metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri-μ-chlorido-bis­­[(η6-hexa­methyl­benzene)­ruthenium(II)] tetra­chlorido­ferrate(III)

aDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 12840 Prague 2, Czech Republic
*Correspondence e-mail: stepnic@natur.cuni.cz

(Received 2 September 2011; accepted 5 September 2011; online 14 September 2011)

The mol­ecular geometry of the complex cation in the title structure, [(μ-Cl)3{RuII(η6-C6Me6)}2][FeIIICl4], compares very well with that reported earlier for the corresponding PF6 salt [Pandey et al. (1999[Pandey, D. S., Sahay, A. N., Sisodia, O. S., Jha, N. K., Sharma, P., Klaus, H. E. & Cabrera, A. (1999). J. Organomet. Chem. 592, 278-282.]). J. Organomet. Chem. 592, 278–282]. The [FeCl4] counter ion has a rather regular tetra­hedral geometry with Fe—Cl distances and Cl—Fe—Cl angles in the range 2.1891 (7)–2.2018 (8) Å and 107.10 (3)–110.56 (3)°, respectively. There are no significant inter­molecular inter­actions in the crystal except for some weak C—H⋯Cl contacts, which in turn indicates that the crystal packing is determined predominantly by electrostatic inter­actions between the ionic constituents.

Related literature

Crystals of the title compound were isolated during attempted recrystallization of [(η6-C6Me6)RuCl2{Ph2PfcCON(CH2CH2OH)2}] [fc = ferrocene-1,1′-diyl; for the preparation of this ligand, see Schulz et al. (2009[Schulz, J., Císařová, I. & Štěpnička, P. (2009). J. Organomet. Chem. 694, 2519-2530.])] from chloro­form–diethyl ether. It is likely a decomposition product as the result of photolytic cleavage of the ferrocene moiety in the halogenated solvent (Brand & Snedden, 1957[Brand, J. C. D. & Snedden, W. (1957). Trans. Faraday Soc. 53, 894-900.]). For the crystal structure of [(μ-Cl)3{Ru(η6-C6Me6)}2][PF6], see: Pandey et al. (1999[Pandey, D. S., Sahay, A. N., Sisodia, O. S., Jha, N. K., Sharma, P., Klaus, H. E. & Cabrera, A. (1999). J. Organomet. Chem. 592, 278-282.]); Redwine et al. (2000[Redwine, K. D., Hansen, H. D., Bowley, S., Isbell, J., Sanchnez, M., Vodak, D. & Nelson, J. H. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 379-407.]). For the first structurally characterized compound of this type, [(μ-Cl)3{Ru(η6-C6Me6)}2][BPh4]·CH3OH, see: Tocher & Walkinshaw (1982[Tocher, D. A. & Walkinshaw, M. D. (1982). Acta Cryst. B38, 3083-3085.]). For the structures of simple tetra­chloridoferrate(III) salts, see: Wyrzykowski et al. (2006[Wyrzykowski, D., Sikorski, A., Konitz, A. & Warnke, Z. (2006). Acta Cryst. E62, m3562-m3564.]); Jin et al. (2005[Jin, Z.-M., Li, Z.-G., Li, L., Li, M.-C. & Hu, M.-L. (2005). Acta Cryst. E61, m2466-m2468.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru2Cl3(C12H18)2][FeCl4]

  • Mr = 830.67

  • Triclinic, [P \overline 1]

  • a = 8.4490 (2) Å

  • b = 12.8352 (2) Å

  • c = 14.6752 (4) Å

  • α = 106.5767 (12)°

  • β = 90.4341 (9)°

  • γ = 99.7915 (12)°

  • V = 1500.43 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 150 K

  • 0.30 × 0.20 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: Gaussian using the diffractometer software Tmin = 0.529, Tmax = 0.855

  • 27082 measured reflections

  • 6900 independent reflections

  • 6172 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.061

  • S = 1.08

  • 6900 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯Cl3i 0.96 2.80 3.629 (3) 145
C11—H11B⋯Cl6ii 0.96 2.71 3.588 (3) 153
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

A view of the molecular structure of the title compound is given in Fig. 1. The geometry of the complex cation in the structure is very similar to that reported for [(µ–Cl)3{Ru(η6-C6Me6)}2][PF6] (Pandey et al., 1999). The Ru—Cl and Ru—C distances range 2.4354 (6) - 2.4615 (6) Å and 2.170 (2) - 2.192 (3) Å, respectively. The distance between the ruthenium atoms is 3.2723 (3) Å and they are symmetrically bridged by the three chloride ligands with Ru—Cl—Ru angles in the range 83.56 (2)–84.18 (2) °. The π-coordinated arene rings are practically coplanar (dihedral angle of their mean planes is 2.31 (12) °) and assume an almost perfect staggered conformation (Fig. 2).

The [FeCl4]- counter ion has a regular tetrahedral geometry with Fe—Cl distances in the range of 2.1890 (8)–2.2018 (10) Å, and interligand angles of 107.10 (3)–110.57 (3) °. These structural data compare well with those observed for simple tetrachloridoferrate(III) salts that have been recently structurally characterized (e.g., quinolinium tetrachloroferrate(III) [Wyrzykowski et al., 2006], and matrinium tetrachloroferrate(III) [Jin et al., 2005]).

In the crystal of the title compound the cations and anions form separate layers that are perpendicular to the crystallographic a-axis direction and regularly alternate at distances determined by their van der Waals envelope. No significant hydrogen-bonding interactions (except for some weak C—H···Cl contacts, Table 1) or π···π stacking interactions were detected in the structure, which suggests that the crystal packing is governed predominantly by electrostatic interactions of the ionic constituents.

Related literature top

Crystals of the title compound were isolated during attempted recrystallization of [(η6-C6Me6)RuCl2{Ph2PfcCON(CH2CH2OH)2}] [fc = ferrocene-1,1'-diyl; for the preparation of this ligand, see Schulz et al. (2009)] from chloroform–diethyl ether. It is likely a decomposition product as the result of photolytic cleavage of the ferrocene moiety in the halogenated solvent (Brand & Snedden, 1957). For the crystal structure of [(µ-Cl)3{Ru(η6-C6Me6)}2][PF6], see: Pandey et al. (1999); Redwine et al. (2000). For the first structurally characterized compound of this type, [(µ-Cl)3{Ru(η6-C6Me6)}2][BPh4].CH3OH, see: Tocher & Walkinshaw (1982). For the structures of simple tetrachloridoferrate(III) salts, see: Wyrzykowski et al. (2006); Jin et al. (2005).

Experimental top

Burgundy red crystals of the title compound were obtained serendipitously during an attempted crystallization of [(η6-C6Me6)RuCl2{Ph2PfcCON(CH2CH2OH)2-κP}] (fc = ferrocene-1,1-diyl), which had been prepared by a conventional bridge-cleavage reaction of [(η6-C6Me6)RuCl2]2 with Ph2PfcCON(CH2CH2OH)2 (Schulz et al., 2009), from chloroform–diethyl ether over an extended period (several weeks). The complex is very likely a decomposition product as the result of photolytic cleavage of the ferrocene moiety in the halogenated solvent (Brand & Snedden, 1957). This has produced FeCl3 and chloride ions required for the formation of both the complex cation and complex anion that constitute the title compound.

A few crystals of the product were analysed by electrospray ionization (ESI) mass spectroscopy, which clearly showed signals due to ions [(C6Me6)2Ru2Cl3]+ (m/z 633) and [FeCl4]- (m/z 196) with correct isotopic distribution patterns. High-resolution mass spectra further confirmed the formulation: calculated for [(C6Me6)2102Ru235Cl3]+ 632.9970, found 632.9993; calculated for [56Fe35Cl4]- 195.8109, found 195.8108.

Refinement top

All H-atoms were included in their calculated positions and refined as riding atoms: C—H = 0.96 Å, with Uiso(H) = 1.2Ueq(C).

Structure description top

A view of the molecular structure of the title compound is given in Fig. 1. The geometry of the complex cation in the structure is very similar to that reported for [(µ–Cl)3{Ru(η6-C6Me6)}2][PF6] (Pandey et al., 1999). The Ru—Cl and Ru—C distances range 2.4354 (6) - 2.4615 (6) Å and 2.170 (2) - 2.192 (3) Å, respectively. The distance between the ruthenium atoms is 3.2723 (3) Å and they are symmetrically bridged by the three chloride ligands with Ru—Cl—Ru angles in the range 83.56 (2)–84.18 (2) °. The π-coordinated arene rings are practically coplanar (dihedral angle of their mean planes is 2.31 (12) °) and assume an almost perfect staggered conformation (Fig. 2).

The [FeCl4]- counter ion has a regular tetrahedral geometry with Fe—Cl distances in the range of 2.1890 (8)–2.2018 (10) Å, and interligand angles of 107.10 (3)–110.57 (3) °. These structural data compare well with those observed for simple tetrachloridoferrate(III) salts that have been recently structurally characterized (e.g., quinolinium tetrachloroferrate(III) [Wyrzykowski et al., 2006], and matrinium tetrachloroferrate(III) [Jin et al., 2005]).

In the crystal of the title compound the cations and anions form separate layers that are perpendicular to the crystallographic a-axis direction and regularly alternate at distances determined by their van der Waals envelope. No significant hydrogen-bonding interactions (except for some weak C—H···Cl contacts, Table 1) or π···π stacking interactions were detected in the structure, which suggests that the crystal packing is governed predominantly by electrostatic interactions of the ionic constituents.

Crystals of the title compound were isolated during attempted recrystallization of [(η6-C6Me6)RuCl2{Ph2PfcCON(CH2CH2OH)2}] [fc = ferrocene-1,1'-diyl; for the preparation of this ligand, see Schulz et al. (2009)] from chloroform–diethyl ether. It is likely a decomposition product as the result of photolytic cleavage of the ferrocene moiety in the halogenated solvent (Brand & Snedden, 1957). For the crystal structure of [(µ-Cl)3{Ru(η6-C6Me6)}2][PF6], see: Pandey et al. (1999); Redwine et al. (2000). For the first structurally characterized compound of this type, [(µ-Cl)3{Ru(η6-C6Me6)}2][BPh4].CH3OH, see: Tocher & Walkinshaw (1982). For the structures of simple tetrachloridoferrate(III) salts, see: Wyrzykowski et al. (2006); Jin et al. (2005).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, showing the atom numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View along the Ru1···Ru2 line of the complex cation in the title compound.
Tri-µ-chloridobis[(η6-hexamethylbenzene)ruthenium(II)] tetrachloridoferrate(III) top
Crystal data top
[Ru2Cl3(C12H18)2][Cl4Fe]Z = 2
Mr = 830.67F(000) = 826
Triclinic, P1Dx = 1.839 Mg m3
a = 8.4490 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8352 (2) ÅCell parameters from 15369 reflections
c = 14.6752 (4) Åθ = 1.0–27.5°
α = 106.5767 (12)°µ = 2.11 mm1
β = 90.4341 (9)°T = 150 K
γ = 99.7915 (12)°Plate, red
V = 1500.43 (6) Å30.30 × 0.20 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
6900 independent reflections
Radiation source: fine-focus sealed tube6172 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.036
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 1.5°
ω and π scans to fill the Ewald sphereh = 1010
Absorption correction: gaussian
(Reference? year?)
k = 1616
Tmin = 0.529, Tmax = 0.855l = 1919
27082 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0211P)2 + 1.9353P]
where P = (Fo2 + 2Fc2)/3
6900 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Ru2Cl3(C12H18)2][Cl4Fe]γ = 99.7915 (12)°
Mr = 830.67V = 1500.43 (6) Å3
Triclinic, P1Z = 2
a = 8.4490 (2) ÅMo Kα radiation
b = 12.8352 (2) ŵ = 2.11 mm1
c = 14.6752 (4) ÅT = 150 K
α = 106.5767 (12)°0.30 × 0.20 × 0.08 mm
β = 90.4341 (9)°
Data collection top
Nonius KappaCCD
diffractometer
6900 independent reflections
Absorption correction: gaussian
(Reference? year?)
6172 reflections with I > 2σ(I)
Tmin = 0.529, Tmax = 0.855Rint = 0.036
27082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.08Δρmax = 0.47 e Å3
6900 reflectionsΔρmin = 0.68 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2 σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.02214 (2)0.229351 (15)0.359389 (13)0.01330 (5)
Ru20.10556 (2)0.289505 (14)0.172745 (13)0.01278 (5)
Cl10.01161 (7)0.13405 (5)0.18933 (4)0.02091 (12)
Cl30.23873 (7)0.26089 (5)0.31265 (4)0.02071 (12)
Cl20.11067 (7)0.38573 (5)0.29639 (4)0.01942 (12)
C10.0309 (3)0.2545 (2)0.50855 (17)0.0179 (5)
C20.1257 (3)0.3123 (2)0.50368 (17)0.0179 (5)
C30.2415 (3)0.2553 (2)0.44795 (17)0.0175 (5)
C40.1993 (3)0.1418 (2)0.39726 (18)0.0186 (5)
C50.0393 (3)0.08221 (19)0.40182 (18)0.0185 (5)
C60.0745 (3)0.1384 (2)0.45724 (17)0.0175 (5)
C70.1569 (3)0.3129 (2)0.5627 (2)0.0252 (6)
H7A0.11800.39110.58220.030*
H7B0.17950.28810.61790.030*
H7C0.25350.29650.52250.030*
C80.1739 (3)0.4348 (2)0.5527 (2)0.0272 (6)
H8A0.08140.46400.57900.033*
H8B0.21660.47170.50740.033*
H8C0.25440.44660.60290.033*
C90.4059 (3)0.3199 (2)0.4407 (2)0.0280 (6)
H9A0.46700.27230.39820.034*
H9B0.46110.34790.50260.034*
H9C0.39400.38040.41660.034*
C100.3173 (3)0.0828 (2)0.3344 (2)0.0282 (6)
H10A0.38540.13400.30870.034*
H10B0.25930.02380.28320.034*
H10C0.38190.05310.37130.034*
C110.0095 (3)0.0368 (2)0.3438 (2)0.0270 (6)
H11A0.06040.07910.38340.032*
H11B0.08430.06550.31900.032*
H11C0.08320.04180.29200.032*
C120.2441 (3)0.0774 (2)0.4589 (2)0.0266 (6)
H12A0.29560.05510.39610.032*
H12B0.30390.12520.50200.032*
H12C0.24020.01330.47950.032*
C210.2956 (3)0.3670 (2)0.13151 (18)0.0178 (5)
C220.1436 (3)0.43297 (19)0.12874 (17)0.0167 (5)
C230.0186 (3)0.38344 (19)0.07579 (17)0.0161 (5)
C240.0481 (3)0.2687 (2)0.02469 (17)0.0179 (5)
C250.2022 (3)0.2026 (2)0.02849 (17)0.0186 (5)
C260.3243 (3)0.2508 (2)0.08142 (18)0.0183 (5)
C270.4253 (3)0.4163 (2)0.1900 (2)0.0247 (6)
H27A0.38180.49010.22810.030*
H27B0.46420.37200.23080.030*
H27C0.51230.41800.14830.030*
C280.1085 (3)0.5541 (2)0.1839 (2)0.0255 (6)
H28A0.19970.57340.21920.031*
H28B0.08720.59760.14050.031*
H28C0.01620.56830.22710.031*
C290.1449 (3)0.4543 (2)0.07921 (19)0.0234 (5)
H29A0.21740.40950.04450.028*
H29B0.18570.48620.14430.028*
H29C0.13560.51200.05110.028*
C300.0826 (3)0.2148 (2)0.0284 (2)0.0266 (6)
H30A0.18360.26490.01190.032*
H30B0.05800.19640.09570.032*
H30C0.08950.14870.01150.032*
C310.2325 (3)0.0799 (2)0.0213 (2)0.0283 (6)
H31A0.26780.04030.02350.034*
H31B0.13490.05850.04720.034*
H31C0.31410.06290.07180.034*
C320.4824 (3)0.1789 (2)0.0883 (2)0.0275 (6)
H32A0.54100.15380.02740.033*
H32B0.54450.22090.13470.033*
H32C0.46230.11630.10700.033*
Fe10.49209 (4)0.77416 (3)0.20266 (3)0.01901 (8)
Cl40.52218 (8)0.63784 (5)0.07833 (5)0.02709 (14)
Cl50.58902 (10)0.75020 (7)0.33345 (6)0.03875 (18)
Cl60.23261 (7)0.77493 (5)0.21100 (5)0.02774 (14)
Cl70.61347 (8)0.93196 (5)0.18546 (5)0.02927 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01313 (9)0.01651 (10)0.01132 (10)0.00389 (7)0.00058 (7)0.00500 (7)
Ru20.01294 (9)0.01399 (9)0.01185 (10)0.00173 (7)0.00050 (7)0.00489 (7)
Cl10.0317 (3)0.0190 (3)0.0137 (3)0.0112 (2)0.0000 (2)0.0036 (2)
Cl30.0141 (3)0.0338 (3)0.0193 (3)0.0068 (2)0.0028 (2)0.0143 (3)
Cl20.0202 (3)0.0195 (3)0.0176 (3)0.0020 (2)0.0041 (2)0.0072 (2)
C10.0208 (12)0.0257 (12)0.0089 (11)0.0062 (9)0.0010 (9)0.0065 (9)
C20.0189 (11)0.0252 (12)0.0102 (11)0.0042 (9)0.0023 (9)0.0061 (9)
C30.0134 (11)0.0278 (13)0.0139 (12)0.0045 (9)0.0019 (9)0.0096 (10)
C40.0175 (11)0.0239 (12)0.0186 (13)0.0086 (9)0.0015 (9)0.0099 (10)
C50.0216 (12)0.0192 (12)0.0183 (13)0.0055 (9)0.0022 (10)0.0104 (10)
C60.0179 (11)0.0237 (12)0.0143 (12)0.0032 (9)0.0007 (9)0.0115 (10)
C70.0253 (13)0.0303 (14)0.0210 (14)0.0077 (11)0.0063 (11)0.0074 (11)
C80.0288 (14)0.0265 (13)0.0211 (14)0.0001 (11)0.0018 (11)0.0016 (11)
C90.0179 (12)0.0354 (15)0.0296 (16)0.0017 (11)0.0012 (11)0.0097 (12)
C100.0257 (13)0.0318 (15)0.0306 (16)0.0131 (11)0.0054 (12)0.0098 (12)
C110.0291 (14)0.0227 (13)0.0293 (15)0.0066 (10)0.0017 (11)0.0069 (11)
C120.0212 (13)0.0326 (14)0.0279 (15)0.0016 (11)0.0035 (11)0.0137 (12)
C210.0163 (11)0.0231 (12)0.0179 (13)0.0059 (9)0.0031 (9)0.0111 (10)
C220.0211 (11)0.0167 (11)0.0161 (12)0.0047 (9)0.0025 (9)0.0099 (9)
C230.0183 (11)0.0203 (11)0.0127 (12)0.0023 (9)0.0007 (9)0.0102 (9)
C240.0217 (12)0.0219 (12)0.0112 (12)0.0042 (9)0.0002 (9)0.0062 (9)
C250.0227 (12)0.0196 (12)0.0125 (12)0.0014 (9)0.0037 (9)0.0044 (9)
C260.0159 (11)0.0231 (12)0.0163 (12)0.0002 (9)0.0063 (9)0.0084 (10)
C270.0201 (12)0.0295 (14)0.0279 (15)0.0090 (10)0.0028 (11)0.0107 (11)
C280.0290 (14)0.0189 (12)0.0282 (15)0.0042 (10)0.0005 (11)0.0063 (11)
C290.0211 (12)0.0256 (13)0.0226 (14)0.0012 (10)0.0017 (10)0.0085 (11)
C300.0292 (14)0.0290 (14)0.0218 (14)0.0088 (11)0.0056 (11)0.0054 (11)
C310.0340 (15)0.0187 (12)0.0270 (15)0.0003 (11)0.0047 (12)0.0018 (11)
C320.0206 (12)0.0299 (14)0.0307 (16)0.0043 (10)0.0035 (11)0.0121 (12)
Fe10.02005 (17)0.01886 (17)0.01832 (19)0.00242 (13)0.00093 (14)0.00633 (14)
Cl40.0285 (3)0.0239 (3)0.0266 (4)0.0058 (2)0.0066 (3)0.0030 (3)
Cl50.0465 (4)0.0444 (4)0.0288 (4)0.0040 (3)0.0083 (3)0.0188 (3)
Cl60.0224 (3)0.0257 (3)0.0344 (4)0.0054 (2)0.0061 (3)0.0068 (3)
Cl70.0307 (3)0.0235 (3)0.0331 (4)0.0034 (3)0.0018 (3)0.0121 (3)
Geometric parameters (Å, º) top
Ru1—C42.175 (2)C10—H10C0.9600
Ru1—C52.177 (2)C11—H11A0.9600
Ru1—C62.177 (2)C11—H11B0.9600
Ru1—C32.178 (2)C11—H11C0.9600
Ru1—C22.180 (2)C12—H12A0.9600
Ru1—C12.181 (2)C12—H12B0.9600
Ru1—Cl32.4354 (6)C12—H12C0.9600
Ru1—Cl12.4393 (6)C21—C221.420 (3)
Ru1—Cl22.4498 (6)C21—C261.440 (3)
Ru2—C252.170 (2)C21—C271.509 (3)
Ru2—C232.171 (2)C22—C231.443 (3)
Ru2—C262.175 (2)C22—C281.511 (3)
Ru2—C242.181 (2)C23—C241.427 (3)
Ru2—C222.188 (2)C23—C291.511 (3)
Ru2—C212.192 (2)C24—C251.439 (3)
Ru2—Cl32.4374 (6)C24—C301.507 (3)
Ru2—Cl12.4425 (6)C25—C261.416 (4)
Ru2—Cl22.4616 (6)C25—C311.512 (3)
C1—C21.416 (3)C26—C321.511 (3)
C1—C61.446 (3)C27—H27A0.9600
C1—C71.507 (3)C27—H27B0.9600
C2—C31.441 (3)C27—H27C0.9600
C2—C81.513 (3)C28—H28A0.9600
C3—C41.415 (3)C28—H28B0.9600
C3—C91.513 (3)C28—H28C0.9600
C4—C51.448 (3)C29—H29A0.9600
C4—C101.513 (4)C29—H29B0.9600
C5—C61.421 (3)C29—H29C0.9600
C5—C111.506 (3)C30—H30A0.9600
C6—C121.515 (3)C30—H30B0.9600
C7—H7A0.9600C30—H30C0.9600
C7—H7B0.9600C31—H31A0.9600
C7—H7C0.9600C31—H31B0.9600
C8—H8A0.9600C31—H31C0.9600
C8—H8B0.9600C32—H32A0.9600
C8—H8C0.9600C32—H32B0.9600
C9—H9A0.9600C32—H32C0.9600
C9—H9B0.9600Fe1—Cl42.1891 (7)
C9—H9C0.9600Fe1—Cl72.1925 (7)
C10—H10A0.9600Fe1—Cl62.1982 (7)
C10—H10B0.9600Fe1—Cl52.2018 (8)
C4—Ru1—C538.86 (9)H7A—C7—H7B109.5
C4—Ru1—C669.45 (9)C1—C7—H7C109.5
C5—Ru1—C638.09 (9)H7A—C7—H7C109.5
C4—Ru1—C337.96 (9)H7B—C7—H7C109.5
C5—Ru1—C369.40 (9)C2—C8—H8A109.5
C6—Ru1—C381.96 (9)C2—C8—H8B109.5
C4—Ru1—C269.41 (9)H8A—C8—H8B109.5
C5—Ru1—C282.33 (9)C2—C8—H8C109.5
C6—Ru1—C269.31 (9)H8A—C8—H8C109.5
C3—Ru1—C238.63 (9)H8B—C8—H8C109.5
C4—Ru1—C182.20 (9)C3—C9—H9A109.5
C5—Ru1—C169.55 (9)C3—C9—H9B109.5
C6—Ru1—C138.75 (9)H9A—C9—H9B109.5
C3—Ru1—C169.14 (9)C3—C9—H9C109.5
C2—Ru1—C137.89 (9)H9A—C9—H9C109.5
C4—Ru1—Cl3158.47 (7)H9B—C9—H9C109.5
C5—Ru1—Cl3120.10 (7)C4—C10—H10A109.5
C6—Ru1—Cl394.48 (6)C4—C10—H10B109.5
C3—Ru1—Cl3157.47 (7)H10A—C10—H10B109.5
C2—Ru1—Cl3119.41 (7)C4—C10—H10C109.5
C1—Ru1—Cl394.18 (6)H10A—C10—H10C109.5
C4—Ru1—Cl194.63 (7)H10B—C10—H10C109.5
C5—Ru1—Cl194.10 (7)C5—C11—H11A109.5
C6—Ru1—Cl1119.50 (7)C5—C11—H11B109.5
C3—Ru1—Cl1120.52 (7)H11A—C11—H11B109.5
C2—Ru1—Cl1158.63 (7)C5—C11—H11C109.5
C1—Ru1—Cl1157.61 (7)H11A—C11—H11C109.5
Cl3—Ru1—Cl180.63 (2)H11B—C11—H11C109.5
C4—Ru1—Cl2119.53 (7)C6—C12—H12A109.5
C5—Ru1—Cl2157.44 (7)C6—C12—H12B109.5
C6—Ru1—Cl2159.55 (7)H12A—C12—H12B109.5
C3—Ru1—Cl295.09 (6)C6—C12—H12C109.5
C2—Ru1—Cl295.77 (7)H12A—C12—H12C109.5
C1—Ru1—Cl2121.39 (7)H12B—C12—H12C109.5
Cl3—Ru1—Cl280.48 (2)C22—C21—C26119.8 (2)
Cl1—Ru1—Cl279.48 (2)C22—C21—C27120.8 (2)
C25—Ru2—C2369.46 (9)C26—C21—C27119.4 (2)
C25—Ru2—C2638.05 (9)C22—C21—Ru270.92 (13)
C23—Ru2—C2682.24 (9)C26—C21—Ru270.08 (13)
C25—Ru2—C2438.62 (9)C27—C21—Ru2129.35 (17)
C23—Ru2—C2438.27 (9)C21—C22—C23120.0 (2)
C26—Ru2—C2469.40 (9)C21—C22—C28120.7 (2)
C25—Ru2—C2281.91 (9)C23—C22—C28119.2 (2)
C23—Ru2—C2238.67 (9)C21—C22—Ru271.24 (13)
C26—Ru2—C2269.11 (9)C23—C22—Ru270.00 (12)
C24—Ru2—C2269.42 (9)C28—C22—Ru2129.46 (17)
C25—Ru2—C2169.14 (9)C24—C23—C22120.2 (2)
C23—Ru2—C2169.28 (9)C24—C23—C29121.1 (2)
C26—Ru2—C2138.50 (9)C22—C23—C29118.7 (2)
C24—Ru2—C2182.06 (9)C24—C23—Ru271.26 (13)
C22—Ru2—C2137.84 (9)C22—C23—Ru271.32 (13)
C25—Ru2—Cl3122.69 (7)C29—C23—Ru2127.77 (17)
C23—Ru2—Cl3154.96 (7)C23—C24—C25119.3 (2)
C26—Ru2—Cl395.76 (7)C23—C24—C30120.9 (2)
C24—Ru2—Cl3161.03 (6)C25—C24—C30119.7 (2)
C22—Ru2—Cl3117.41 (7)C23—C24—Ru270.46 (13)
C21—Ru2—Cl393.62 (7)C25—C24—Ru270.27 (14)
C25—Ru2—Cl193.22 (7)C30—C24—Ru2128.70 (18)
C23—Ru2—Cl1122.67 (7)C26—C25—C24120.6 (2)
C26—Ru2—Cl1117.14 (7)C26—C25—C31119.5 (2)
C24—Ru2—Cl195.47 (6)C24—C25—C31119.9 (2)
C22—Ru2—Cl1161.18 (7)C26—C25—Ru271.15 (13)
C21—Ru2—Cl1154.69 (7)C24—C25—Ru271.11 (13)
Cl3—Ru2—Cl180.53 (2)C31—C25—Ru2128.74 (18)
C25—Ru2—Cl2154.68 (7)C25—C26—C21120.1 (2)
C23—Ru2—Cl294.21 (6)C25—C26—C32119.7 (2)
C26—Ru2—Cl2162.53 (7)C21—C26—C32120.1 (2)
C24—Ru2—Cl2117.47 (6)C25—C26—Ru270.80 (13)
C22—Ru2—Cl297.49 (6)C21—C26—Ru271.42 (13)
C21—Ru2—Cl2124.36 (7)C32—C26—Ru2128.38 (18)
Cl3—Ru2—Cl280.21 (2)C21—C27—H27A109.5
Cl1—Ru2—Cl279.19 (2)C21—C27—H27B109.5
Ru1—Cl1—Ru284.181 (19)H27A—C27—H27B109.5
Ru1—Cl3—Ru284.372 (19)C21—C27—H27C109.5
Ru1—Cl2—Ru283.559 (18)H27A—C27—H27C109.5
C2—C1—C6119.9 (2)H27B—C27—H27C109.5
C2—C1—C7121.2 (2)C22—C28—H28A109.5
C6—C1—C7118.8 (2)C22—C28—H28B109.5
C2—C1—Ru171.00 (14)H28A—C28—H28B109.5
C6—C1—Ru170.48 (13)C22—C28—H28C109.5
C7—C1—Ru1128.64 (17)H28A—C28—H28C109.5
C1—C2—C3119.9 (2)H28B—C28—H28C109.5
C1—C2—C8121.6 (2)C23—C29—H29A109.5
C3—C2—C8118.4 (2)C23—C29—H29B109.5
C1—C2—Ru171.11 (13)H29A—C29—H29B109.5
C3—C2—Ru170.61 (13)C23—C29—H29C109.5
C8—C2—Ru1128.84 (17)H29A—C29—H29C109.5
C4—C3—C2120.4 (2)H29B—C29—H29C109.5
C4—C3—C9120.6 (2)C24—C30—H30A109.5
C2—C3—C9118.9 (2)C24—C30—H30B109.5
C4—C3—Ru170.90 (13)H30A—C30—H30B109.5
C2—C3—Ru170.76 (13)C24—C30—H30C109.5
C9—C3—Ru1128.73 (18)H30A—C30—H30C109.5
C3—C4—C5120.0 (2)H30B—C30—H30C109.5
C3—C4—C10120.7 (2)C25—C31—H31A109.5
C5—C4—C10119.3 (2)C25—C31—H31B109.5
C3—C4—Ru171.15 (13)H31A—C31—H31B109.5
C5—C4—Ru170.65 (13)C25—C31—H31C109.5
C10—C4—Ru1128.39 (18)H31A—C31—H31C109.5
C6—C5—C4119.6 (2)H31B—C31—H31C109.5
C6—C5—C11120.1 (2)C26—C32—H32A109.5
C4—C5—C11120.2 (2)C26—C32—H32B109.5
C6—C5—Ru170.98 (13)H32A—C32—H32B109.5
C4—C5—Ru170.49 (13)C26—C32—H32C109.5
C11—C5—Ru1127.97 (18)H32A—C32—H32C109.5
C5—C6—C1120.2 (2)H32B—C32—H32C109.5
C5—C6—C12119.7 (2)Cl4—Fe1—Cl7110.26 (3)
C1—C6—C12120.1 (2)Cl4—Fe1—Cl6107.10 (3)
C5—C6—Ru170.93 (13)Cl7—Fe1—Cl6109.15 (3)
C1—C6—Ru170.77 (13)Cl4—Fe1—Cl5110.56 (3)
C12—C6—Ru1128.84 (17)Cl7—Fe1—Cl5109.87 (3)
C1—C7—H7A109.5Cl6—Fe1—Cl5109.85 (3)
C1—C7—H7B109.5
C4—Ru1—Cl1—Ru2161.28 (7)C2—C1—C6—Ru152.9 (2)
C5—Ru1—Cl1—Ru2159.74 (7)C7—C1—C6—Ru1124.1 (2)
C6—Ru1—Cl1—Ru2129.75 (7)C4—Ru1—C6—C529.58 (14)
C3—Ru1—Cl1—Ru2131.80 (7)C3—Ru1—C6—C566.69 (14)
C2—Ru1—Cl1—Ru2120.87 (18)C2—Ru1—C6—C5104.51 (15)
C1—Ru1—Cl1—Ru2117.96 (17)C1—Ru1—C6—C5133.2 (2)
Cl3—Ru1—Cl1—Ru239.886 (19)Cl3—Ru1—C6—C5135.69 (13)
Cl2—Ru1—Cl1—Ru242.073 (19)Cl1—Ru1—C6—C553.93 (15)
C25—Ru2—Cl1—Ru1162.48 (7)Cl2—Ru1—C6—C5149.66 (15)
C23—Ru2—Cl1—Ru1129.94 (7)C4—Ru1—C6—C1103.63 (15)
C26—Ru2—Cl1—Ru1131.52 (8)C5—Ru1—C6—C1133.2 (2)
C24—Ru2—Cl1—Ru1158.85 (6)C3—Ru1—C6—C166.51 (14)
C22—Ru2—Cl1—Ru1123.3 (2)C2—Ru1—C6—C128.70 (13)
C21—Ru2—Cl1—Ru1118.16 (16)Cl3—Ru1—C6—C191.10 (13)
Cl3—Ru2—Cl1—Ru139.863 (19)Cl1—Ru1—C6—C1172.86 (11)
Cl2—Ru2—Cl1—Ru141.875 (19)Cl2—Ru1—C6—C116.5 (3)
C4—Ru1—Cl3—Ru2118.72 (19)C4—Ru1—C6—C12142.8 (3)
C5—Ru1—Cl3—Ru2129.29 (8)C5—Ru1—C6—C12113.2 (3)
C6—Ru1—Cl3—Ru2159.16 (7)C3—Ru1—C6—C12179.9 (2)
C3—Ru1—Cl3—Ru2121.07 (17)C2—Ru1—C6—C12142.3 (2)
C2—Ru1—Cl3—Ru2132.10 (7)C1—Ru1—C6—C12113.6 (3)
C1—Ru1—Cl3—Ru2161.98 (7)Cl3—Ru1—C6—C1222.5 (2)
Cl1—Ru1—Cl3—Ru239.971 (19)Cl1—Ru1—C6—C1259.3 (2)
Cl2—Ru1—Cl3—Ru240.820 (19)Cl2—Ru1—C6—C1297.1 (3)
C25—Ru2—Cl3—Ru1127.66 (8)C25—Ru2—C21—C22104.19 (16)
C23—Ru2—Cl3—Ru1119.47 (15)C23—Ru2—C21—C2229.11 (14)
C26—Ru2—Cl3—Ru1156.54 (7)C26—Ru2—C21—C22133.2 (2)
C24—Ru2—Cl3—Ru1119.1 (2)C24—Ru2—C21—C2266.48 (15)
C22—Ru2—Cl3—Ru1134.03 (7)Cl3—Ru2—C21—C22132.09 (14)
C21—Ru2—Cl3—Ru1164.88 (7)Cl1—Ru2—C21—C22152.49 (13)
Cl1—Ru2—Cl3—Ru139.923 (19)Cl2—Ru2—C21—C2251.49 (16)
Cl2—Ru2—Cl3—Ru140.624 (19)C25—Ru2—C21—C2629.01 (14)
C4—Ru1—Cl2—Ru2131.11 (8)C23—Ru2—C21—C26104.09 (16)
C5—Ru1—Cl2—Ru2116.80 (17)C24—Ru2—C21—C2666.72 (15)
C6—Ru1—Cl2—Ru2117.51 (18)C22—Ru2—C21—C26133.2 (2)
C3—Ru1—Cl2—Ru2161.87 (7)Cl3—Ru2—C21—C2694.71 (13)
C2—Ru1—Cl2—Ru2159.32 (6)Cl1—Ru2—C21—C2619.3 (2)
C1—Ru1—Cl2—Ru2129.50 (7)Cl2—Ru2—C21—C26175.31 (11)
Cl3—Ru1—Cl2—Ru240.409 (19)C25—Ru2—C21—C27141.2 (2)
Cl1—Ru1—Cl2—Ru241.733 (19)C23—Ru2—C21—C27143.7 (2)
C25—Ru2—Cl2—Ru1116.04 (15)C26—Ru2—C21—C27112.2 (3)
C23—Ru2—Cl2—Ru1164.20 (7)C24—Ru2—C21—C27178.9 (2)
C26—Ru2—Cl2—Ru1118.3 (2)C22—Ru2—C21—C27114.6 (3)
C24—Ru2—Cl2—Ru1132.30 (7)Cl3—Ru2—C21—C2717.5 (2)
C22—Ru2—Cl2—Ru1157.05 (7)Cl1—Ru2—C21—C2792.9 (3)
C21—Ru2—Cl2—Ru1128.10 (8)Cl2—Ru2—C21—C2763.1 (2)
Cl3—Ru2—Cl2—Ru140.409 (19)C26—C21—C22—C230.0 (3)
Cl1—Ru2—Cl2—Ru141.716 (19)C27—C21—C22—C23177.3 (2)
C4—Ru1—C1—C266.29 (14)Ru2—C21—C22—C2352.19 (19)
C5—Ru1—C1—C2104.32 (15)C26—C21—C22—C28177.5 (2)
C6—Ru1—C1—C2133.0 (2)C27—C21—C22—C280.3 (3)
C3—Ru1—C1—C229.37 (14)Ru2—C21—C22—C28125.4 (2)
Cl3—Ru1—C1—C2135.05 (13)C26—C21—C22—Ru252.16 (19)
Cl1—Ru1—C1—C2149.49 (14)C27—C21—C22—Ru2125.1 (2)
Cl2—Ru1—C1—C253.67 (15)C25—Ru2—C22—C2166.21 (15)
C4—Ru1—C1—C666.71 (14)C23—Ru2—C22—C21133.3 (2)
C5—Ru1—C1—C628.68 (13)C26—Ru2—C22—C2129.06 (14)
C3—Ru1—C1—C6103.63 (15)C24—Ru2—C22—C21104.06 (16)
C2—Ru1—C1—C6133.0 (2)Cl3—Ru2—C22—C2156.53 (15)
Cl3—Ru1—C1—C691.95 (13)Cl1—Ru2—C22—C21142.25 (17)
Cl1—Ru1—C1—C616.5 (2)Cl2—Ru2—C22—C21139.35 (13)
Cl2—Ru1—C1—C6173.34 (11)C25—Ru2—C22—C2367.07 (14)
C4—Ru1—C1—C7178.5 (2)C26—Ru2—C22—C23104.21 (15)
C5—Ru1—C1—C7140.5 (2)C24—Ru2—C22—C2329.21 (13)
C6—Ru1—C1—C7111.8 (3)C21—Ru2—C22—C23133.3 (2)
C3—Ru1—C1—C7144.6 (2)Cl3—Ru2—C22—C23170.19 (11)
C2—Ru1—C1—C7115.2 (3)Cl1—Ru2—C22—C239.0 (3)
Cl3—Ru1—C1—C719.9 (2)Cl2—Ru2—C22—C2387.38 (13)
Cl1—Ru1—C1—C795.3 (3)C25—Ru2—C22—C28179.0 (2)
Cl2—Ru1—C1—C761.5 (2)C23—Ru2—C22—C28111.9 (3)
C6—C1—C2—C30.3 (3)C26—Ru2—C22—C28143.9 (2)
C7—C1—C2—C3177.3 (2)C24—Ru2—C22—C28141.1 (2)
Ru1—C1—C2—C353.0 (2)C21—Ru2—C22—C28114.8 (3)
C6—C1—C2—C8177.3 (2)Cl3—Ru2—C22—C2858.3 (2)
C7—C1—C2—C80.3 (4)Cl1—Ru2—C22—C28103.0 (3)
Ru1—C1—C2—C8124.6 (2)Cl2—Ru2—C22—C2824.5 (2)
C6—C1—C2—Ru152.7 (2)C21—C22—C23—C241.2 (3)
C7—C1—C2—Ru1124.3 (2)C28—C22—C23—C24178.8 (2)
C4—Ru1—C2—C1104.29 (15)Ru2—C22—C23—C2453.92 (19)
C5—Ru1—C2—C166.36 (15)C21—C22—C23—C29176.3 (2)
C6—Ru1—C2—C129.30 (14)C28—C22—C23—C291.3 (3)
C3—Ru1—C2—C1132.8 (2)Ru2—C22—C23—C29123.5 (2)
Cl3—Ru1—C2—C153.98 (15)C21—C22—C23—Ru252.75 (19)
Cl1—Ru1—C2—C1147.94 (15)C28—C22—C23—Ru2124.8 (2)
Cl2—Ru1—C2—C1136.28 (13)C25—Ru2—C23—C2429.30 (14)
C4—Ru1—C2—C328.48 (14)C26—Ru2—C23—C2466.40 (14)
C5—Ru1—C2—C366.42 (14)C22—Ru2—C23—C24132.5 (2)
C6—Ru1—C2—C3103.47 (15)C21—Ru2—C23—C24103.94 (15)
C1—Ru1—C2—C3132.8 (2)Cl3—Ru2—C23—C24153.40 (13)
Cl3—Ru1—C2—C3173.25 (11)Cl1—Ru2—C23—C2450.96 (15)
Cl1—Ru1—C2—C315.2 (3)Cl2—Ru2—C23—C24130.80 (13)
Cl2—Ru1—C2—C390.95 (13)C25—Ru2—C23—C22103.17 (15)
C4—Ru1—C2—C8139.9 (2)C26—Ru2—C23—C2266.07 (14)
C5—Ru1—C2—C8177.8 (2)C24—Ru2—C23—C22132.5 (2)
C6—Ru1—C2—C8145.1 (2)C21—Ru2—C23—C2228.52 (13)
C3—Ru1—C2—C8111.4 (3)Cl3—Ru2—C23—C2220.9 (2)
C1—Ru1—C2—C8115.8 (3)Cl1—Ru2—C23—C22176.57 (11)
Cl3—Ru1—C2—C861.9 (2)Cl2—Ru2—C23—C2296.73 (13)
Cl1—Ru1—C2—C896.2 (3)C25—Ru2—C23—C29144.6 (2)
Cl2—Ru1—C2—C820.4 (2)C26—Ru2—C23—C29178.4 (2)
C1—C2—C3—C40.6 (3)C24—Ru2—C23—C29115.2 (3)
C8—C2—C3—C4177.1 (2)C22—Ru2—C23—C29112.3 (3)
Ru1—C2—C3—C452.7 (2)C21—Ru2—C23—C29140.8 (2)
C1—C2—C3—C9177.6 (2)Cl3—Ru2—C23—C2991.4 (2)
C8—C2—C3—C90.1 (3)Cl1—Ru2—C23—C2964.3 (2)
Ru1—C2—C3—C9124.3 (2)Cl2—Ru2—C23—C2915.6 (2)
C1—C2—C3—Ru153.2 (2)C22—C23—C24—C251.5 (3)
C8—C2—C3—Ru1124.4 (2)C29—C23—C24—C25175.8 (2)
C5—Ru1—C3—C429.47 (14)Ru2—C23—C24—C2552.4 (2)
C6—Ru1—C3—C466.72 (15)C22—C23—C24—C30178.1 (2)
C2—Ru1—C3—C4133.5 (2)C29—C23—C24—C300.7 (4)
C1—Ru1—C3—C4104.62 (16)Ru2—C23—C24—C30124.1 (2)
Cl3—Ru1—C3—C4148.97 (15)C22—C23—C24—Ru253.94 (19)
Cl1—Ru1—C3—C452.89 (15)C29—C23—C24—Ru2123.4 (2)
Cl2—Ru1—C3—C4133.66 (13)C25—Ru2—C24—C23132.8 (2)
C4—Ru1—C3—C2133.5 (2)C26—Ru2—C24—C23104.08 (15)
C5—Ru1—C3—C2104.00 (15)C22—Ru2—C24—C2329.50 (13)
C6—Ru1—C3—C266.75 (14)C21—Ru2—C24—C2366.43 (14)
C1—Ru1—C3—C228.85 (14)Cl3—Ru2—C24—C23144.33 (17)
Cl3—Ru1—C3—C215.5 (3)Cl1—Ru2—C24—C23138.95 (12)
Cl1—Ru1—C3—C2173.64 (11)Cl2—Ru2—C24—C2358.30 (14)
Cl2—Ru1—C3—C292.87 (13)C23—Ru2—C24—C25132.8 (2)
C4—Ru1—C3—C9114.4 (3)C26—Ru2—C24—C2528.67 (14)
C5—Ru1—C3—C9143.9 (3)C22—Ru2—C24—C25103.26 (15)
C6—Ru1—C3—C9178.9 (2)C21—Ru2—C24—C2566.33 (14)
C2—Ru1—C3—C9112.1 (3)Cl3—Ru2—C24—C2511.6 (3)
C1—Ru1—C3—C9141.0 (3)Cl1—Ru2—C24—C2588.30 (13)
Cl3—Ru1—C3—C996.6 (3)Cl2—Ru2—C24—C25168.94 (11)
Cl1—Ru1—C3—C961.5 (2)C25—Ru2—C24—C30112.8 (3)
Cl2—Ru1—C3—C919.2 (2)C23—Ru2—C24—C30114.5 (3)
C2—C3—C4—C50.5 (3)C26—Ru2—C24—C30141.4 (2)
C9—C3—C4—C5177.4 (2)C22—Ru2—C24—C30144.0 (2)
Ru1—C3—C4—C553.1 (2)C21—Ru2—C24—C30179.1 (2)
C2—C3—C4—C10176.7 (2)Cl3—Ru2—C24—C30101.2 (3)
C9—C3—C4—C100.3 (4)Cl1—Ru2—C24—C3024.5 (2)
Ru1—C3—C4—C10124.1 (2)Cl2—Ru2—C24—C3056.2 (2)
C2—C3—C4—Ru152.6 (2)C23—C24—C25—C260.7 (3)
C9—C3—C4—Ru1124.4 (2)C30—C24—C25—C26177.3 (2)
C5—Ru1—C4—C3132.8 (2)Ru2—C24—C25—C2653.2 (2)
C6—Ru1—C4—C3103.75 (16)C23—C24—C25—C31177.0 (2)
C2—Ru1—C4—C328.95 (14)C30—C24—C25—C310.4 (4)
C1—Ru1—C4—C365.87 (15)Ru2—C24—C25—C31124.5 (2)
Cl3—Ru1—C4—C3147.43 (16)C23—C24—C25—Ru252.5 (2)
Cl1—Ru1—C4—C3136.43 (13)C30—C24—C25—Ru2124.1 (2)
Cl2—Ru1—C4—C355.91 (15)C23—Ru2—C25—C26104.17 (15)
C6—Ru1—C4—C529.03 (14)C24—Ru2—C25—C26133.2 (2)
C3—Ru1—C4—C5132.8 (2)C22—Ru2—C25—C2666.25 (14)
C2—Ru1—C4—C5103.83 (16)C21—Ru2—C25—C2629.33 (14)
C1—Ru1—C4—C566.91 (15)Cl3—Ru2—C25—C2651.22 (15)
Cl3—Ru1—C4—C514.7 (3)Cl1—Ru2—C25—C26132.03 (13)
Cl1—Ru1—C4—C590.79 (14)Cl2—Ru2—C25—C26156.68 (13)
Cl2—Ru1—C4—C5171.31 (12)C23—Ru2—C25—C2429.06 (13)
C5—Ru1—C4—C10112.5 (3)C26—Ru2—C25—C24133.2 (2)
C6—Ru1—C4—C10141.6 (2)C22—Ru2—C25—C2466.98 (14)
C3—Ru1—C4—C10114.7 (3)C21—Ru2—C25—C24103.90 (15)
C2—Ru1—C4—C10143.6 (2)Cl3—Ru2—C25—C24175.55 (11)
C1—Ru1—C4—C10179.5 (2)Cl1—Ru2—C25—C2494.75 (13)
Cl3—Ru1—C4—C1097.9 (3)Cl2—Ru2—C25—C2423.4 (2)
Cl1—Ru1—C4—C1021.8 (2)C23—Ru2—C25—C31142.7 (2)
Cl2—Ru1—C4—C1058.8 (2)C26—Ru2—C25—C31113.1 (3)
C3—C4—C5—C60.1 (3)C24—Ru2—C25—C31113.7 (3)
C10—C4—C5—C6177.1 (2)C22—Ru2—C25—C31179.4 (2)
Ru1—C4—C5—C653.21 (19)C21—Ru2—C25—C31142.4 (2)
C3—C4—C5—C11176.6 (2)Cl3—Ru2—C25—C3161.9 (2)
C10—C4—C5—C110.6 (3)Cl1—Ru2—C25—C3118.9 (2)
Ru1—C4—C5—C11123.3 (2)Cl2—Ru2—C25—C3190.2 (3)
C3—C4—C5—Ru153.3 (2)C24—C25—C26—C210.5 (3)
C10—C4—C5—Ru1123.9 (2)C31—C25—C26—C21178.2 (2)
C4—Ru1—C5—C6132.6 (2)Ru2—C25—C26—C2153.7 (2)
C3—Ru1—C5—C6103.72 (15)C24—C25—C26—C32177.1 (2)
C2—Ru1—C5—C666.04 (14)C31—C25—C26—C320.6 (3)
C1—Ru1—C5—C629.14 (14)Ru2—C25—C26—C32123.9 (2)
Cl3—Ru1—C5—C653.60 (15)C24—C25—C26—Ru253.2 (2)
Cl1—Ru1—C5—C6135.14 (13)C31—C25—C26—Ru2124.5 (2)
Cl2—Ru1—C5—C6152.61 (15)C22—C21—C26—C250.8 (3)
C6—Ru1—C5—C4132.6 (2)C27—C21—C26—C25178.1 (2)
C3—Ru1—C5—C428.83 (14)Ru2—C21—C26—C2553.4 (2)
C2—Ru1—C5—C466.51 (15)C22—C21—C26—C32176.8 (2)
C1—Ru1—C5—C4103.42 (16)C27—C21—C26—C320.5 (3)
Cl3—Ru1—C5—C4173.84 (12)Ru2—C21—C26—C32124.2 (2)
Cl1—Ru1—C5—C492.30 (14)C22—C21—C26—Ru252.55 (19)
Cl2—Ru1—C5—C420.0 (3)C27—C21—C26—Ru2124.7 (2)
C4—Ru1—C5—C11113.6 (3)C23—Ru2—C26—C2566.39 (15)
C6—Ru1—C5—C11113.8 (3)C24—Ru2—C26—C2529.07 (14)
C3—Ru1—C5—C11142.5 (2)C22—Ru2—C26—C25104.08 (15)
C2—Ru1—C5—C11179.8 (2)C21—Ru2—C26—C25132.7 (2)
C1—Ru1—C5—C11142.9 (2)Cl3—Ru2—C26—C25138.75 (13)
Cl3—Ru1—C5—C1160.2 (2)Cl1—Ru2—C26—C2556.45 (15)
Cl1—Ru1—C5—C1121.3 (2)Cl2—Ru2—C26—C25145.66 (19)
Cl2—Ru1—C5—C1193.6 (3)C25—Ru2—C26—C21132.7 (2)
C4—C5—C6—C10.2 (3)C23—Ru2—C26—C2166.28 (15)
C11—C5—C6—C1176.3 (2)C24—Ru2—C26—C21103.61 (15)
Ru1—C5—C6—C152.80 (19)C22—Ru2—C26—C2128.60 (14)
C4—C5—C6—C12177.5 (2)Cl3—Ru2—C26—C2188.57 (13)
C11—C5—C6—C121.0 (3)Cl1—Ru2—C26—C21170.87 (12)
Ru1—C5—C6—C12124.5 (2)Cl2—Ru2—C26—C2113.0 (3)
C4—C5—C6—Ru152.98 (19)C25—Ru2—C26—C32113.2 (3)
C11—C5—C6—Ru1123.5 (2)C23—Ru2—C26—C32179.6 (2)
C2—C1—C6—C50.1 (3)C24—Ru2—C26—C32142.2 (3)
C7—C1—C6—C5177.0 (2)C22—Ru2—C26—C32142.8 (3)
Ru1—C1—C6—C552.9 (2)C21—Ru2—C26—C32114.2 (3)
C2—C1—C6—C12177.4 (2)Cl3—Ru2—C26—C3225.6 (2)
C7—C1—C6—C120.3 (3)Cl1—Ru2—C26—C3256.7 (2)
Ru1—C1—C6—C12124.4 (2)Cl2—Ru2—C26—C32101.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cl3i0.962.803.629 (3)145
C11—H11B···Cl6ii0.962.713.588 (3)153
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ru2Cl3(C12H18)2][Cl4Fe]
Mr830.67
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.4490 (2), 12.8352 (2), 14.6752 (4)
α, β, γ (°)106.5767 (12), 90.4341 (9), 99.7915 (12)
V3)1500.43 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.11
Crystal size (mm)0.30 × 0.20 × 0.08
Data collection
DiffractometerNonius KappaCCD
Absorption correctionGaussian
(Reference? year?)
Tmin, Tmax0.529, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
27082, 6900, 6172
Rint0.036
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.061, 1.08
No. of reflections6900
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.68

Computer programs: COLLECT (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cl3i0.962.803.629 (3)145
C11—H11B···Cl6ii0.962.713.588 (3)153
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.
 

Acknowledgements

This work was supported financially by the Grant Agency of Charles University in Prague (project No. 69309), and is a part of a long-term research plan supported by the Ministry of Education, Youth and Sports of the Czech Republic (project No. MSM0021620857).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrand, J. C. D. & Snedden, W. (1957). Trans. Faraday Soc. 53, 894–900.  CrossRef CAS Web of Science Google Scholar
First citationJin, Z.-M., Li, Z.-G., Li, L., Li, M.-C. & Hu, M.-L. (2005). Acta Cryst. E61, m2466–m2468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPandey, D. S., Sahay, A. N., Sisodia, O. S., Jha, N. K., Sharma, P., Klaus, H. E. & Cabrera, A. (1999). J. Organomet. Chem. 592, 278–282.  Web of Science CSD CrossRef CAS Google Scholar
First citationRedwine, K. D., Hansen, H. D., Bowley, S., Isbell, J., Sanchnez, M., Vodak, D. & Nelson, J. H. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 379–407.  CrossRef CAS Google Scholar
First citationSchulz, J., Císařová, I. & Štěpnička, P. (2009). J. Organomet. Chem. 694, 2519–2530.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTocher, D. A. & Walkinshaw, M. D. (1982). Acta Cryst. B38, 3083–3085.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWyrzykowski, D., Sikorski, A., Konitz, A. & Warnke, Z. (2006). Acta Cryst. E62, m3562–m3564.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds