13)0.0069 (12)0.0016 (11)0.0082 (12)
N70.0479 (13)0.0421 (12)0.0423 (12)0.0003 (10)0.0026 (10)0.0155 (10)
N80.0449 (12)0.0374 (12)0.0410 (11)0.0064 (9)0.0028 (9)0.0144 (9)
N90.0488 (13)0.0406 (12)0.0387 (11)0.0074 (10)0.0018 (10)0.0151 (10)
N100.0480 (13)0.0378 (12)0.0371 (11)0.0074 (9)0.0005 (9)0.0062 (9)
N110.0755 (17)0.0397 (13)0.0511 (13)0.0097 (11)0.0071 (12)0.0026 (10)
N120.0663 (16)0.0633 (16)0.0439 (13)0.0107 (13)0.0083 (12)0.0098 (12)
N130.092 (2)0.070 (2)0.0559 (17)0.0133 (16)0.0256 (15)0.0075 (15)
N140.0735 (19)0.0643 (18)0.0576 (17)0.0040 (15)0.0055 (14)0.0029 (15)
C10.0662 (19)0.0500 (17)0.0531 (16)0.0129 (14)0.0030 (14)0.0189 (14)
C20.074 (2)0.0546 (18)0.068 (2)0.0172 (15)0.0070 (16)0.0311 (16)
C30.083 (2)0.0444 (17)0.080 (2)0.0195 (15)0.0135 (18)0.0247 (16)
C40.074 (2)0.0392 (16)0.0591 (18)0.0116 (14)0.0092 (15)0.0109 (14)
C50.0396 (14)0.0415 (14)0.0460 (15)0.0048 (11)0.0060 (11)0.0111 (12)
C60.0391 (14)0.0397 (15)0.0388 (14)0.0050 (11)0.0064 (11)0.0077 (11)
C70.0349 (14)0.0445 (15)0.0414 (14)0.0002 (11)0.0058 (11)0.0101 (12)
C80.0374 (14)0.0541 (16)0.0419 (14)0.0035 (12)0.0014 (11)0.0146 (13)
C90.074 (2)0.088 (2)0.0420 (17)0.0070 (18)0.0019 (15)0.0108 (16)
C100.071 (2)0.098 (3)0.0492 (18)0.0009 (19)0.0023 (16)0.0302 (19)
C110.077 (2)0.073 (2)0.068 (2)0.0024 (17)0.0076 (17)0.0340 (18)
C120.0595 (18)0.0546 (18)0.0511 (17)0.0014 (14)0.0006 (14)0.0169 (14)
C130.0656 (19)0.0552 (18)0.0498 (16)0.0038 (14)0.0043 (14)0.0216 (14)
C140.074 (2)0.0540 (18)0.067 (2)0.0111 (15)0.0033 (16)0.0349 (16)
C150.082 (2)0.0390 (16)0.071 (2)0.0111 (15)0.0118 (17)0.0187 (15)
C160.069 (2)0.0420 (16)0.0523 (16)0.0030 (14)0.0062 (14)0.0115 (13)
C170.0381 (14)0.0411 (14)0.0454 (15)0.0000 (11)0.0023 (11)0.0142 (12)
C180.0404 (14)0.0396 (14)0.0389 (14)0.0032 (11)0.0020 (11)0.0095 (11)
C190.0380 (14)0.0434 (15)0.0382 (14)0.0061 (11)0.0007 (11)0.0117 (12)
C200.0416 (15)0.0551 (17)0.0385 (14)0.0102 (12)0.0002 (11)0.0116 (13)
C210.079 (2)0.087 (3)0.0449 (17)0.0169 (19)0.0120 (16)0.0091 (17)
C220.066 (2)0.110 (3)0.0492 (19)0.013 (2)0.0142 (15)0.034 (2)
C230.060 (2)0.085 (2)0.0607 (19)0.0022 (17)0.0004 (15)0.0391 (18)
C240.0538 (17)0.0599 (18)0.0487 (16)0.0024 (14)0.0030 (13)0.0199 (14)
C250.0425 (15)0.0389 (14)0.0508 (15)0.0013 (11)0.0007 (12)0.0151 (12)
C260.0399 (14)0.0364 (14)0.0452 (14)0.0047 (11)0.0022 (11)0.0074 (11)
C270.0322 (13)0.0359 (13)0.0412 (13)0.0033 (10)0.0007 (10)0.0114 (11)
C280.0463 (16)0.0382 (14)0.0468 (15)0.0011 (12)0.0014 (12)0.0056 (12)
C290.0497 (16)0.0494 (16)0.0408 (15)0.0016 (13)0.0039 (12)0.0017 (12)
C300.0459 (16)0.0568 (17)0.0460 (15)0.0031 (13)0.0048 (12)0.0169 (13)
C310.0594 (19)0.0441 (16)0.0625 (18)0.0008 (14)0.0073 (15)0.0192 (14)
C320.0352 (14)0.0392 (15)0.0448 (15)0.0085 (11)0.0008 (11)0.0151 (12)
C330.0447 (15)0.0371 (14)0.0511 (16)0.0024 (11)0.0018 (12)0.0122 (12)
C340.0413 (15)0.0369 (14)0.0474 (15)0.0004 (11)0.0031 (12)0.0056 (12)
C350.0346 (14)0.0342 (13)0.0483 (15)0.0005 (10)0.0033 (11)0.0070 (11)
C360.0415 (15)0.0398 (15)0.0613 (18)0.0010 (12)0.0068 (13)0.0042 (13)
C370.0493 (17)0.0480 (16)0.0453 (16)0.0087 (13)0.0049 (13)0.0024 (13)
C380.0498 (17)0.0485 (16)0.0492 (16)0.0051 (13)0.0021 (13)0.0155 (13)
C390.0609 (19)0.0397 (15)0.0592 (18)0.0020 (13)0.0052 (15)0.0164 (14)
C400.0320 (14)0.0421 (15)0.0592 (17)0.0023 (11)0.0040 (12)0.0162 (14)
Geometric parameters (Å, º) top
Co1—O22.0548 (18)C3—C41.381 (4)
Co1—O12.073 (2)C3—H30.9300
Co1—N22.104 (2)C4—C51.374 (3)
Co1—N82.114 (2)C4—H4A0.9300
Co1—N72.151 (2)C5—C61.473 (3)
Co1—N12.152 (2)C7—C81.472 (3)
O1—H1A0.8500C8—C121.383 (4)
O1—H1B0.8500C9—C101.369 (4)
O2—H2A0.8500C9—H90.9300
O2—H2B0.8501C10—C111.367 (4)
O3—C311.200 (3)C10—H100.9300
O4—C311.320 (3)C11—C121.386 (4)
O4—H40.8200C11—H110.9300
O5—C321.254 (3)C12—H120.9300
O6—C321.251 (3)C13—C141.375 (4)
O7—N131.217 (3)C13—H130.9300
O8—N131.207 (3)C14—C151.370 (4)
O9—C401.251 (3)C14—H14A0.9300
O10—C401.251 (3)C15—C161.383 (4)
O11—N141.211 (3)C15—H150.9300
O12—N141.216 (3)C16—C171.374 (3)
O13—C391.201 (3)C16—H160.9300
O14—C391.315 (3)C17—C181.466 (3)
O14—H140.8200C19—C201.462 (3)
N1—C11.338 (3)C20—C241.384 (4)
N1—C51.357 (3)C21—C221.369 (4)
N2—C61.314 (3)C21—H210.9300
N2—N31.377 (3)C22—C231.366 (4)
N3—C71.317 (3)C22—H220.9300
N4—C61.356 (3)C23—C241.377 (4)
N4—C71.372 (3)C23—H230.9300
N4—N51.419 (3)C24—H240.9300
N5—H5A0.8897C25—C301.383 (3)
N5—H5B0.8900C25—C261.389 (3)
N6—C81.337 (3)C25—C311.487 (4)
N6—C91.340 (3)C26—C271.390 (3)
N7—C131.338 (3)C26—H260.9300
N7—C171.348 (3)C27—C281.380 (3)
N8—C181.314 (3)C27—C321.514 (3)
N8—N91.376 (3)C28—C291.383 (3)
N9—C191.317 (3)C28—H280.9300
N10—C181.352 (3)C29—C301.373 (4)
N10—C191.376 (3)C30—H300.9300
N10—N111.420 (3)C33—C341.387 (3)
N11—H11A0.8901C33—C381.388 (3)
N11—H11B0.8901C33—C391.497 (4)
N12—C201.333 (3)C34—C351.389 (3)
N12—C211.345 (4)C34—H340.9300
N13—C291.474 (3)C35—C361.391 (3)
N14—C371.483 (3)C35—C401.514 (3)
C1—C21.382 (4)C36—C371.384 (4)
C1—H10.9300C36—H360.9300
C2—C31.375 (4)C37—C381.374 (4)
C2—H20.9300C38—H380.9300
O2—Co1—O1179.70 (7)C12—C11—H11120.5
O2—Co1—N287.88 (7)C8—C12—C11118.2 (3)
O1—Co1—N291.82 (7)C8—C12—H12120.9
O2—Co1—N886.02 (7)C11—C12—H12120.9
O1—Co1—N894.28 (7)N7—C13—C14122.8 (3)
N2—Co1—N8173.90 (8)N7—C13—H13118.6
O2—Co1—N794.15 (7)C14—C13—H13118.6
O1—Co1—N785.93 (8)C15—C14—C13118.7 (3)
N2—Co1—N7103.73 (7)C15—C14—H14A120.6
N8—Co1—N776.81 (7)C13—C14—H14A120.6
O2—Co1—N192.39 (7)C14—C15—C16119.5 (3)
O1—Co1—N187.53 (8)C14—C15—H15120.3
N2—Co1—N176.85 (8)C16—C15—H15120.3
N8—Co1—N1103.33 (8)C17—C16—C15118.6 (3)
N7—Co1—N1173.44 (8)C17—C16—H16120.7
Co1—O1—H1A119.9C15—C16—H16120.7
Co1—O1—H1B120.3N7—C17—C16122.4 (2)
H1A—O1—H1B116.5N7—C17—C18111.6 (2)
Co1—O2—H2A121.8C16—C17—C18126.0 (2)
Co1—O2—H2B122.6N8—C18—N10109.1 (2)
H2A—O2—H2B115.6N8—C18—C17121.0 (2)
C31—O4—H4109.5N10—C18—C17129.8 (2)
C39—O14—H14109.5N9—C19—N10109.8 (2)
C1—N1—C5117.9 (2)N9—C19—C20124.9 (2)
C1—N1—Co1125.52 (18)N10—C19—C20125.3 (2)
C5—N1—Co1116.25 (16)N12—C20—C24123.4 (2)
C6—N2—N3108.79 (19)N12—C20—C19116.6 (2)
C6—N2—Co1114.47 (15)C24—C20—C19120.0 (2)
N3—N2—Co1135.76 (15)N12—C21—C22123.1 (3)
C7—N3—N2106.38 (19)N12—C21—H21118.4
C6—N4—C7105.5 (2)C22—C21—H21118.4
C6—N4—N5124.6 (2)C23—C22—C21119.1 (3)
C7—N4—N5129.4 (2)C23—C22—H22120.5
N4—N5—H5A103.5C21—C22—H22120.5
N4—N5—H5B102.5C22—C23—C24119.3 (3)
H5A—N5—H5B109.0C22—C23—H23120.4
C8—N6—C9116.7 (3)C24—C23—H23120.4
C13—N7—C17117.9 (2)C23—C24—C20118.1 (3)
C13—N7—Co1125.56 (18)C23—C24—H24121.0
C17—N7—Co1116.28 (15)C20—C24—H24121.0
C18—N8—N9108.96 (18)C30—C25—C26119.3 (2)
C18—N8—Co1113.36 (15)C30—C25—C31118.9 (2)
N9—N8—Co1134.49 (15)C26—C25—C31121.7 (2)
C19—N9—N8106.41 (19)C25—C26—C27121.4 (2)
C18—N10—C19105.68 (19)C25—C26—H26119.3
C18—N10—N11124.7 (2)C27—C26—H26119.3
C19—N10—N11129.2 (2)C28—C27—C26119.2 (2)
N10—N11—H11A103.6C28—C27—C32121.0 (2)
N10—N11—H11B104.0C26—C27—C32119.9 (2)
H11A—N11—H11B108.5C27—C28—C29118.6 (2)
C20—N12—C21116.9 (3)C27—C28—H28120.7
O8—N13—O7124.2 (3)C29—C28—H28120.7
O8—N13—C29118.4 (3)C30—C29—C28122.8 (2)
O7—N13—C29117.4 (3)C30—C29—N13118.8 (2)
O11—N14—O12124.2 (3)C28—C29—N13118.3 (2)
O11—N14—C37117.5 (3)C29—C30—C25118.6 (2)
O12—N14—C37118.3 (3)C29—C30—H30120.7
N1—C1—C2123.1 (3)C25—C30—H30120.7
N1—C1—H1118.4O3—C31—O4123.7 (3)
C2—C1—H1118.4O3—C31—C25123.9 (3)
C3—C2—C1118.1 (3)O4—C31—C25112.3 (2)
C3—C2—H2121.0O6—C32—O5124.6 (2)
C1—C2—H2121.0O6—C32—C27118.5 (2)
C2—C3—C4120.0 (3)O5—C32—C27116.9 (2)
C2—C3—H3120.0C34—C33—C38119.8 (2)
C4—C3—H3120.0C34—C33—C39121.6 (2)
C5—C4—C3118.8 (3)C38—C33—C39118.6 (2)
C5—C4—H4A120.6C33—C34—C35121.7 (2)
C3—C4—H4A120.6C33—C34—H34119.1
N1—C5—C4122.1 (2)C35—C34—H34119.1
N1—C5—C6111.4 (2)C34—C35—C36118.7 (2)
C4—C5—C6126.4 (2)C34—C35—C40120.3 (2)
N2—C6—N4109.2 (2)C36—C35—C40121.1 (2)
N2—C6—C5120.5 (2)C37—C36—C35118.5 (2)
N4—C6—C5130.2 (2)C37—C36—H36120.7
N3—C7—N4110.0 (2)C35—C36—H36120.7
N3—C7—C8124.2 (2)C38—C37—C36123.4 (2)
N4—C7—C8125.8 (2)C38—C37—N14117.8 (3)
N6—C8—C12123.4 (2)C36—C37—N14118.8 (3)
N6—C8—C7116.7 (2)C37—C38—C33117.9 (3)
C12—C8—C7119.9 (2)C37—C38—H38121.1
N6—C9—C10123.8 (3)C33—C38—H38121.1
N6—C9—H9118.1O13—C39—O14123.3 (3)
C10—C9—H9118.1O13—C39—C33123.7 (3)
C11—C10—C9118.8 (3)O14—C39—C33112.9 (2)
C11—C10—H10120.6O9—C40—O10124.7 (3)
C9—C10—H10120.6O9—C40—C35117.1 (2)
C10—C11—C12119.1 (3)O10—C40—C35118.1 (2)
C10—C11—H11120.5
O2—Co1—N1—C197.4 (2)Co1—N7—C17—C16174.8 (2)
O1—Co1—N1—C182.9 (2)C13—N7—C17—C18178.6 (2)
N2—Co1—N1—C1175.3 (2)Co1—N7—C17—C183.9 (3)
N8—Co1—N1—C110.9 (2)C15—C16—C17—N70.2 (4)
O2—Co1—N1—C589.02 (18)C15—C16—C17—C18178.7 (3)
O1—Co1—N1—C590.69 (18)N9—N8—C18—N101.1 (3)
N2—Co1—N1—C51.76 (17)Co1—N8—C18—N10163.97 (15)
N8—Co1—N1—C5175.50 (17)N9—N8—C18—C17174.5 (2)
O2—Co1—N2—C690.27 (17)Co1—N8—C18—C1711.7 (3)
O1—Co1—N2—C689.72 (18)C19—N10—C18—N81.5 (3)
N7—Co1—N2—C6175.97 (17)N11—N10—C18—N8175.0 (2)
N1—Co1—N2—C62.69 (17)C19—N10—C18—C17173.7 (2)
O2—Co1—N2—N376.8 (2)N11—N10—C18—C170.2 (4)
O1—Co1—N2—N3103.2 (2)N7—C17—C18—N810.6 (3)
N7—Co1—N2—N317.0 (2)C16—C17—C18—N8168.1 (3)
N1—Co1—N2—N3169.7 (2)N7—C17—C18—N10164.1 (2)
C6—N2—N3—C70.3 (2)C16—C17—C18—N1017.3 (4)
Co1—N2—N3—C7167.25 (18)N8—N9—C19—N100.6 (3)
O2—Co1—N7—C13102.1 (2)N8—N9—C19—C20176.3 (2)
O1—Co1—N7—C1377.6 (2)C18—N10—C19—N91.3 (3)
N2—Co1—N7—C1313.2 (2)N11—N10—C19—N9174.4 (2)
N8—Co1—N7—C13173.0 (2)C18—N10—C19—C20175.6 (2)
O2—Co1—N7—C1783.76 (18)N11—N10—C19—C202.5 (4)
O1—Co1—N7—C1796.53 (18)C21—N12—C20—C242.7 (4)
N2—Co1—N7—C17172.59 (17)C21—N12—C20—C19176.7 (2)
N8—Co1—N7—C171.16 (17)N9—C19—C20—N12164.5 (2)
O2—Co1—N8—C1888.54 (17)N10—C19—C20—N1219.0 (4)
O1—Co1—N8—C1891.47 (18)N9—C19—C20—C2416.0 (4)
N7—Co1—N8—C186.67 (17)N10—C19—C20—C24160.4 (2)
N1—Co1—N8—C18179.93 (17)C20—N12—C21—C220.8 (5)
O2—Co1—N8—N968.4 (2)N12—C21—C22—C231.3 (5)
O1—Co1—N8—N9111.5 (2)C21—C22—C23—C241.6 (5)
N7—Co1—N8—N9163.7 (2)C22—C23—C24—C200.2 (4)
N1—Co1—N8—N923.1 (2)N12—C20—C24—C232.5 (4)
C18—N8—N9—C190.3 (3)C19—C20—C24—C23176.9 (2)
Co1—N8—N9—C19158.00 (18)C30—C25—C26—C270.2 (4)
C5—N1—C1—C20.5 (4)C31—C25—C26—C27177.5 (2)
Co1—N1—C1—C2174.0 (2)C25—C26—C27—C280.9 (4)
N1—C1—C2—C30.9 (5)C25—C26—C27—C32178.9 (2)
C1—C2—C3—C40.5 (5)C26—C27—C28—C290.7 (4)
C2—C3—C4—C50.2 (5)C32—C27—C28—C29179.1 (2)
C1—N1—C5—C40.3 (4)C27—C28—C29—C300.6 (4)
Co1—N1—C5—C4173.8 (2)C27—C28—C29—N13177.8 (2)
C1—N1—C5—C6179.4 (2)O8—N13—C29—C3012.9 (5)
Co1—N1—C5—C65.3 (3)O7—N13—C29—C30163.9 (3)
C3—C4—C5—N10.7 (4)O8—N13—C29—C28168.7 (3)
C3—C4—C5—C6179.6 (3)O7—N13—C29—C2814.5 (5)
N3—N2—C6—N40.4 (3)C28—C29—C30—C251.7 (4)
Co1—N2—C6—N4170.89 (15)N13—C29—C30—C25176.7 (3)
N3—N2—C6—C5177.3 (2)C26—C25—C30—C291.4 (4)
Co1—N2—C6—C56.8 (3)C31—C25—C30—C29176.4 (2)
C7—N4—C6—N20.9 (3)C30—C25—C31—O37.8 (4)
N5—N4—C6—N2174.0 (2)C26—C25—C31—O3169.9 (3)
C7—N4—C6—C5176.5 (2)C30—C25—C31—O4174.9 (3)
N5—N4—C6—C53.4 (4)C26—C25—C31—O47.3 (4)
N1—C5—C6—N28.1 (3)C28—C27—C32—O61.1 (3)
C4—C5—C6—N2170.9 (3)C26—C27—C32—O6178.7 (2)
N1—C5—C6—N4169.0 (2)C28—C27—C32—O5180.0 (2)
C4—C5—C6—N412.0 (4)C26—C27—C32—O50.2 (3)
N2—N3—C7—N40.9 (3)C38—C33—C34—C350.1 (4)
N2—N3—C7—C8179.8 (2)C39—C33—C34—C35178.5 (2)
C6—N4—C7—N31.1 (3)C33—C34—C35—C360.4 (4)
N5—N4—C7—N3173.8 (2)C33—C34—C35—C40179.0 (2)
C6—N4—C7—C8179.6 (2)C34—C35—C36—C370.1 (4)
N5—N4—C7—C87.0 (4)C40—C35—C36—C37178.6 (2)
C9—N6—C8—C120.4 (4)C35—C36—C37—C380.6 (4)
C9—N6—C8—C7178.4 (2)C35—C36—C37—N14178.1 (2)
N3—C7—C8—N6163.6 (2)O11—N14—C37—C38176.0 (3)
N4—C7—C8—N615.6 (4)O12—N14—C37—C384.1 (4)
N3—C7—C8—C1214.5 (4)O11—N14—C37—C362.8 (4)
N4—C7—C8—C12166.3 (2)O12—N14—C37—C36177.2 (3)
C8—N6—C9—C101.0 (5)C36—C37—C38—C330.9 (4)
N6—C9—C10—C110.5 (5)N14—C37—C38—C33177.8 (2)
C9—C10—C11—C120.7 (5)C34—C33—C38—C370.6 (4)
N6—C8—C12—C110.7 (4)C39—C33—C38—C37179.2 (2)
C7—C8—C12—C11177.3 (2)C34—C33—C39—O13166.1 (3)
C10—C11—C12—C81.3 (4)C38—C33—C39—O1312.5 (4)
C17—N7—C13—C140.5 (4)C34—C33—C39—O1413.0 (4)
Co1—N7—C13—C14174.6 (2)C38—C33—C39—O14168.4 (2)
N7—C13—C14—C150.5 (5)C34—C35—C40—O92.0 (3)
C13—C14—C15—C160.2 (5)C36—C35—C40—O9179.5 (2)
C14—C15—C16—C170.2 (4)C34—C35—C40—O10175.1 (2)
C13—N7—C17—C160.1 (4)C36—C35—C40—O103.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N60.892.232.885 (3)130
N11—H11A···N120.892.212.859 (3)130
O1—H1A···O9i0.851.852.674 (3)163
O1—H1B···O5ii0.851.872.710 (3)168
O2—H2A···O5iii0.851.892.712 (2)162
O2—H2B···O90.851.862.681 (3)163
O4—H4···O10iv0.821.732.545 (3)172
N5—H5B···O100.892.363.065 (3)136
N5—H5B···O3iv0.892.513.234 (3)139
N11—H11B···O6iii0.892.323.057 (3)140
N11—H11B···O13v0.892.563.252 (3)135
O14—H14···O6vi0.821.772.580 (3)170
C3—H3···O5vii0.932.473.402 (4)176
C9—H9···O11iv0.932.493.249 (5)139
C14—H14A···O6viii0.932.493.403 (4)166
C21—H21···O7ix0.932.483.259 (4)142
C28—H28···O13vi0.932.563.490 (4)175
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x+1, y, z1; (iv) x+1, y, z+1; (v) x+2, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y, z+1; (viii) x, y+1, z+1; (ix) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C12H10N6)2(H2O)2](C8H4NO6)2
Mr991.73
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.589 (3), 16.104 (6), 18.256 (6)
α, β, γ (°)74.739 (6), 86.435 (6), 88.619 (6)
V3)2148.4 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.28 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.876, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
11079, 7532, 5560
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.03
No. of reflections7532
No. of parameters624
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.28

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N60.892.232.885 (3)130
N11—H11A···N120.892.212.859 (3)130
O1—H1A···O9i0.851.852.674 (3)163
O1—H1B···O5ii0.851.872.710 (3)168
O2—H2A···O5iii0.851.892.712 (2)162
O2—H2B···O90.851.862.681 (3)163
O4—H4···O10iv0.821.732.545 (3)172
N5—H5B···O100.892.363.065 (3)136
N5—H5B···O3iv0.892.513.234 (3)139
N11—H11B···O6iii0.892.323.057 (3)140
N11—H11B···O13v0.892.563.252 (3)135
O14—H14···O6vi0.821.772.580 (3)170
C3—H3···O5vii0.932.473.402 (4)176
C9—H9···O11iv0.932.493.249 (5)139
C14—H14A···O6viii0.932.493.403 (4)166
C21—H21···O7ix0.932.483.259 (4)142
C28—H28···O13vi0.932.563.490 (4)175
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x+1, y, z1; (iv) x+1, y, z+1; (v) x+2, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y, z+1; (viii) x, y+1, z+1; (ix) x+1, y+1, z.
 

Acknowledgements

This work was supported financially by Tianjin Normal University (52X09004).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M., Jiang, X.-J. & Zhao, X.-J. (2007). Inorg. Chem. 46, 3984–3995.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDu, M., Zhang, Z.-H., You, Y.-P. & Zhao, X.-J. (2008). CrystEngComm, 10, 306–321.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, J., Tang, M., Chen, J. & Li, C.-P. (2011). Acta Cryst. E67, m1180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, X., Liu, J.-J., Guo, H.-M., Shao, M. & Li, M.-X. (2010). Polyhedron, 29, 1062–1068.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, Y. G., Mu, B., Schoenecker, P. M., Carson, C. G., Karra, J. R., Cai, Y. & Walton, K. S. (2011). Angew. Chem. Int. Ed. 50, 436–440.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlingele, J., Scherer, H. & Klingele, M. H. (2009). Z. Anorg. Allg. Chem. 635, 2279–2287.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, B.-Y., Peng, Y., Li, G.-H., Hua, J., Yu, Y., Jin, D., Shi, Z. & Feng, S.-H. (2010). Cryst. Growth. Des. 10, 2192–2201.  Web of Science CSD CrossRef CAS Google Scholar
First citationShao, S.-C., Liu, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, m1815–m1816.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds