organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-hy­dr­oxy-6-oxo-4-phenyl-5,6-di­hydro-4H-cyclo­penta­[b]thio­phene-5-carboxyl­ate

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 7 September 2011; accepted 12 September 2011; online 30 September 2011)

In the title mol­ecule, C16H14O4S, the dihydro­cyclo­penta­thio­phenone ring system is almost planar, with an r.m.s. deviation of 0.060 Å from the best fit plane through all nine non-H atoms. The cyclo­penta­none ring adopts a severely flattened envelope conformation with the C atom carrying the OH and ethylcarboxylate substituents at the flap. This atom lies only 0.185 (3) Å from the plane through the other four C atoms. The phenyl substituent is inclined at 43.37 (5)° to the dihydro­cyclo­penta­thio­phenone mean plane. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with R22(10) ring motifs. Weak C—H⋯O hydrogen bonds also link mol­ecules into chains along c, while an approximately orthogonal set of C—H⋯O contacts form chains along b, resulting in layers lying parallel to (100). Inversion dimers also form through weaker R22(12) C—H⋯S contacts, which combine with C—H⋯O contacts to form stacks along b.

Related literature

For details of conducting thio­phene polymers, see: Anquetil et al. (2003[Anquetil, P. A., Yu, H.-H., Madden, J. D., Swager, T. M. & Hunter, I. W. (2003). Proceedings of SPIE - The International Society for Optical Engineering 5051 (Electroactive Polymer Actuators and Devices), pp. 42-53.]). For related structures, see: Bonini et al. (2004[Bonini, B. F., Capito, E., Comes-Franchini, M., Ricci, A., Bottoni, A., Bernardi, F., Miscione, G. P., Giordano, L. & Cowley, A. R. (2004). Eur. J. Org. Chem. pp. 4442-4451.]); Chang et al. (2004[Chang, K.-J., Rayabarapu, D. K. & Cheng, C.-H. (2004). J. Org. Chem. 69, 4781-4787.]). For details of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the preparation of a precursor used in the synthesis, see: Yang (2009[Yang, B. V. (2009). World Patent WO 2009158380 A1.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O4S

  • Mr = 302.33

  • Triclinic, [P \overline 1]

  • a = 7.7407 (4) Å

  • b = 9.1005 (4) Å

  • c = 10.5035 (5) Å

  • α = 84.840 (3)°

  • β = 80.929 (3)°

  • γ = 88.086 (3)°

  • V = 727.56 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 91 K

  • 0.45 × 0.35 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.672, Tmax = 0.745

  • 13007 measured reflections

  • 2584 independent reflections

  • 2233 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.079

  • S = 1.07

  • 2584 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O14 0.82 (2) 2.27 (2) 2.6705 (16) 110.8 (16)
O6—H6⋯O5i 0.82 (2) 2.06 (2) 2.7973 (16) 150.5 (19)
C1—H1⋯O14ii 0.95 2.56 3.157 (2) 121
C11—H11⋯O5iii 0.95 2.52 3.386 (2) 152
C15—H15B⋯O6iv 0.99 2.27 3.206 (2) 157
C7—H7⋯S1v 1.00 2.97 3.7855 (16) 139
C12—H12⋯O14vi 0.95 2.61 3.497 (2) 157
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y-1, z; (iii) x, y, z+1; (iv) x+1, y, z; (v) -x, -y+1, -z+1; (vi) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There is currently much interest in research into conducting thiophene polymers (Anquetil et al., 2003). Our interest in molecular actuators based on this chemistry led to the isolation of the previously unreported title compound.

In the molecular structure of the title molecule (Fig. 1), the flap atom of the severely flattened C3···C7 ring carries both hydroxy and ethylcarboxylate substituents. Atom C6 lies 0.185 (3) Å from the mean plane through atoms (C3-C5,C7) and this plane is inclined at 4.43 (8) ° to the thiophene ring (S1,C1-C4) mean plane. As a result the dihydrocyclopenta-thiophene-one ring system is also reasonably planar with a r.m.s. deviation of only 0.060 Å from the plane through all 9 non-hydrogen atoms. The C7 atom of the cyclopentane ring carries a phenyl substituent that subtends a dihedral angle of 43.37 (5) ° to the dihydrocyclopentathiophene plane. The Cambridge Crystal Structure Database (CSD, Version 5.32, last update Aug. 2011; Allen, 2002) reveals only three structures involving dihydrocyclopenta-thiophene-one ring systems (Bonini et al., 2004; Chang et al., 2004). In the title molecule the bond distances are normal (Allen et al., 1987) and similar to those reported for these similar molecules.

In the crystal O6–H6···O5 hydrogen bonds form inversion dimers with R22(10) ring motifs, (Bernstein et al., 1995), Fig 2. Chains form along c due to weak C11–H11···O5 contacts while C1–H1..O14 contacts form chains at roughly 90 ° to these along b. These contacts combine to generate layers lying parallel to the (100) plane, Fig 3. Inversion dimers also form through weaker R22(12) C7–H7···S1 contacts, and together with C12..H12···O14 hydrogen bonds lead to stacks along b, Fig 4. Additional C15..H15···O6 contacts further stabilize the packing.

Related literature top

For details of conducting thiophene polymers, see: Anquetil et al. (2003). For related structures, see: Bonini et al. (2004); Chang et al. (2004). For details of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond lengths, see Allen et al. (1987). For the preparation of a precursor used in the synthesis, see: Yang (2009).

Experimental top

The precursor thiophene, ethyl 6-oxo-4-phenyl-5,6-dihydro-4H-cyclopenta- thiophene-5-carboxylate (EOPDCTC), was prepared by a literature procedure (Yang, 2009). EOPDCTC (315 mg, 1.1 mmol) and potassium tertiary butoxide (289 mg, 2.6 mmol) were dissolved in 2-propanol (5 ml) and iodine (280 mg, 1.1 mmol) in 2-propanol (5 ml) added dropwise under a N2 atmosphere. After stirring at room temperature for 24 hrs, the solvent was removed under reduced pressure. The residues were redissolved in EtOAc, washed with saturated sodium thiosulfate and distilled water then dried over MgSO4. The crude product was purified by silica gel column chromatography with CH2Cl2/EtOAc (10%) to give a brown solid in 17% yield. X-ray quality crystals were obtained from a CH2Cl2 solution of the title compound layered with hexane. M.p 404 K. HRMS (+ve ESI) m/z calc for C16H13O4SNa 324.0427, found 325.1152. Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

The H atom of the OH group was located in a difference Fourier map and its coordinates were refined with Uiso = 1.5Ueq(O). All C-bound H atoms were included in calulated positions and refined using a riding model: d(C—H) = 0.95, 1.00, 0.99 and 0.98 Å, for aromatic, methine, methylene and methyl H-atoms, respectively, with Uiso = k × Ueq(C), where k = 1.5 for methyl H atoms, and k = 1.2 for all other H atoms.

Structure description top

There is currently much interest in research into conducting thiophene polymers (Anquetil et al., 2003). Our interest in molecular actuators based on this chemistry led to the isolation of the previously unreported title compound.

In the molecular structure of the title molecule (Fig. 1), the flap atom of the severely flattened C3···C7 ring carries both hydroxy and ethylcarboxylate substituents. Atom C6 lies 0.185 (3) Å from the mean plane through atoms (C3-C5,C7) and this plane is inclined at 4.43 (8) ° to the thiophene ring (S1,C1-C4) mean plane. As a result the dihydrocyclopenta-thiophene-one ring system is also reasonably planar with a r.m.s. deviation of only 0.060 Å from the plane through all 9 non-hydrogen atoms. The C7 atom of the cyclopentane ring carries a phenyl substituent that subtends a dihedral angle of 43.37 (5) ° to the dihydrocyclopentathiophene plane. The Cambridge Crystal Structure Database (CSD, Version 5.32, last update Aug. 2011; Allen, 2002) reveals only three structures involving dihydrocyclopenta-thiophene-one ring systems (Bonini et al., 2004; Chang et al., 2004). In the title molecule the bond distances are normal (Allen et al., 1987) and similar to those reported for these similar molecules.

In the crystal O6–H6···O5 hydrogen bonds form inversion dimers with R22(10) ring motifs, (Bernstein et al., 1995), Fig 2. Chains form along c due to weak C11–H11···O5 contacts while C1–H1..O14 contacts form chains at roughly 90 ° to these along b. These contacts combine to generate layers lying parallel to the (100) plane, Fig 3. Inversion dimers also form through weaker R22(12) C7–H7···S1 contacts, and together with C12..H12···O14 hydrogen bonds lead to stacks along b, Fig 4. Additional C15..H15···O6 contacts further stabilize the packing.

For details of conducting thiophene polymers, see: Anquetil et al. (2003). For related structures, see: Bonini et al. (2004); Chang et al. (2004). For details of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond lengths, see Allen et al. (1987). For the preparation of a precursor used in the synthesis, see: Yang (2009).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with numbering scheme and dispacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the inversion dimers of the title compound formed by O—H···O hydrogen bonds [dashed cyan lines].
[Figure 3] Fig. 3. A view of the formation of layers of the title compound lying parallel to the (100) plane. The C—H···O interactions are illustrated by dashed cyan lines.
[Figure 4] Fig. 4. The crystal packing of the title compound viewed along the b-axis, showing the C—H···S and C—H···O interactions [dashed cyan lines].
Ethyl 5-hydroxy-6-oxo-4-phenyl-5,6-dihydro-4H- cyclopenta[b]thiophene-5-carboxylate top
Crystal data top
C16H14O4SZ = 2
Mr = 302.33F(000) = 316
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7407 (4) ÅCell parameters from 4122 reflections
b = 9.1005 (4) Åθ = 2.7–24.9°
c = 10.5035 (5) ŵ = 0.24 mm1
α = 84.840 (3)°T = 91 K
β = 80.929 (3)°Block, colourless
γ = 88.086 (3)°0.45 × 0.35 × 0.25 mm
V = 727.56 (6) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2584 independent reflections
Radiation source: fine-focus sealed tube2233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 25.2°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 99
Tmin = 0.672, Tmax = 0.745k = 1010
13007 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.3338P]
where P = (Fo2 + 2Fc2)/3
2584 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H14O4Sγ = 88.086 (3)°
Mr = 302.33V = 727.56 (6) Å3
Triclinic, P1Z = 2
a = 7.7407 (4) ÅMo Kα radiation
b = 9.1005 (4) ŵ = 0.24 mm1
c = 10.5035 (5) ÅT = 91 K
α = 84.840 (3)°0.45 × 0.35 × 0.25 mm
β = 80.929 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2584 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
2233 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.745Rint = 0.035
13007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.30 e Å3
2584 reflectionsΔρmin = 0.26 e Å3
194 parameters
Special details top

Experimental. Spectroscopic data for the title compound: 1H NMR (δ p.p.m., CDCl3, 400 MHz): 8.08 (1H, d, J = 4.8 Hz, CHS), 7.35–7.28 (5H, m, phenyl H), 7.16 (1H, d, J = 4.8 Hz, CHCHS), 4.73 (1H, s, CHC6H5), 4.37 (1H, s, OH), 3.82 & 3.62 [2 x (1H, m, CH2)], 0.85 (3H, t, J = 7 Hz, CH3). IR ν(CO) 1737, 1703 cm-1 .

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31491 (5)0.47012 (4)0.41577 (4)0.01868 (13)
C10.2877 (2)0.33654 (18)0.54308 (16)0.0206 (4)
H10.32380.23660.53490.025*
C20.2095 (2)0.38688 (18)0.65715 (16)0.0185 (4)
H20.18500.32710.73650.022*
C30.1697 (2)0.53999 (17)0.64162 (15)0.0149 (3)
C40.2184 (2)0.59827 (17)0.51632 (15)0.0155 (3)
C50.1669 (2)0.75165 (17)0.49802 (15)0.0154 (3)
O50.17464 (15)0.83394 (12)0.39918 (10)0.0204 (3)
C60.0911 (2)0.79820 (17)0.63548 (15)0.0152 (3)
O60.07237 (14)0.86931 (13)0.63575 (12)0.0203 (3)
H60.064 (3)0.959 (2)0.6268 (19)0.030*
C70.0721 (2)0.65116 (17)0.72591 (15)0.0158 (3)
H70.05420.62510.73820.019*
C80.1173 (2)0.66251 (18)0.86036 (15)0.0174 (4)
C90.2418 (2)0.57266 (19)0.91240 (16)0.0228 (4)
H90.30440.50010.86290.027*
C100.2752 (3)0.5886 (2)1.03705 (17)0.0293 (4)
H100.35820.52471.07280.035*
C110.1892 (3)0.6958 (2)1.10879 (17)0.0292 (4)
H110.21450.70741.19290.035*
C120.0658 (3)0.78667 (19)1.05765 (17)0.0272 (4)
H120.00670.86141.10640.033*
C130.0281 (2)0.76864 (18)0.93510 (16)0.0216 (4)
H130.05950.82930.90170.026*
C140.2214 (2)0.90456 (17)0.67132 (14)0.0147 (3)
O140.18207 (15)1.02944 (12)0.69500 (11)0.0212 (3)
O150.38114 (14)0.84388 (12)0.66685 (11)0.0200 (3)
C150.5156 (2)0.9380 (2)0.69937 (17)0.0245 (4)
H15A0.49801.04040.66250.029*
H15B0.63260.90280.66000.029*
C160.5090 (3)0.9368 (3)0.8421 (2)0.0471 (6)
H16A0.39570.97680.88070.071*
H16B0.60300.99750.86030.071*
H16C0.52410.83530.87900.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0229 (2)0.0171 (2)0.0166 (2)0.00254 (17)0.00388 (17)0.00395 (16)
C10.0247 (9)0.0143 (8)0.0237 (9)0.0026 (7)0.0072 (7)0.0022 (7)
C20.0210 (9)0.0167 (8)0.0179 (8)0.0010 (7)0.0032 (7)0.0007 (7)
C30.0122 (8)0.0167 (8)0.0168 (8)0.0012 (6)0.0044 (6)0.0021 (6)
C40.0142 (8)0.0158 (8)0.0177 (8)0.0005 (6)0.0046 (6)0.0038 (7)
C50.0120 (8)0.0167 (8)0.0185 (9)0.0017 (6)0.0051 (6)0.0023 (7)
O50.0252 (7)0.0177 (6)0.0184 (6)0.0006 (5)0.0062 (5)0.0014 (5)
C60.0115 (8)0.0155 (8)0.0189 (8)0.0029 (6)0.0031 (6)0.0027 (7)
O60.0136 (6)0.0150 (6)0.0327 (7)0.0042 (5)0.0057 (5)0.0029 (5)
C70.0128 (8)0.0148 (8)0.0198 (9)0.0012 (6)0.0022 (6)0.0008 (7)
C80.0174 (9)0.0167 (8)0.0169 (8)0.0037 (7)0.0015 (7)0.0009 (7)
C90.0246 (9)0.0243 (9)0.0194 (9)0.0031 (7)0.0023 (7)0.0050 (7)
C100.0317 (11)0.0351 (11)0.0220 (10)0.0013 (9)0.0086 (8)0.0006 (8)
C110.0407 (11)0.0329 (11)0.0146 (9)0.0079 (9)0.0034 (8)0.0034 (8)
C120.0385 (11)0.0207 (9)0.0199 (9)0.0036 (8)0.0070 (8)0.0066 (7)
C130.0234 (9)0.0185 (9)0.0212 (9)0.0008 (7)0.0014 (7)0.0001 (7)
C140.0163 (8)0.0157 (8)0.0116 (8)0.0006 (7)0.0003 (6)0.0006 (6)
O140.0220 (6)0.0149 (6)0.0270 (7)0.0009 (5)0.0047 (5)0.0034 (5)
O150.0118 (6)0.0222 (6)0.0278 (7)0.0012 (5)0.0050 (5)0.0098 (5)
C150.0139 (9)0.0281 (10)0.0334 (10)0.0044 (7)0.0040 (7)0.0113 (8)
C160.0419 (13)0.0704 (16)0.0341 (12)0.0203 (12)0.0160 (10)0.0069 (11)
Geometric parameters (Å, º) top
S1—C11.7164 (17)C9—C101.395 (2)
S1—C41.7171 (16)C9—H90.9500
C1—C21.365 (2)C10—C111.376 (3)
C1—H10.9500C10—H100.9500
C2—C31.417 (2)C11—C121.384 (3)
C2—H20.9500C11—H110.9500
C3—C41.374 (2)C12—C131.389 (2)
C3—C71.509 (2)C12—H120.9500
C4—C51.443 (2)C13—H130.9500
C5—O51.2190 (19)C14—O141.2041 (19)
C5—C61.560 (2)C14—O151.3332 (19)
C6—O61.4018 (18)O15—C151.4689 (19)
C6—C141.531 (2)C15—C161.491 (3)
C6—C71.567 (2)C15—H15A0.9900
O6—H60.82 (2)C15—H15B0.9900
C7—C81.520 (2)C16—H16A0.9800
C7—H71.0000C16—H16B0.9800
C8—C91.389 (2)C16—H16C0.9800
C8—C131.395 (2)
C1—S1—C489.88 (8)C8—C9—C10120.27 (16)
C2—C1—S1113.94 (13)C8—C9—H9119.9
C2—C1—H1123.0C10—C9—H9119.9
S1—C1—H1123.0C11—C10—C9120.64 (17)
C1—C2—C3111.12 (15)C11—C10—H10119.7
C1—C2—H2124.4C9—C10—H10119.7
C3—C2—H2124.4C10—C11—C12119.60 (16)
C4—C3—C2112.06 (14)C10—C11—H11120.2
C4—C3—C7112.16 (14)C12—C11—H11120.2
C2—C3—C7135.47 (15)C11—C12—C13120.06 (16)
C3—C4—C5112.25 (14)C11—C12—H12120.0
C3—C4—S1112.99 (12)C13—C12—H12120.0
C5—C4—S1134.64 (13)C12—C13—C8120.82 (17)
O5—C5—C4130.13 (15)C12—C13—H13119.6
O5—C5—C6124.00 (14)C8—C13—H13119.6
C4—C5—C6105.87 (13)O14—C14—O15125.38 (15)
O6—C6—C14109.60 (13)O14—C14—C6122.73 (14)
O6—C6—C5111.05 (12)O15—C14—C6111.83 (13)
C14—C6—C5106.85 (12)C14—O15—C15115.81 (12)
O6—C6—C7110.20 (12)O15—C15—C16111.60 (15)
C14—C6—C7113.48 (12)O15—C15—H15A109.3
C5—C6—C7105.56 (12)C16—C15—H15A109.3
C6—O6—H6111.8 (14)O15—C15—H15B109.3
C3—C7—C8119.14 (13)C16—C15—H15B109.3
C3—C7—C6102.88 (12)H15A—C15—H15B108.0
C8—C7—C6114.66 (13)C15—C16—H16A109.5
C3—C7—H7106.4C15—C16—H16B109.5
C8—C7—H7106.4H16A—C16—H16B109.5
C6—C7—H7106.4C15—C16—H16C109.5
C9—C8—C13118.56 (15)H16A—C16—H16C109.5
C9—C8—C7123.45 (14)H16B—C16—H16C109.5
C13—C8—C7117.99 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O140.82 (2)2.27 (2)2.6705 (16)110.8 (16)
O6—H6···O5i0.82 (2)2.06 (2)2.7973 (16)150.5 (19)
C1—H1···O14ii0.952.563.157 (2)121
C11—H11···O5iii0.952.523.386 (2)152
C15—H15B···O6iv0.992.273.206 (2)157
C7—H7···S1v1.002.973.7855 (16)139
C12—H12···O14vi0.952.613.497 (2)157
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1, z; (iii) x, y, z+1; (iv) x+1, y, z; (v) x, y+1, z+1; (vi) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC16H14O4S
Mr302.33
Crystal system, space groupTriclinic, P1
Temperature (K)91
a, b, c (Å)7.7407 (4), 9.1005 (4), 10.5035 (5)
α, β, γ (°)84.840 (3), 80.929 (3), 88.086 (3)
V3)727.56 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.45 × 0.35 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.672, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
13007, 2584, 2233
Rint0.035
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.07
No. of reflections2584
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: APEX2 (Bruker, 2011), APEX2 and SAINT (Bruker, 2011), SAINT (Bruker, 2011), SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O140.82 (2)2.27 (2)2.6705 (16)110.8 (16)
O6—H6···O5i0.82 (2)2.06 (2)2.7973 (16)150.5 (19)
C1—H1···O14ii0.952.563.157 (2)121
C11—H11···O5iii0.952.523.386 (2)152
C15—H15B···O6iv0.992.273.206 (2)157
C7—H7···S1v1.002.973.7855 (16)139
C12—H12···O14vi0.952.613.497 (2)157
Symmetry codes: (i) x, y+2, z+1; (ii) x, y1, z; (iii) x, y, z+1; (iv) x+1, y, z; (v) x, y+1, z+1; (vi) x, y+2, z+2.
 

Acknowledgements

We thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAnquetil, P. A., Yu, H.-H., Madden, J. D., Swager, T. M. & Hunter, I. W. (2003). Proceedings of SPIE - The International Society for Optical Engineering 5051 (Electroactive Polymer Actuators and Devices), pp. 42–53.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBonini, B. F., Capito, E., Comes-Franchini, M., Ricci, A., Bottoni, A., Bernardi, F., Miscione, G. P., Giordano, L. & Cowley, A. R. (2004). Eur. J. Org. Chem. pp. 4442–4451.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, K.-J., Rayabarapu, D. K. & Cheng, C.-H. (2004). J. Org. Chem. 69, 4781–4787.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, B. V. (2009). World Patent WO 2009158380 A1.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds